

ОПОВІДІ національної академії наук україни

MEXAHIKA

УДК 539.3

© 2010

Академік НАН України В. Д. Кубенко, П. С. Ковальчук, М. П. Подчасов

Аналіз стійкості циліндричних оболонок при взаємодії з рухомою рідиною

Розглядається задача про стійкість тонких циліндричних оболонок при взаємодії з протікаючою рідиною. Досліджуються дві різні форми втрати стійкості: квазістатична (дивергентна) та динамічна (типу флатер). Вивчається вплив демпфірування на значення критичних швидкостей дивергенції та флатеру.

Проблемам динамічної взаємодії тонких циліндричних оболонок із внутрішнім потоком рідини присвячені роботи [1–4 та ін.]. Головну увагу в них було зосереджено на визначенні критичних значень швидкостей руху рідини, при яких має місце квазістатична (дивергентна) або динамічна (типу флатер) втрата стійкості вказаних оболонок, а також на дослідженні впливу граничних умов, нелінійних та інших факторів (зокрема ефекту стисливості рідини) на нестійкість та динамічне деформування оболонок в закритичних областях. При розрахунках в більшості випадків використовувалась апроксимація прогину за формами з фіксованими параметрами хвилеутворення.

У даній роботі розглядається задача про втрату стійкості циліндричних оболонок, зумовленої взаємодією із рухомою рідиною, при врахуванні в процесі деформування оболонок згинних форм з будь-якими параметрами хвилеутворення в поздовжньому і в коловому напрямках. Досліджується вплив демпфірування на динамічну нестійкість несучих оболонок.

1. Розглядається замкнена, пружна, ізотропна оболонка циліндричної форми, повністю заповнена рідиною, що рухається з деякою постійною швидкістю U. Відповідні геометричні розміри оболонки показані на рис. 1. Вважається, що рідина в оболонці є ідеальною та нестисливою, рух рідини — потенціальний.

Для опису динамічного деформування оболонки виберемо лінеаризовані рівняння класичної теорії, подані в змішаній формі [1, 2]

$$\frac{D}{h}\nabla^4 w = \frac{1}{R}\frac{\partial^2 \Phi}{\partial x^2} - \rho \frac{\partial^2 w}{\partial t^2} - \varepsilon_0 \rho \frac{\partial w}{\partial t} - \frac{P_{\Gamma}}{h};$$

$$\frac{1}{E}\nabla^4 \Phi = -\frac{1}{R}\frac{\partial^2 w}{\partial x^2}.$$
(1)

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 5

Рис. 1. Геометрія оболонки та координатна система

Тут використано традиційні в теорії оболонок позначення [5], крім того, ε_0 — коефіцієнт конструкційного демпфірування; $P_{\rm r}$ — гідродинамічний тиск, який визначатимемо із відомого співвідношення [1, 2, 4]

$$P_{\rm r} = -\rho_0 \left(\frac{\partial\varphi}{\partial t} + U\frac{\partial\varphi}{\partial x}\right)_{r=R},\tag{2}$$

де ρ_0 — густина рідини; $\varphi = \varphi(x, r, \theta, t)$ — потенціал збурених швидкостей рідини $(x, r, \theta -$ циліндричні координати).

За умов вільного обпирання на торцевих перерізах оболонки (при x = 0, x = l) [5] динамічний прогин w можна навести у вигляді двопараметричного розкладу

$$w = \sum_{n=0}^{\infty} \sum_{m=1}^{\infty} (f_1^{nm} \cos s_n y + f_2^{nm} \sin s_n y) \sin \lambda_m x, \tag{3}$$

де $f_{1,2}^{nm}$ — невідомі функції часу (що мають сенс узагальнених координат); $s_n = n/R$, $\lambda_m = m\pi/l$ — параметри хвилеутворення в коловому та поздовжньому напрямках відповідно.

Крайову задачу для знаходження потенціалу φ сформулюємо так [2, 4]:

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \varphi}{\partial \theta^2} = 0 \qquad (0 \leqslant r \leqslant R, \ 0 \leqslant x \leqslant l, \ 0 \leqslant \theta \leqslant 2\pi);$$

$$\frac{\partial \varphi}{\partial r}\Big|_{r=R} = -\left(\frac{\partial w}{\partial t} + U \frac{\partial w}{\partial x}\right); \qquad \frac{\partial \varphi}{\partial r}\Big|_{r=0} < \infty.$$
(4)

Використовуючи метод Бубнова–Гальоркіна для визначення невідомих функцій $f_{1,2}^{nm}$, отримаємо таку систему рівнянь:

$$\ddot{f}_{1}^{nm} + (\omega_{nm}^{2} - \alpha_{nm}U^{2})f_{1}^{nm} + \varepsilon^{nm}\dot{f}_{1}^{nm} + \sum_{q=1}^{\infty}\beta_{m}^{nq}U\dot{f}_{1}^{nq} = 0;$$

$$\ddot{f}_{2}^{nm} + (\omega_{nm}^{2} - \alpha_{nm}U^{2})f_{2}^{nm} + \varepsilon^{nm}\dot{f}_{2}^{nm} + \sum_{q=1}^{\infty}\beta_{m}^{nq}U\dot{f}_{2}^{nq} = 0$$

$$(n = 0, 1, 2...; \ m = 1, 2, ...),$$
(5)

