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This paper is devoted to the study of a hydrodynamical equation of Riemann type, generalizing the remarkable
Gurevich—Zybin system. This multi-component non-homogenous hydrodynamic equation is characterized by
the only characteristic flow velocity. The compatible bi-Hamiltonian structures and Lax type representations of
the 3-and 4-component generalized Riemann type hydrodynamical system are analyzed. For the first time the
obtained results augment the theory of integrability of hydrodynamic type systems, originally developed only
for distinct characteristic velocities in homogenous case.
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1. Introduction

Evolution differential equations of special type are capable of describing [1H3] many important
problems of wave propagation in nonlinear media with distributed parameters, for instance, in-
visible non-dissipative dark matter, playing a decisive role [4, |5] in the formation of large scale
structure in the Universe like galaxies, clusters of galaxies, super-clusters. In particular, if the
nonlinear medium is endowed with some regularity no-blow up properties, the propagation of the
corresponding waves can be modeled by means of the so-called Gurevich-Zybin dynamical system

Dy =z, Dz =0, (1)

where, by definition, D; := §/0t + ud/0x, u := dz/dt, (z,t) € R?, is the corresponding charac-
teristic flow velocity and z € C*°(R?;R), is the related self-dual inhomogeneity magnitude. It was
amazing to see that the inhomogeneous Riemann type hydrodynamic system () can be integrated,
up to the first singularity, using the hodograph method (see [4, 6]).

Below in the second section we first construct a general solution to (Il) using the method of
reciprocal transformations. In the third and fourth sections we will analyze the related infinite
hierarchies of conservation laws, the bi-Hamiltonian structures and Lax type integrability of a
Riemann type hydrodynamical system DNu = 0 at N = 3 and N = 4, naturally generalizing the
system (I). In the Conclusion, the obtained results subject to the well-known C- and S-integrability
schemes of nonlinear dynamical systems are discussed.

2. A general solution to the Gurevich-Zybin hydrodynamical system
of Riemann type

Let us introduce the auxiliary field variable p := z, for some smooth mapping p € C*°(R?;R).
Then the second equation of () reduces to the so-called continuity equation
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which can be utilized in the construction of a simple reciprocal transformation
dz = pdz — pudt, dy = dt. (3)

From (3) one easily obtains that 0, = pd. and 9; = 9, — pud,. Thus, system (I)) reduces to the
form

(pil)y = Uz, Uy = 2. (4)

The second equation can be easily integrated to

w=yz+ f(2), (5)

where f € C®°(R;R) is an arbitrary smooth function. Then, the first equation in ({#]) reduces to
the form

(b1, =y +f(2)

which can be easily integrated as

p =924 2y + ¢ (2), (6)

where ¢ € C*°(R;R) is another arbitrary smooth function. Taking into account (Bl) and (@), an
independent spatial variable z € R can be found by integrating the inverse to (B) reciprocal
transformation

dz = p~tdz + udy, dt = dy. (7)

Thus, the general solution to the dynamical system (Il) is given implicitly in the following para-

metric form: )
t
u=zt+f(z), 7= o+ R+,

3. An N-component generalized one-dimensional Riemann type hydrody-
namical equation

The inhomogeneous hydrodynamic type system (II) can be written in a compact form (thanks
to Darryl Holm for this observation)
D?u =0, (8)

where the flow operator D; = 9; + ud,, (z,t) € R?, is well known in fluid dynamics [10]. Indeed,
the aforementioned equation can be written as two interrelated equations of the first order

Diu = z, Dz =0, (9)

which is nothing else but exactly ([I). Thus, an obvious generalization of (Il for an N-component
case is written as
DNu =0, (10)

where N € Z, is arbitrary.
Thus, we can formulate our result as the following proposition.

Proposition 3.1 The generalized dynamical system (I0) is also integrable by means of a suitable
reciprocal transformation (see (3)), possessing the related infinite hierarchies of conservation laws.

Proof. Indeed, let us write ([I0) as N—component quasilinear system of the first order
Dyiuy = us, Dyiug = ugz, sy Diun_1 = un, Diun =0, (11)

where mappings u; = u,ug,us,...,uy_1,uy € C(R?;R) are the corresponding intermediate
smooth field variables.
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Let us introduce an auxiliary field variable p = z,, where z := uy. The inhomogeneous hydro-
dynamic Riemann type system (III), upon its rewriting as

Orun +u10,uny =0, e Orup, + u10z Ul = Uk41 , Orur + u10u1 = U141, (12)

reduces (by means of the reciprocal transformation (B]), based on the continuity equation ()), to
the following form

(/fl)y = O,uq, Oyu1 = us, Oyu2 = us, e OyUN—2 = UN—1, Oyun—1 = 2,
which is, evidently, equivalent to a pair of simple equations
(pfl)y = d,u, 8évflu =z. (13)

The last equation can be easily integrated to

Znyl N-2 n
v= ot ()
: n=0

where f, € C®(R%R), n = 1, N — 1, are arbitrary smooth functions. Then, the first equation
reduces to the form

1 yN—l N-2 yn
— !
(), = o > fa(2)
n=0
one can easily integrate as follows:
n+1

N—
g n+1 +1) +f6(z)a

where fy € C>°(R?;R) is also an arbitrary smooth function. Thus, an independent spatial variable
z € R can be found from the inverse reciprocal transformation () as

N N-2 n+1
= % + T;)fnﬂ(z)m + fo(2).

As a result, a general solution to ([I{) is given implicitly by the parametric form

N n+1

x = Zt an-u )‘f'fO(Z)v

tN

1

finishing the proof.

The next remark demonstrates a very deep symmetry degeneracy of the generalized Riemann
type hydrodynamical equation (I0).

