УДК 669.158:621.785.74

Б. Ф. Белов, А. И. Троцан, И. Л. Бродецкий, М. Н. Сосновцев*,

В. А. Драчук^{*}

Институт проблем материаловедения НАН Украины, Киев ^{*}ПГТУ, Мариуполь

СТРУКТУРИЗАЦИЯ ОКСИДНЫХ ФАЗ В ПРОЦЕССАХ РАСКИСЛЕНИЯ ЖЕЛЕЗОУГЛЕРОДИСТЫХ РАСПЛАВОВ КРЕМНИЕМ И АЛЮМИНИЕМ. Сообщение 3

ПДС-методом построена базовая диаграмма FeO-Al₂O₃ тройной системы FeO-SiO₂-Al₂O₃ и выполнены физико-химический и микро-наноструктурный анализы (СХС-анализ) исходных компонентов (вюстит, глинозем) и промежуточных фаз – алюминатов железа, определяющих природу неметаллических включений при раскислении алюминием железоуглеродистых расплавов.

ПДС-методом побудована базова діаграма FeO-Al₂O₃ потрійної системи FeO-SiO₂-Al₂O₃ і виконани фізико-хімічний та мікро-наноструктурний аналізи (СХС-аналіз) вихідних компонентів (вюстіт, глинозем) і проміжних фаз - алюминатів заліза, що визначають природу неметалевих включень при розкисленні алюмінієм залізовуглецевих розплавів.

PDS-method is built base diagram FeO-Al₂O₃ triple system FeO-SiO₂-Al₂O₃ and is executed physico-chemical, micro-nanostructured analysis (SHS-analysis) source component (wustit, alumine) and intermediate phases - an ferric aluminate, defining nature non-metallic inclusion under deoxidation aluminum iron-carbon melts.

Ключевые слова: полигональная диаграмма, промежуточные фазы, алюминаты железа, ионно-молекулярный комплекс, анализ структурно-химического состояния.

Условия образования и структуризация алюминатов железа

Полигональная диаграмма состояния бинарной системы FeO-Al₂O₃, построенная графо-аналитическим методом (ПДС-метод), как и предыдущая диаграмма FeO-SiO₂ в сообщении 2 [1], представлена на рис. 1.

Взаимодействия исходных компонентов вюстита и глинозема совершаются при температурах их существования, превышающих температуру образования вюстита (560 °C), с образованием первичной промежуточной фазы (ППФ) стехиометрического состава 2FeOAl₂O₃ при 1000 °C.

ППФ условно разделяет систему FeO-Al₂O₃ на две подсистемы FeO-2FeOAl₂O₃ и Al₂O₃ -2FeOAl₂O₃, в которых образуются вторичные промежуточные фазы, последовательный ряд которых имеет следующий вид: FeO \rightarrow 12FeOAl₂O₃(\ni_1) \rightarrow 8FeOAl₂O₃ \rightarrow \rightarrow 6FeOAl₂O₃ \rightarrow 4FeOAl₂O₃ \rightarrow 3FeOAl₂O₃(\ni_2) \rightarrow 2FeOAl₂O₃($\Pi\Pi\Phi$) \rightarrow 3FeO2Al₂O₃(\ni_3) \rightarrow \rightarrow FeOAl₂O₃ \rightarrow FeO2Al₂O₃ \rightarrow FeO3Al₂O₃ \rightarrow Al₂O₃ и включает три эвтектики, пять сингулярных фаз с конгруэнтной точкой плавления и две инконгруэнтные фазы.

На классической диаграмме (см. вставку на рис.1) известна только одна фаза (герцинит FeOAl₂O₃), образующая эвтектики с вюститом (1310 °C) и корундом (1750 °C).

На ординатах чистых компонентов обозначены следующие критические точки — тепловые и химические (t, ⁰C):

FeO:
$$B_0(560) \rightarrow B_1(1000) \rightarrow B_2(1100) \rightarrow B_3(1200) \rightarrow B_4(1370) \rightarrow B_5(1500) \rightarrow B_6(1600) \rightarrow B_7(1800) \rightarrow B_8(2000),$$

где B₀ и B₄ – температуры образования и плавления, точки B₅ - B₈ – для жидкого состояния.

$$Al_2O_3: A_1(1000) \rightarrow A_2(1350) \rightarrow A_3(2050) \rightarrow A_4(2300),$$

где А₄ – точка плавления.