Remark: The inhomogeneous hydrodynamic type system (I2)) with a common characteristic
velocity dz/dt = w; := wu can be generalized for the case of an arbitrary characteristic veloc-
ity dz/dt = a(uq,us,...,un) := a(i), still preserving the reciprocal transformation integrability
described above. Indeed, such an inhomogeneous hydrodynamic type system

Orun + a(t)d,un =0, o Oruy, + a(G)Opup, = Ugt1
under the reciprocal transformation

dz = pdx — pa(@)dt, dy = dt,
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reduces to the form

JyN—Fk
(pil)y = 3211(@), U = yiy +

y
(N —k Zf”“(z)(nﬂ—k)!’

N-2 n+1—k
=k—1

n

where k =1, N. Since all functions uy € C®(R?*;R),k = 1, N, are found explicitly in terms of the
new independent variables z € R and y € R, the first equation can be easily integrated for any
functional dependence a € C*°(R™;R). Then, the functional dependence = := x(z,y) can be also
found in quadratures.

4. The generalized Riemann type hydrodynamical equation at N = 2:
conservation laws, bi-Hamiltonian structure and Lax type representation

Consider the generalized Riemann type hydrodynamical equation (I0) at N = 2:
D2y =0, (15)

where Dy = 9/0t 4+ ud/0x, which is equivalent to the following dynamical system:
Ut :7'0 — Uy } — K[U,’U], (16)

where K : M — T(M) is a related vector field on the 2m-periodic smooth nonsingular functional
phase space M := {(u,v)T € C®°(R/27Z;R?) : u2 — 2v, # 0,7 € R}. As we are interested first in
the conservation laws for the system (@), the following proposition holds.

Proposition 4.1 Let H(\) := o h(z; N)dz € D(M) be an almost everywhere smooth functional
on the manifold M, depending parametrically on A € C, and whose density satisfies the differential
condition

hi = Muh). (17)

for allt € R and X € C on the solution set of dynamical system (I6). Then the following iterative
differential relationship

(f/h)e = Auf/h)a (18)

holds, if a smooth function f € C*(R;R) (parametrically depending on A € C) satisfies for all
t € R the linear equation
fi = 22, f + Aufs. (19)

Proof. We have from (I7)-(20) that
(F/P)e = fo/h= fha/h? = fi/h = Mg /b= Xfuhy/h?

fe/h+ Afu(l/h)e — Xug f/h
= Muf)o/h+Auf(1/h)e = Muf/h)e, (20)

proving the proposition.
The obvious generalization of the previous proposition is read as follows.

Proposition 4.2 If a smooth function h € C*°(R;R) satisfies the relationship

he = kugzh + uhy (21)
where k € R, then
2
H= /hl/kd:c (22)
0

is a conservation law for the Riemann type hydrodynamical system (I0).
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Remark 4.3 Let h € C°(R;R) satisfy the differential relationship hy = (hu)y, then f = h2 is a
solution to equation (I9).

Remark 4.4 If functions h; € C*(R;R), j € Zy, satisfy the relationships hj; = AMhju)z,j € Zy,
A € C, then the functionals

27
" (12"
Hojp= », Kk ”/h? h; (23)
ne Z+ 0

with kg” ) e R, ne€Zy, i,j €Z4, being arbitrary constants, are conserved quantities to equa-
tion (I8). This formula, in particular, makes it possible to construct an infinite hierarchy of non-
polynomial conserved quantities for the Riemann type hydrodynamical system (I6]).

Example 4.5 The following non-polynomial functionals

o 2m
1 1
Hi3) = / Vu2 — 2ude, H§3) - /(“avm - wavx)1/3 de,
0 0
27
1
B [ Em
0
27
1
Héa) - / (k1u(umﬂ)z - uazva:a:) + k1vz20 + ko (uiv - 21}5))1/3 dz,
0
27
& _ s
Hg - /(umﬁ”zzz - Ummvmﬁ) ¢ dz,
0
2m
HéZ) - /(uz(uzzvz - uzvzw) + viivi))% ’
0
2m
1 1
Hfé’) = / (2’&11(’&1’()11 - U;c;cvx) - U?Em) ¢ (24)
0

are conservation laws for the Riemann type dynamical system (I4).

Quite different conservation laws have been obtained in [21+23] using the recursion operator
technique. The corresponding recursion operator proves to generate no new conservation law, if
one applies it to the non-polynomial conservations laws (24]).

We also notice that dynamical system (I0]), as it was shown before in [21,122], can be transformed
via the substitution

v =507 4 ) (25)

into the generalized two-component Hunter-Saxton equation:

1 1
Uzt = —§ui — Ulgy + 5772a

This equation allows a simple reduction to the Hunter-Saxton dynamical system [13, 116, 21, 122, [24]
atn=0:

1
Uyt = 751@ — Uy - (27)
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The non-polynomial conservation laws (24]), upon rewriting with respect to the substitution (25),
give rise to the related non-polynomial conservation laws for a generalized two-component Hunter-
Saxton dynamical system (27)). Moreover, if we further apply the reduction n = 0, we obtain,
respectively, new non-polynomial conservation laws for the Hunter-Saxton dynamical system (27]),
supplementing those found before in |22, [24].

Example 4.6 The following functionals

27 27
(3) 1 ) Ugpzal + 2UzpUs
H:3 = /(umui)i"dx, Hy®' = sz,
0 0
27
Hég) = /[umux(aflui)fumuiu}gdx (28)
0

are the conservation laws for the Hunter-Sazton dynamical system (27).

All of these and many other non-polynomial conservation laws can be easily obtained using
Proposition (£2). For example, the following functionals

27 2m
2

H(n’m) = /(U;xUIT) m+4nd$a H1(2) = /ui(@‘luifdx,
0 0
27 27

m? = [V, a1 = [ Voot
0 0
27

2/9 — - 3

HPY = / (07 ud) (wugu, —ul, (07" u2))] do (29)

0

are also conservation laws for the Hunter-Saxton dynamical system (27)), where m # —4n and
n,m € Z.