Рис. 1. Полигональная диаграмма системы Fe-Al₂O₃

Получение и обработка расплавов

На базе исходных компонентов в результате мезо- и изоморфных превращений образуются следующие области гомогенности твердых и жидких фаз:

$$\begin{split} \text{FeO: } B_{\alpha} &\rightarrow B_{\beta} \rightarrow B_{\gamma} \rightarrow B_{\delta} \rightarrow {}_{1}L_{B}^{\Pi \square} \rightarrow {}_{2}L_{B}^{\Pi \square} \rightarrow {}_{3}L_{B}^{\Pi \square} \rightarrow {}_{4}L_{B}^{\Pi \Gamma} \rightarrow {}_{PA3}; \\ \text{Al}_{2}O_{3} &: A_{\alpha} \rightarrow A_{\beta} \rightarrow A_{\gamma} \rightarrow L_{A}^{\Pi \square} \rightarrow L_{A}^{\Pi \Gamma} \rightarrow {}_{PA3}. \end{split}$$

Линия ликвидуса (жирная линия), проведенная через сингулярные точки $B_4 \rightarrow \Im_1 \rightarrow 6B \rightarrow \rightarrow 4B^0 \rightarrow \Im_2 \rightarrow 2B^0 \rightarrow \Im_3 \rightarrow BA^0 \rightarrow 2A^0 \rightarrow A_3$, разделяет области существования твердых и жидких фаз, ограниченных линиями сольвуса (сплошные линии) и линиями ликвуса (пунктирные линии). Сингулярные фазы, образующиеся в твердом состоянии, в области гомогенности имеют модификации низко- и высокотемпературные (α , β соответственно), а также моно- и диструктурные состояния (М и Д-состояния) твердых растворов.

В табл. 1 приведена классификация промежуточных фаз системы FeO-Al₂O₃ на основе анализа их структурно-химического состояния (СХС-анализ), включающего физикохимический анализ: химические реакции взаимодействия в квазибинарных линейных системах концентрационного поля диаграммы, стехиометрический и химический составы, оксидный модуль (M = FeO/Al₂O₃), температуры образования и плавления, а также микроскопический (M и Д-состояния) и наноструктурный анализы (стабильные ионномолекулярные комплексы (СИМ-комплексы). Условные обозначения стехиометрического состава промежуточных фаз показаны двузначными цифрами на абсциссе диаграммы (первая цифра – вюстит, вторая – глинозем) и на концентрационном поле диаграммы литерами B (вюстит) и A (глинозем), литеры M и Д – моно- и диструктурные состояния.

СИМ-комплексы исходных компонентов и отдельных промежуточных и эвтектических фаз, сведенные в табл. 2, представляют собой центрально-симметричные плоские (полигональные ячейки) или объемные (полиэдрические ячейки) конструкции с максимально плотной упаковкой заданного числа частиц в единичном дву- или трехмерном пространстве. Число частиц (N), составляющих СИМ-комплекс, находят из структурной формулы исходных компонентов и промежуточных фаз, а плотность упаковки определяют из приведенных площади (S_0) и объема (V_0) полигональных и полиэдрических ячеек путем деления численных значений $S_{\Pi7}$, нм² и $V_{\Pi2}$, нм³ на N. Геометрические параметры структурных ячеек находят из орбитальных радиусов, рассчитанных по модели РОМ-атома [2] для заданного типа химических связей железа (Fe²⁺), алюминия (Al³⁺) и кислорода (O²⁻ и O¹⁻) при образовании промежуточных фаз.

Полигональные ячейки имеют форму полимерных плоских электронейтральных или отрицательно заряженных сеток на базе комплексов $(Al_2O_5)^{4-}$, связанных катионами железа (Fe²⁺) с анионами кислорода, образующих закрытые или открытые концевые связи. Полиэдрические электронейтральные ячейки кубической сингонии составляют из комплекта полигональных ячеек (не менее двух), связанных между собой физическими (притяжение-отталкивание) или химическими (ионными) силами в кристаллическом теле простых форм с заданным типом габитуса гармонических структур вещества.

Полигональные структуры позволяют исследовать механизм шлаковой обработки металлического расплава, тогда как полиэдрические позволяют оценить линейные размеры неметаллических (шлаковых) включений в литом металле.

В ПДС-методе построение диаграмм состояния, как уже отмечалось, конструкция диаграммы зависит от стехиометрического состава и структурного типа первичной промежуточной фазы, разделяющей бинарную систему на две подсистемы с исходными компонентами. При этом полиэдрические ячейки первичной промежуточной фазы образуют прототипы кристаллических форм – для подсистем 2FeOAl₂O₃-FeO и 2FeOAl₂O₃-Al₂O₃.