Now we proceed to the analysis of the Hamiltonian properties of the dynamical system (I6l),
for which we will search for solutions [7-9] of Nother equation

Ly =0, — 9K — K'9 = 0. (30)

where L denotes the corresponding Lie derivative on M subject to the vector field K : M —
T(M), K' : T(M) =T(M) is its Frechet derivative, K™* : T*(M) —T*(M) is its conjugation
with respect to the standard bilinear form (-,-) on T*(M)xT (M), and ¥ : T*(M) — T (M) is a
suitable implectic operator on M, with respect to which the following Hamiltonian representation

K = —v grad Hy (31)

for some smooth functional Hy € D(M) holds. To show this, it is enough to find, for instance by
means of the small parameter method [, [§], a non-symmetric (¢’ # ¢"*) solution ¢ € T*(M) to
the following Lie-Lax equation:

Py + K" = grad L (32)

for some suitably chosen smooth functional £ € D(M). As a result of easy calculations one obtains

that
2

= (v,0)7, L= %/1)2(11'. (33)

0
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Making use of (B2)) jointly with the classical Legendrian relationship
Hy:= (,K)— L (34)

for the suitable Hamiltonian function, one easily obtains the corresponding symplectic structure

—1 . 0 1
and the non-singular Hamilton function
1 2m
Hy := 3 /(02 + vpu?)dz. (36)
0

Since the operator (B3] is nonsingular, we obtain the corresponding implectic operator

0 -1
9= ( 1 0 ) , (37)
necessarily satisfying the Nother equation (43).
Here it is worth to observe that the Lie-Lax equation (B2]) possesses another solution

2m
2
U U 1
Y= <§,i> ) L= 1 /uvxd:ﬂ, (38)
0
giving rise, owing to expressions ([B3) and ([B4), to the new co-implectic (singular “symplectic”)
structure )
0 —0uzvy
=1 . o lx _ xVy
no= =y < —uv;t0 ulv; %20 + dulv,? ) (39)
on the manifold M, subject to which the Hamiltonian functional equals
27
1
H, = 5 /(uzv — vzu)de, (40)
0

supplying the second Hamiltonian representation
K = —n grad H, (41)

of the Riemann type hydrodynamical system ([IG]). The co-implectic structure (B3] is singular, since
7~ (s, v2)T = 0, nonetheless one can calculate its inverse expression

-9t ug 01
= ( 0 tuy, v, 0 t4+0"1lv, ) (42)
Moreover, the corresponding implectic structure n : T*(M) — T*(M) satisfies the Nother equation
Lgn=ne —nK" — K'n=0, (43)

whose solutions can also be obtained by means of the small parameter method |7, I8]. We also
remark that, owing to the general symplectic theory results [7-9] for nonlinear dynamical systems
on smooth functional manifolds, operator ([B9) defines on the manifold M a closed functional
differential two-form. Thereby it is a priori co-implectic (in general, singular symplectic), satisfying
on M the standard Jacobi brackets condition.
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As a result, the second implectic operator ([@2), being compatible |7, 9] with the implectic
operator ([B1), gives rise to a new infinite hierarchy of polynomial conservation laws

T = /d)\<(197177)” grad Hy[u\},u) (44)

for all n € Z,. Having defined the recursion operator A := 9=, one also finds from (@), (B30)
and (43) that the following Lax type relationship

LxA=A —[A,K*] =0 (45)

holds. If we construct the asymptotical expansion p(z;A) ~ > A% grad ~;_1[u,v] as A = oo,
JEL+
it is easy to obtain from (@) that the gradient like relationship

A0 (a; A = ne(; ) (46)

holds. The latter relationship, making use of the implectic operators 7)) and ([@2]), can be repre-
sented in the two factorized forms:

o e@N Y [ AR 2\ [ 2\ S
Pl d) = ( oa(: N) ) = ( AN fufo — 2\ 2 > = < (). > (47

where a vector f € C°°(R?; C?) lies in an associated to manifold M vector bundle £(M;E?), whose
fibers are isomorphic to the complex Euclidean vector space E2. Take now into account |7, 8] that
the Lie-Lax equation

Lip(a; A) = do(x; A)/dt + K" p(x;A) = 0 (48)
can be transformed equivalently for all z,¢ € R and A € C into the following evolution system:
0 Vg
Dyp = T K D, = 0/0t +ud/0x. (49)
- — Uz

The equation ([9), owing to the relationship (@8] and the obvious identity

Dife +ugfz = (th)ic ’ (50)

can be further split into the adjoint to (49)) system

0 0
Dif = Q()‘)fa Q(A) = _ ) (51)
A0
where a vector f € C°°(R?; C?) satisfies the following linear equation
fo= a0 Nfy  Cuvs N = [ e O (52)
r — s Yy ’ » Yy T 2)\2 )\u:c ’

compatible with (5I]). Moreover, as a result of (BI]) and (B0), the general solution to (B2) allows
the following functional representation:

filz,t) = Gi(u—tv,x —tu+vt?/2),

fo(z,t) = —tA§1(u—tv,z — tu +vt?/2) + Go(u — tv, x — tu + vt?/2), (53)

where g; € C*°(R?% C),j = 1,2, are arbitrary smooth complex valued functions. Now combining
together the obtained relationships (&Il and (G2)), we can formulate the following proposition.

Proposition 4.7 The Riemann type hydrodynamical system (I0) is equivalent to a completely
integrable bi-Hamiltonian flow on the functional manifold M, allowing the Lax type representation
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— AUz

_ AU U Vgplh
w0 = (0, ). (54)
where f € C°(R?;C?) and X € C is an arbitrary spectral parameter.

Remark 4.8 [t is worth to mention here that equation () is equivalent on the solution set of
the Riemann type hydrodynamical system (I8) to the single equation

DZfy =0 <= Difi =0,Difo = —\fi, (55)

where vector f € C°(R?;C?) satisfies for all X\ € C the compatibility condition [53) and whose
general solution is represented in the functional form (23).

Concerning the set of conservation laws {1{2(1/2)7 H§1/2)}, constructed above in (29), they can
be extended to an infinite hierarchy {751/2) € D(M) :j € Zy}, where

27

751/2) = /Ugj_l[u,v]dx, (56)
0

and the affine generating function o(z; A) :=d/dzln fo(z;A) = 32,7, 1y 05w, VAT as A — oo
satisfies the following functional equation:

(0 — Mug)e + 0% + N (20, —u2) = 0. (57)
In addition, the gradient functional p(z; \) := grad v(z; \) € T*(M), where y(\) := fo% o(z; N)dz,
satisfies for all A € C the gradient relationship (46).

4.1. The Lax type representation

Here we proceed to the analysis of conservation laws and bi-Hamiltonian structure of the
generalized Riemann type equation (I0) at N = 3:

Up = U — Uly
v=z—uvy o= Klu,v,z], (58)
2= —UZy

where K : M — T(M) is a suitable vector field on the periodic functional manifold M :=
C>(R/27Z;R?) and t € R is an evolution parameter. The system (E8) also proves to possess
infinite hierarchies of polynomial conservation laws, being suspicious for complete and Lax type
integrability.

Namely, the following polynomial functionals, found by means of the algorithm described in
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section 2, are conserved with respect to the flow (BS):

2
2
Hfll) = /dacz” (vux — UpU — Zj: 12) ,
0
2
H® = /d:c [—Tv,0*u + 2(62u + 20,u° — 30% — dvuug)],
0
27 27
HO = /dz(zQUz — 2z00,), HO® .= /d:c(zzv3 + 32%0,u + 2%),
0 0
27
HD = /dm(zzv3 + 32%vu, — 32°),
0
27
H® = /dacz(GzQu + 3zv,u? — 3207 — dzvu, — 2u0%u + 203uy,),
0
2
H® .= / dz[1001v,0 0 4 (109222u? + 3642v,u°
0
—10922v%u — 7282vuu? — 364v,0°u? + 273v* + 728v3u,ul),
2 27
H? .= /dzzzvz”, H® = /d:c,zgg(v2 —2zu)", (59)
0 0
where n € Z,. In particular, as n = 1,2, ..., from (B9) one obtains that
2m 2m
HO(Q) = /dxzxv, H1(2) = /dxzxzv,...,
0
27
H£3) = drz, (v? — 2uz),
0
27
H2(3) = /dgc,zgg(v4 + 4222 — 420%0), . . ., (60)
0

and so on.

Making use of the iterative property, similar to that, formulated above in Proposition ] one
can construct the following hierarchy of non-polynomial dispersive and dispersionless conservation
laws:

27

H1(1/4) 1/4,

2 2
/dx(—Zumumzx + Uy Vs + 205 Zpn — UgpVUpgVp + 3Vpz 2y — 3UpZex)
0
27

H2(1/3) = dx(_vx:czx + 'U;czxx)l/ga

0
27

H§1/3) = d:c(vmuz — UgUgg — ZII)1/37

(=)
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27

Hl(l/Q) = /dac[—2vule. + 02 4 2(—ugv, + 32,)]Y2,
0
27

H2(1/2) - dz(8u 2z, — 3u0? — 18uv, 2, + 602 + 92,)/2,
0
27

H§1/5) = dz(—2uUpgrtsze + umzvi + 6u§xzz — BUppUg Zra
0
- Suazazvmmvaz + 2“32111 — UgVgaaVs + 3UI'U§$ + Svazazazzaz - 3”12111)1/5;
27

H/3) = /d:ﬂ[klu(f’umzm + Vp2ez) + k10 (UgrZe — UpZay)
0

+ 2(kotgaVe — koUgVUpy + k1220 + k222a) + k3(—3ugve2, + ’ug + 3z§)]1/3, (61)

where k; € R, j = 1,3, are arbitrary real numbers. Below we will attempt to generalize the crucial
relationship (BI) from section 2 on the case of the Riemann type hydrodynamical system (G]).
Namely, we will assume, based on the Remark (£3]), that there exists its following linearization:

Difs(\) =0, (62)

modeling the generalized Riemann type hydrodynamical equation (I0) at N = 3, and where
f3(A) € C°°(R?;C) for all values of the parameter A € C. The scalar equation (62) can be easily
rewritten as the system of three linear equations

Dify =0, Dy fo = p1f1, Difs = pafa (63)

where we have defined a vector f := (f1, fa, f2)T € C°°(R?;C?) and naturally introduced constant
numbers p; = p;j(A) € C, j=1,2. It is easy to observe now that, owing to the former result (I4)),
the system of equations (63]) allows the following solution representation:

filz,t) = Gi(u—tv+2t?/2,0 — 2t — tu+vt? /2 — 2t3/6),
fa(z,t) = tungi(u—tv+ 2t2/2,0 — 2t,x — tu + vt* /2 — 2t3/6)
+ Go(u —tv + 2t2/2,0 — 2t,x — tu + vt?/2 — 2t3/6),
t2
fa(z,t) = ulugggl(ufthrth/Q,vfzt,xftu+vt2/2fzt3/6)

+ tpage(u — tv 4 2t2 /2,0 — zt,x — tu + vt? /2 — 23 /6)
+ g3(u —tv + 2t2/2,0 — 2t,x — tu + vt /2 — 2t3/6), (64)

where g; € C* (R3;C),j = 1,3, are arbitrary smooth complex valued functions. The system (G3)
transforms into the equivalent vector equation

0 0 0
Dif =q(w)f, g = m®) 0 0|, (65)
0 p2(A) 0
which should be compatible both with a suitably chosen equation for derivative

with some matrix £[u,v, z; \] € SL(3;C), defined on the functional manifold M, and with the
Lie-Lax equation [{8]), rewritten as the following system of equations

0 Uz ZI
D= -1 —ux 0 |o, D =08/t +ud/oz, (67)
0 -1  —uy
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where the vector ¢ := ¢(x;\) € T*(M) is considered as the one factorized by means of a solution
f € C=(R?,C3) to (68), satisfying the identity (50). Namely, it is assumed that the following
quadratic trace-relationship

p(z;A) =tr(® f @ fT) (68)

holds for some vector valued matrix functional ® := ®[\;u,v,2] € E* ® End E3, defined on the
manifold M, where “®” means the standard tensor product of vectors from the Euclidean space
[E3. Making now use of the expressions (50), (68)) and (65]), one can find by means of somewhat cum-
bersome and tedious calculations that u1 (A) = A, p2(A) = A, A € C, and the matrix representation
of the derivative (G8])