На рис. 2 представлена графическая зависимость геометрических параметров структурных ячеек в зависимости от стехиометрического состава алюминатов железа. 12 // ISSN 0235-5884. Процессы литья. 2009. № 4

Tembi Tembi eOAl ₂ O ₃ eOAl ₂ O ₃	химические реакции 2FeO+Al_O ₃ ↔2FeOAl_O ₃ 2FeO+Al_O ₃ ↔2FeOAl_O ₃ 3(2FeOAl_O ₃) ↔3FeOAl_O ₃ +3FeO2Al ₂ O ₃ 3(4FeOAl_O ₃) ↔6FeOAl_O ₃ +2(3FeOAl ₂ O ₃) 4FeO+4FeOAl_O ₃ ↔ 8FeOAl_O ₃ +2(3FeOAl ₂ O ₃) 4FeOAl_O ₃) ↔12FeOAl_O ₃ +2(6FeOAl ₂ O ₃) 8FeOAl_O ₃) ↔12FeOAl_O ₃ +2(6FeOAl ₂ O ₃)	Промежуто химические формулы 2FeOAl2O3 4FeOAl2O3 8FeOAl2O3 6FeOAl2O3	чные фазы условные обозна- чения 2.1(2B) 4.1(4B) 8.1 (8B) 6.1(6B)	A1 ₂ O ₃ , mac.% 41,5 26,2 15,0 19,1	FeO Al ₂ O ₃ 1,41 1,41 2,82 5,05 5,05	температ образования 1000 н.д.* 1100 н.д. 1200 н.д.	ура, °С плавления 1600 н.д. н.д. н.д.
1	4 FeO+8FeOAl ₂ O ₃ \leftrightarrow 12FeOAl ₂ O ₃	12FeOAl ₂ O ₃	12.1(J ₁)	10,6	8,47	$\frac{1300}{1300}$	$\frac{1300}{1300}$
	4 FeOAI ₂ O ₃ +2FeOAI ₂ O ₃ \leftrightarrow 2(3FeOAI ₂ O ₃)	3FeOAl ₂ O ₃	$3.1(3_2)$	32,1	2,10	<u>1400</u> н.д.	<u>1400</u> н.д.
	AI _, O ₃ + 2FeOAI ₂ O ₃ ↔2(FeOAI ₂ O ₃) 4(FeOAI ₂ O ₃) ↔3FeO2AI ₂ O ₃ +FeO2AI ₂ O ₃	FeOAl ₂ O ₃	1.1(BA)	58,6	0,71	<u>1350</u> н.д.	<u>1850</u> 1820
	FeOAI ₂ O ₃ +2AI ₂ O ₃ ↔FeO3AI ₂ O ₃	FeO3Al ₂ O ₃	13(3A)	81,0	0,23	<u>1600</u> н.д.	<u>1850</u> н.д.
	$FeOAI_2O_3 + FeO3AI_2O_3 \leftrightarrow 2(FeO2AI_2O_3)$	FeO2Al ₂ O ₃	1.2(2A)	73,9	0,35	<u>1750</u> н.д.	<u>1750</u> н.д.
	2 FeOAI ₂ O ₃ +FeOAI ₂ O ₃ \leftrightarrow 3FeO2AI ₂ O ₃	3FeO2Al ₂ O ₃	$3.2(\Im_3)$	51,5	0,94	<u>1550</u> н.д.	<u>1550</u> н.л.

Таблица 1. Классификация алюминатов железа

* н.д. - нет данных

Формульный состав		СИМ – комплексы (О - кислород, ●- железо, △- алюминий)	
стехиомет- рический	структурный	структурные ячейки полигональные / полиэдрические	
Al ₂ O ₃	(Al ₂ O ₅) ⁴⁻	а = 14,5 нм	а а а а а а а а а а а а а а а а а а а
	(Al ₈ O ₁₂) ⁰	$ \begin{array}{c c} 2a & & \\ a & \\ -& \\ a^{*} - a^{*} \\ n = 7, S_{0} = 136,7 \end{array} $	$2a$ a a a a a a a a $N = 20, V_0 = 219,5$
FeO	$(\mathrm{Fe}_4\mathrm{O}_4)^0$	b = 17,3 нм,	<u>с = 24 нм</u>
	(Fe ₈ O ₈) ⁰	N = 8 S = 149 7	N = 16 V = 1705 8
		a = 145 HM $b = 17$	$h = 10, v_0 = 1755, 0$ 3 HM $h = 9.4$ HM
2FeOAl ₂ O ₃	$(\text{Fe}_2\text{Al}_2\text{O}_5)^0$ 2FeOAl_2O_3		
	$(\mathrm{Fe}_{4}\mathrm{Al}_{4}\mathrm{O}_{10})^{0}$ $4\mathrm{FeO2Al}_{2}\mathrm{O}_{3}$	$N = 9,0, S_0 = 108,6$	$N = 18, V_0 = 1616, 6$
4FeOAl ₂ O ₃	$(\text{Fe}_4\text{Al}_2\text{O}_7)^0$ 4FeOAl_2O_3		provide the second seco
	$(\mathrm{Fe}_{8}\mathrm{Al}_{4}\mathrm{O}_{14})^{0}$ $8\mathrm{FeO2Al}_{2}\mathrm{O}_{3}$	$N = 13, S_0 = 163,0$	$2a$ a a a a b $N = 26, V_0 = 2238,4$
3FeOAl ₂ O ₃	(Fe ₆ Al ₄ O ₁₂) ⁰ 6FeO2Al ₂ O ₃		bold and a second secon
	(Fe ₁₂ Al ₈ O ₂₄) ⁰ 12FeO4Al ₂ O ₃	2a $2a$ b b b a a a a a b b b c a a a a b b c a a a a a b b c a a a a b b c a a a a a b b c a	$N = 44, V_0 = 3968, 0$
FeOAl ₂ O ₃	$(\text{Fe}_2\text{Al}_4\text{O}_8)^0$ 2FeO2Al_2O_3		
	$(\mathrm{Fe}_{4}\mathrm{Al}_{8}\mathrm{O}_{16})^{0}$ $4\mathrm{FeO4Al}_{2}\mathrm{O}_{3}$	$N = 16, S_0 = 167, 8$	$N = 28, V_0 = 2078,5$