Ay, — AUy 2z
Lu,v,2; N = 38 —2X%u; Ay
6 *r[u,v, 2] —3X% A,

; (69)

compatible with equation (7)), where a smooth mapping r : M — R satisfies the differential
relationship
Dir +uyr = 1. (70)

The latter possesses a wide set R of different solutions amongst which there are the following:

reR = {[(xU_UQ/Q)/Z]z7(Ux—Ui/6)z;1,%/3_uﬂ”vx+3Zl‘/2

)
gz — V2

(0,03 /6 — upv?2/2 + uzy (uz —’IJQ)/G—I—UZQ)Z—S}. (71)

Note here that only the third element from the set (7)) allows the reduction z = 0 to the case
N = 2. Thus, the resulting Lax type representation for the Riemann type dynamical system (ES)
ensues in the form:

fo =Lu,v,zNf, fi=p0)f,  pl) = —ullu,v,2;A] +q(}),

Ay, — AUy 2z 0 0 O
Llu,v, z; N = 33 —22%u, v, , q(A) : A0 0|,
6ir[u,v, 2] —=3X3 A, 0 A0
—N2yuy AUy, —UZy
p(f) = —3uA3 + \ 220%uu,  —duv, |, (72)

—62*u rlu,v, 2] A+ 3ur® —N2uu,

where f € C°(R?;C?) and X € C is a spectral parameter.

The next problem, which is of great interest, consists in proving that the generalized hydro-
dynamical system (B8] is a completely integrable bi-Hamiltonian flow on the periodic functional
manifold M, as it was proved above for the system (IGl).

That dynamical system (58)) is bi-Hamiltonian which easily follows as a simple corollary from
the fact that it possesses the Lax type representation ({2 and from the general Lie-algebraic in-
tegrability theory [7-H9]. Taking into account that dynamical system (B8] possesses many (at least
4) Lax type representations, one derives that it possesses many (at least 4) different pairs of com-
patible co-symplectic structures, each of which generates its own infinite hierarchy of conservation
laws commuting to each other. Moreover, the involution of conservation laws belonging to different
hierarchies fails owing to their non-compatibility. As the procedure of finding these structures is
adjoint with quite cumbersome analytical calculations, hereinbelow we present only one pair of
related co-symplectic structures, making use of the standard properties of determining Lie-Lax

equation (32]).
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To tackle with the related task of retrieving the Hamiltonian structure of the dynamical system
([©])), it is enough, as in section 2, to construct |7, |8] exact non-symmetric solutions to the Lie-Lax
equation

l/}t + K"*l/f = grad Ea T/)/ 7& l//’*, (73)

for some functional £ € D(M), where ¢ € T*(M) is, in general, a quasi-local vector, such that
the system (E8) allows for the following Hamiltonian representation:

K[U,U,Z] =N grad Hn[u,v,z], Hn = (wan) - Ea 77_1 = 1/);, - 1/);7’* (74)

As a test solution to (73) one can take the one

27
1
Yy = (ug /2,0, —2; uZ /2 + 23 v,)T, L= 3 /(22 + vu, )dz,
0
which gives rise to the following co-implectic operator:
o) 0 —Ougzy !
nti= Y, =y = 0 0 Dzt . (75)

—ugzy 10 210 $(ulz;?0 4 Oulz;?) — (vazy 20 + Ovpzy?)

This expression is not strictly invertible, as its kernel possesses the translation vector field d/dx :
M — T (M) with components (uz,v;,2,)T € T(M), that is n7 1 (ug, vz, 22)T = 0.

Nonetheless, upon formally inverting the operator expression ([7h]), using quite simple, but a bit
cumbersome, direct calculations, we obtain that the Hamiltonian function is equal to:

and the implectic n-operator looks as follows:

o1 ug 01 0
n:=| 07tu, v, 0 '+07 v, 07z, |. (77)
0 2,071 0

The same way, representing the Hamiltonian function (76)) in the scalar form
Hn:(wﬁ;(ux7vx,2x)T)7 wﬁ:%(_va U+ 7_%;6_1\/Z)T5
dipy /dt + K"y = grad Ly (78)

for some functional Ly € D(M), one can construct a second implectic (co-symplectic) operator
¥ : T*(M) — T (M), looking up to O(u?) terms, as follows:

(1) ,,(1)
(1)y2 (1)\2 1+ 2?#(“ 2(711) 0 9 (1)y2
M((uz(m) 9+ 6(712(1)) ) +23u(;)(}1)(1)) ?u (a(vz(l)) + 6u(1))
2 (1) ,,(1) (1)y2 (1)42
V= e %1)@3 =0 Q?M(Q(”zug 0+ 0'm>-) 2pdv™) +06s%),
+229) +3 (uM0 + oul))
2 (7;((11)))2 +uMa) 2009 (020 4+ (M)

(79)
where we put, by definition, 97! 1= (¢} — %), u = puM v = pM 2z = p2® as p — 0,
and whose exact form needs some additional simple but cumbersome calulations, which will be
presented in a work under preparation.
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The operator ([9) satisfies the Hamiltonian vector field condition:
(Ugy Vg, 22)T = =0 grad H,, (80)
following easily from (78). Now, making use of the expressions (74]) and (8, one can derive that
91y grad H, = 97 'K := ¢y, Py =y (81)

Owing to the second equality of (8I]) and the classical homology relationship ¢y = grad Hy for
some function Hy € D(M), one can calculate the expression

iy = [ (olsussv.521, (0,0, 2)7)as, (2)
0

satisfying the Hamiltonian condition
K = -9 grad Hy. (83)

Remark 4.9 We mention here that the exact expression of the Hamiltonian function (83) can be
easily calculated modulo the exact form of the element @y € T*(M) and the co-implectic operator
9t T(M) — T*(M), constructed by formulae (81) and (79), respectively.

The results obtained above can be formulated as the following proposition.

Proposition 4.10 The Riemann type hydrodynamical system ({I) at N = 3 is equivalent to a
completely integrable bi-Hamiltonian flow on the functional manifold M, allowing the Lax type
representation (72) and the compatible pair of co-symplectic structures (77) and (79).

4.2. The hierarchies of conservation laws and their origin analysis

The infinite hierarchy of conservation laws like (GI]) and related recurrent relationships can be

regularly reconstructed, if we compute the asymptotical solutions to the following Lie-Lax equation:
L Pr+ K" =0,

a(z; N) exp{A*1 + 0715 (x; M)}, (84)

&
[

where, by definition, a(x; \) ~ >
oo, and

JEL dj[’U,,’U,Z])\_j, 6’($,)\) = Zj€Z+U{—2} &j[’U/,’U,Z])\_j as \ —

_(“ih_Q)w + Ua?l(vih_Q)x

—(u,v,2)T = —3n grad H3(1/3) [u,v,2] =  —vpug(u2h™2), + 251 (22h72), = Klu,v, 2],
ar —i(,2p—2
2m
H§1/3) = /h[u,v,z]dx, hlu, v, 2] = (Vgpliy — UggpVy — zm)l/3, (85)
0

is a Hamiltonian vector field on the functional manifold M with respect to a suitable evolution
parameter 7 € R. Since the vector fields (8E) and (B8) are commuting to each other on the whole

manifold M, the functionals
27

I:Ij(-1/3) = /&j_g[u,v,z]dx, (86)
0

J € Z4,will be functionally independent conservation laws for both these dynamical systems.
Moreover, as one can check by means of quite cumbersome calculations, the conservation laws
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H](.l/s),j € Z4, coincide up to constant coefficients with the conservation laws H](-l/s),j € Zy,
given by suitable elements of (GI]). But here a question arises — how they are related with the Lax
pair ([2)), strongly depending on the r-solutions () to the differential-functional equation ((ZQ])?
(We cordially thank a Referee of the article for posing this question.) To reply to this question, it is
enough to construct the corresponding hierarchy of conservation laws making use of the standard
Riccati type procedure, applied to the first equation of (72). Namely, having put, by definition,

0fs3/0x == o(x; \) fs, fai=blx; N fs, fi=alx;N) fs, (87)

where the following asymptotical expansions

(o)
oilu,v, ;1IN a(x; \) ~ Z ajlu,v, z; 7] A,
—2 j>2

WE

o(z;A) =~

<.
WV

bj [U,U,Z;T]Aij, (88)

NE

b(x; \) =~
1

<.
WV

hold as |A\| — oo and whose coefficients satisfy the sequences of reccurent differential-functional
equations

aaj/ax + Z Aj—kOk = UgQGjto — 'Uxbj—i-l + Zx(Sj,o ,
k
é)b]/é)x + Z bj_kO'k = 3aj+3 — 2’Lbl-bj+2 + ’Ux(Sj,_l ,
k
0j = Taj1a = 3bjp3+ uxlj 2, (89)

for all integers j+4 € Z , we easily obtain that the initial local functionals o_a[u, v, z; 7], aslu, v, z; |
and b1 [u, v, z; 7] solve the system of equations

o_9+3by—ras = u,, (90)
b1(3uy +rag —3b1) —3a2 = v,
asz(rag — 3b1) +vzb1 = 2z,

easily reducing to a one cubic equation on the local functional o_s[u, v, z; r]. Since the latter makes
it possible, owing to (8J), to recurrently calculate all other functionals o;[u,v,z;7],j > 1, we can
obtain this way an infinite hierarchy of functionals

2

’yj(-l/S) = /Uj_g[u,v,z;r]dx (91)
0

for all j € Z,, being, owing to the first equation of (87) and the second one of (72, conservation
laws for a dynamical system (B8). Moreover, these conservation laws at r := (v, — u2/6)z; "
coincide, up to constant coeflicients, with those (86) constructed above. Similar calculations can
be also performed for other r-solutions of (1)), but owing to their cumbersomeness, we do not
present them in detail.

Remark 4.11 Based on the Lax type representation (87) one can state on the manifold M by
means of direct analytical calculations the well known gradient-like identity (40)

No(x; A) = ne(z; A) (92)

for the gradient functional (x; ) := gradA[u,v, z;7] € T*(M), where the implectic operators
0,9 : T*(M) — T (M) coincide at some r € R with those, given by expressions (77) and (79).
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The Lax type integrability of the Riemann type hydrodynamical equation ({I0) at N = 2 and
N = 3, stated above, allows one to speculate that this property holds for arbitrary N € Z,..

Concerning the evident difference between analytical properties of the cases N =2 and N = 3,
we can easily observe that it is related with structures of the corresponding Lax type operators (52
and (72)): in the first case the corresponding r-equation ([fQ) is trivial (that is empty), but in the
second case it is already nontrivial, allowing many different solutions. This situation generalizes,
as we will see below, to the case N > 4, thereby explaining the appearing diversity of the related
Lax type representations.

To support this hypothesis we will prove below that also at N = 4 it is equivalent to a Lax
type integrable bi-Hamiltonian dynamical system on the suitable smooth 27-periodic functional
manifold M := C*(R/27Z;R*), possesses infinite hierarchies of polynomial dispersionless and
dispersive non-polynomial conservation laws.