Таблица 2. Структуризация алюминатов железа

Рис. 2. Зависимость геометрических параметров СИМ-комплексов от стехиометрического состава алюминатов железа

Параметры ячеек (N, S_0 , V_0) имеют экстремальные значения: для первичной промежуточной фазы (ППФ) — min на кривых и max на кривых для эвтектических фаз (Э₁-Э₂-Э₃). Подобная зависимость установлена и для силикатов железа [1], что свидетельствует о наличии общих закономерностей структуризации оксидных фаз: ППФ имеет упорядоченную структуру с максимальной плотностью упаковки при минимальном числе составляющих частиц, тогда как эвтектические, наоборот, относятся к разупорядоченным структурам с рыхлой упаковкой в дву- и трехмерном пространстве. Это позволяет определить правило тестирования наличия эвтектических точек на диаграмме состояний.

В частности, высокотемпературная эвтектика 1750 °С стехиометрического состава 2FeO3Al₂O₃ не отвечает этому правилу и на ПДС FeO-Al₂O₃ она отсутствует, уступив место сингулярной фазе FeO2Al₂O₃. Кроме того, экстраполяция кривых до пересечения с ординатой «Al₂O₃» позволяет оценить предельные геометрические параметры микроструктуры глинозема: N=60-70; S_0 =300-350; V_0 =3000-3500.

Таким образом, построенная ПДС-методом полигональная диаграмма FeO-Al₂O₃ является базовой для анализа физико-химического и наноструктурного состояния промежуточных фаз — алюминатов железа, неметаллических включений при раскислении алюминием жидкого железа.

ISSN 0235-5884. Процессы литья. 2009. № 4

- 1. *Белов Б. Ф., Троцан А. И., Бродецкий И. Л.* Структуризация оксидных фаз в процессах раскисления железоуглеродистых расплавов кремнием и алюминием. Сообщение 2 // Процессы литья. 2008. № 4. С. 56-62.
- 2. *Троцан А. И., Харлашин П. С., Белов Б. Ф.* О природе химической связи элементов в металлургических фазах // Изв. вузов. Чер. металлургия. 2002. № 4. С. 60-63.

ВНИМАНИЕ!

Предлагаем разместить в нашем журнале рекламу Вашей продукции или рекламный материал о Вашем предприятии. Редакция также может подготовить заказной номер журнала.

Стоимость заказного номера - 4000 грн.

(цепы приведены в гривнях)				
Размещение	Рекламная площадь	Стоимость, грн.		
Рекламные блоки в текстовой части журнала				
Цветные	1/2 страницы 1/3 страницы 1/4 страницы	900 600 300		
Черно-белые	1/2 страницы 1/3 страницы 1/4 страницы	550 380 200		
Цветная реклама на обложке				
Третья страница обложки	1 страница 1/2 страницы 1/4 страницы	2800 1400 700		
Четвертая страница обложки	1 страница 1/2 страницы 1/3 страницы	3100 1550 1000		

Расценки на размещение рекламы (цены приведены в гривнях)

При повторном размещении рекламы - скидка 15 %

Наш адрес: Украина, 03680, г. Киев-142, пр. Вернадского, 34/1 Физико-технологический институт металлов и сплавов НАН Украины Справки телефон: (044) 424-12-50 факс: (044) 424-35-15; E-mall: proclit@ptima.kiev.ua