5. The case N=4: conservation laws, bi-Hamiltonian structure and Lax type
representation

The Riemann type hydrodynamical equation (I0) at N = 4 is equivalent to the nonlinear
dynamical system
U = UV — Ully
V=W — UV
Wy = 2 — UWy
2t = —Uuzg

= Klu,v,w, 2], (93)

where K : M — T(M) is a suitable vector field on the smooth 2m-periodic functional manifold
M = C*°(R/2nZ;R*). To state its Hamiltonian structure, we need to find a functional solution
to the Lie-Lax equation (32)):

Y+ K = grad £ (94)
for some smooth functional £ € D(M), where
—0u 1 0 0 ud —vy —Wy —Zg
" —vy  —ud 1 0 ne 1 Ou 0 0
K = —w,; 0 —w0 1 ’ K= 0 1 ou 0 (95)
— 2 0 0 —ud 0 0 1 ou

are, respectively, the Frechet derivative of the mapping K : M — T(M) and its conjugate. The
small parameter method [7], applied to equation ([@4]), gives rise to the following exact solution:

v

2
z Uz Wy

1/) = (wzavx/2a 0; -

2z, 2y

>T ) L= 7(2@% — vwy /2)dx. (96)
0

As a result, right away from (34) we obtain that dynamical system (@3] is a Hamiltonian system
on the functional manifold M, that is

K = -9 grad H, (97)

where the Hamiltonian functional is equal to

H:=WK)-L= /(uza — vwy)dx (98)
0
and the co-implectic operator is equal to
0 0 -0 2
0o a9 0 o
=g = —9 0 0 o . (99)
wey _vep ug Tl2p 2 (02 — auzwz)aJr
2 =0 =T O - 2uaw,) 7y 2
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The latter is degenerate: the relationship ¥~ (uy, vz, Wy, 2:)T = 0 exactly on the whole manifold
M, but the inverse to ([@9) exists and can be calculated analytically.

In order to state the Lax type integrability of Hamiltonian system (@3]), we will apply the
standard gradient-holonomic scheme of [7, [§] to it and find its following linearization:

Difah) =0, (100)
where f4()\) € C*°(R?; C) for all A € C. Having rewritten ([00) in the form of a linear system

Dif =qN)f,  a(N) = (101)

S O > O
O > O O
> o O O
o O OO

where A € C is a spectral parameter and the vector f € C°°(R?;C*) allows, owing to the relation-
ship ([I00), the following functional representation:

N wt? 3 2t? vt wtd ozt
filz,t) = &1 (u—tv—i—T—ﬁ,v—wt—i—T,w—zt,x—tu—i—T—T—l—j),
_ wt? a3 2t? w2 wtd ztt
foz,t) = turdga (u—tv—i—T—ﬁ,v—wt—i—T,w—zt,x—tu—i—T—?—i—j)
- wt? a3 2t? w2 wtt ztt
+g2<utv+7g,th+7,wzt,ztu+7?+j>,
2 wt?  xt? 212 ot?  wt® ozt
fa(z,t) = Hip2 g1 (uerT?’thJr?’th’merTTJrI)
+tu2§2<utv+w—t2x—tS ’ufthrZ—tQ w— 2t :ctquv—th—terz—#)
2 37 2’ ’ 2 3! 4!
- wt? a3 2t? w2 wtt ztt
+g3<utv+7g,th+7,wzt,ztu+7?+j>,
3 wt?  wt? 212 ot?  wt®  at?
falz,t) = Fak2fi3 5701 <Ut’0+ o TRV wit o w s sthr—tut = — = F)
2 wt?  at? 12 ot?  wtd | ztt
+u2u3§gg <utv+7?,th+ ,w—zt,x tu+77T F)
+t,u3§3(u—tv+w—t2—x—t3 o—wt+ 2 w—ztx—tu—i—v—ﬂ—w—ﬁ—i—z—#)
2 317 2’ ’ 2 3! 4l

n to 4+ wt? xt3 ‘4 2t2 y fu vt2 wt? n 2t (102)
u—tv+ ———F—,v—wt+ —,w—zt,r—tu+ — — — + —
g4 2 3l 2 ’ 2 3t T a )

where §; € C*(R*;C), j = 1,4, are arbitrary smooth complex valued functions.
Based on the expressions (I0T) and (I02), one can construct the related linear representation
of the expression df/dz € C*(R*;C*) in the following matrix form:

fa: :E[u,v,w,z;)\]f, (103)

where
— A3y A, — AWy Za
—4\2 3w, —20%u,  Awy
—10M\5r 614 —3Nu; Ao,
—20X\875  10A5ry —4X* Ny,

f € C>°(R?;C*) and which is compatible with ([0I]). Thus, we can formulate the following theorem
about the Lax integrability of the generalized Riemann type hydrodynamical system (@3).

(104)
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Theorem 5.1 The dynamical system (I0) at N = 4, equivalent to the generalized Riemann type
hydrodynamical system ([93), possesses the Lax type representation

fz :g[uavazaw;A]fa ft :p(g)fa p(ﬁ) = *Uﬁ[U,U,U),Z;A]#*q()\), (105)
where
—\3uy v, — AW, 2z 0 0 0O
—4M 0 3N, 20w, Aw, A0 00
fovwzA =1 o, 6 3w, N, |0 VT 0y 0 0 |0
—20X\87y  10X°r; —4AXt N3y, 0 0 A O
AUty — N2y, AW, —UZy
_ A+4) 0w =3Nuu,  2)\%uv, —Auwy
p(t) = 10X%ury  A—6X*u  3Nuuy, —Nuv, |’ (106)

20\0ury  —10X\%ur; A+ 4w —Xuuy,

thus being a Lax type integrable dynamical system on the functional manifold M.

Owing to the existence of the Lax type representation (I05]) and the related gradient such as
relationship |7, 8], we can easily derive that the Hamiltonian system (@3] is at the same time a
bi-Hamiltonian flow on the functional manifold M. In addition, making use of the above results
and the approach of work |11], we can construct the infinite hierarchies of conservation laws for
@3), both dispersionless polynomial and dispersive non-polynomial ones:

a) polynomial conservation laws:

27 27
Hy = /dz(vwx — UZg), H13) = /dx(zxw — 2wy,
0 0
2
Hyy = /d:L' <k1 (zz(v2 — 2uw) — 22) + ko ( — 2.0% + 2w, (vw — uz) — 22)
0

+ k3 (2,211)2 + 4w, (42 — vw) + 222)),
2m

dz(3uz — vw)zg, H' = /d:c,zgg(w2 — 2uz),
0

v
3

=
[

3

dz[12v,uzw + 2,(9u?2 + 16uvw — 203) 4 6ww, (v* — 2uw) + 62(2vz — w?)],

3

dz [kl (101}xu22 + 22 (12uvz — uw? — 2v*w) + Sww, (vw — 2uz))

=
Il
O\m O\m O\

+ ko (zx (6uvz — 3uw?® — v?w) + Swyv(w? — vz))} ; (107)

b) non-polynomial conservation laws:

2 2
Hy = /dx(u:c:czzc — UgZgy + VpWao — U;c;cwg;g;) 3, Hl(;/Q) = /dx\/ w2 — 22U,z ,
0 0
2 |
HSB) = /d:c (9u§zm — Gupvpwy + 205 — 1202, + 6w§) ’
0
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2

H1(§/3) - /dx(u(%xzx —w2) + 0(Vaws — Bupzy) + wWugws — v+ 22,) + 2(ugvy — 2wl.)) ,

Wl

2
1
3

Hl(é/B) = /dx(zxwxx_zxxwx> ,

27
Hfé/Q) — /d:c (kl (1)(21195,2z - wi) + 2(4z; — upwy) + wW(Vp W, — 3umzm))
0

1
2

+ k2z(223; + ’U?L. — ana)) )
2m

Hl((13/5) = / dz (u:c:c:c (2’1);521- _wi) +Vpza (’Ug;ww - 3ulzx)
0

+ Zezw (Ux'U;c - 2’LU1-) + Weze (uxwx — Ua23 + 22;8)

+ 3Uzs ('Uam'z:c — Uz 2za + wwwwx) + vz (2'“1211
1

9 5
— VUgg Wy + 'wa;c;c) - Swmguw> 5

27
1

5H§é/4) = /dm <4uiwg — A viwy, — Sugzpw, + Vs — dv2z, + 425) 4,

0
27

H1(f13/3) = /dx (k;1 (u(zlwm — ZpaWy) + (Vi 2oz — VouZz) + 222z + W(Ugr2e — uazm))
0

+ ko (Z(u:c:cwa — UgWgg + 22:8:8) + w(uxa‘fzx — UgpZpg — UgaWy + 'U:cwam'))

1

¥ k2o (02 — 2ugwy + 2zz)) ° (108)

where kj,j = 1,3, are arbitrary constants. We also observe that the Hamiltonian functional (98]
coincides exactly up to the sign with the polynomial conservation law Hg) € D(M).

As concerns the general case N € Z,, successively applying the above devised method, one
can also obtain for the Riemann type hydrodynamical system (I0) the corresponding Lax type
representation, construct infinite hierarchies of dispersive and dispersionless conservation laws,
their symplectic structures and the related Lax type representations, which is a topic of the next
work under preparation.

6. Conclusion

As follows from the results obtained in this work, the generalized Riemann type hydrodynamical
system ([I0) at N = 2,3 and N = 4 possesses many infinite hierarchies of conservation laws, both
dispersive non-polynomial and dispersionless polynomial ones. This fact can be easily explained
by the fact that the corresponding dynamical systems ([I6]), (58) and (@3) possess many, plausibly,
infinite sets of algebraically independent compatible implectic structures, which generate via the
corresponding gradient like relationships [7, 8] the related infinite hierarchies of conservation laws,
and as a by-product, infinite hierarchies of the associated Lax type representations. The existence
of many Lax type representations for the generalized Riemann type equation [I0 for N € Z, was
recently justified by means of differential-algebraic tools in [12].

It is also worth to mention that the generalized Riemann type equation (I{) is an example of
integrable dynamical systems belonging [14, [15] at the same time to two different classes: C- and
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S- integrable. Really, these systems are linearizable and have exact general solutions though in an
unwieldy form. Thus, the Riemann type systems belong to the C-integrable class. Similar properties
had been analyzed earlier for |17-20] for the case of the Monge-Ampere equations. Moreover, these
systems have also infinite sets of compatible Hamiltonian structures, Lax type representations and
respectively commuting flows. So, they belong to the S- integrable class too. Such a situation
within the theory of Lax type integrable nonlinear dynamical systems is encountered, virtually, for
the first time and is interesting from different points of view, both theoretically and practically.
Keeping in mind these and some other important aspects of the Riemann type hydrodynamical
systems ([I0), we consider that they deserve additional thorough investigation in the future.
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2 lpHu4o-MeTtanyprinHa akagemis im. CT. Ctawiua, 30—059 Kpakis, MonbLua
3 JlepxaBHWUiA negaroridyHnin yHisepcuteT iM. |. PpaHka, Jporobuy, YkpaiHa

CrtaTTs npucBaYeHa OOCAIOXKEHHIO TAPOAMHAMIYHOrO PIBHAHHA Tuny PimaHa, Wwo y3aranbHIOE Bigomy
cuctemy lNypesunya-3unbiHa. Lie 6araTokoOMMNOHEHTHE rigpoanHaMivHe PiBHAHHS XapakTepU3yeTbCA EAMHOIO
XapakTePUCTUYHOIO LBUAKICTIO MOTOKY. [poaHanisaoBaHi CyMmicHi 6i-raminbTOHOBI CTPYKTYPY Ta NPEACTaBIEHHS
Nakca pns 3-Ta 4-KOMMOHEHTHOI y3aranbHEeHOi rigpogMHamMiyHoi cuctemmn Tuny PimaHa. OTpumani
pesynbrati Breplle [OMOBHIOTb TEOPil0 IHTErpOBHOCTI CUCTEM rigpoAVHAMIYHOIO Tuny, paHiwe
PO3BUHYTOI Ti/IbKM ANS BiAMIHHMX LWBUAKOCTEN B OAHOPIAHOMY BUNAAKY.

Knio4oBi cnoBa: rigpoanHamiyHi piBHSIHHS TUy PimaHa, iHTerpoBHiCTb Tury Jlakca, 3akOHU 36epexeHHs
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