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, № 5

в якій позначено

$$\omega_{nm}^{2} = \frac{1}{\rho M_{nm}} \left[\frac{D}{h} \Delta(\lambda_{m}, s_{n}) + \frac{E \lambda_{m}^{4}}{R^{2} \Delta(\lambda_{m}, s_{n})} \right]; \qquad M_{nm} = 1 + \frac{\rho_{0}}{\rho} \frac{K_{nm}}{h \lambda_{m}};$$

$$\alpha_{nm} = \frac{\rho_{0}}{\rho h} \frac{\lambda_{m}}{M_{nm}} K_{nm}; \qquad \varepsilon^{nm} = \frac{\varepsilon_{0}}{M_{nm}}; \qquad \beta_{m}^{nq} = \frac{4\rho_{0}}{\rho h l} \frac{\lambda_{m} [1 - (-1)^{m-q}]}{(\lambda_{m}^{2} - \lambda_{q}^{2}) M_{nm}} K_{nq}; \qquad (6)$$

$$K_{nm} = \frac{2I_{n} (\lambda_{m} R)}{I_{n-1} (\lambda_{m} R) + I_{n+1} (\lambda_{m} R)}; \qquad \Delta(\lambda_{m}, s_{n}) = (\lambda_{m}^{2} + s_{n}^{2})^{2}.$$

Для знаходження критичних швидкостей руху рідини, при яких відбуватиметься втрата стійкості оболонки, підставимо в рівняння (5) вирази

$$f_k^{nm} = C_k^{nm} e^{\Omega t}, \qquad C_k^{nm} = \text{const} \qquad (k = 1, 2)$$

$$\tag{7}$$

і розглянемо визначник

$$\|(\omega_{nm}^2 - \alpha_{nm}U^2 + \Omega^2 + \varepsilon_{nm}\Omega)\delta_{mq} + \beta_m^{nq}U\Omega\| = 0 \qquad (n = 0, 1, \dots; m = 1, 2, \dots).$$
(8)

Незбурена форма несучої оболонки залишатиметься стійкою, поки всі показники Ω знаходитимуться в лівій півплощині комплексної змінної [1]. Найменше значення швидкості U, при якому один із показників Ω переходить на праву півплощину, залишаючись при цьому комплексним, відповідатиме критичній швидкості флатеру $U = U_{\phi}$. Якщо перехід показника Ω на праву півплощину відбуватиметься через початок координат (тобто, в момент переходу $\Omega = 0$), то втрата стійкості оболонки характеризуватиметься дивергентною формою (монотонним випинанням). Критичну швидкість в даному випадку позначимо через $U = U_{\alpha}^{(1)}$.

2. Для з'ясування принципової сторони питання про втрату стійкості несучої оболонки розглянемо чотиримодову апроксимацію прогину, в якому враховані спряжені форми [6, 7], а також форми з різними параметрами хвилеутворення

$$w = (f_1 \cos s_n y + f_2 \sin s_n y) \sin \lambda_1 x + (f_3 \cos s_n y + f_4 \sin s_n y) \sin \lambda_2 x.$$
(9)

Тут $s_n = n/R$, $\lambda_1 = m_1 \pi/l$, $\lambda_2 = m_2 \pi/l$, причому хвильові параметри n, m_1, m_2 можуть набувати будь-яких цілочисельних значень ($m_1 \neq m_2$). Характеристичне рівняння (8) матиме тоді вигляд

$$\Omega^4 + c_1 \Omega^3 + c_2 \Omega^2 + c_3 \Omega + c_4 = 0, \tag{10}$$

де

$$c_{1} = \varepsilon_{1} + \varepsilon_{2}; \qquad c_{2} = q - \alpha_{0}U^{2};$$

$$c_{3} = \varepsilon_{1}(\omega_{2}^{2} - \alpha_{2}U^{2}) + \varepsilon_{2}(\omega_{1}^{2} - \alpha_{1}U^{2}); \qquad c_{4} = (\omega_{1}^{2} - \alpha_{1}U^{2})(\omega_{2}^{2} - \alpha_{2}U^{2}); \qquad (11)$$

$$\alpha_{0} = \alpha_{1} + \alpha_{2} - \beta_{1}\beta_{2}; \qquad q = \omega_{1}^{2} + \omega_{2}^{2} + \varepsilon_{1}\varepsilon_{2},$$

з урахуванням замін $\omega_i = \omega_{nm_i}, \, \alpha_i = \alpha_{nm_i}, \, \beta_1 = \beta_{m_1}^{nm_2}, \, \beta_2 = \beta_{m_2}^{nm_1}, \, \varepsilon_i = \varepsilon_0/M_{nm_i} \, (i = 1, 2).$ Нехай $\varepsilon_0 = 0$. Тоді із рівняння (10) отримаємо такі розв'язки:

$$\Omega_{1,2}^2 = -\frac{c_2}{2} \pm \sqrt{\frac{c_2^2}{4} - c_4}.$$
(12)

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 5

Рис. 2. Залежність квадрата характеристичного показник
а Ω від швидкості руху рідини U при різних значеннях хвильового параметр
аn

Звідси випливає, що для стійкості оболонки необхідно виконання двох умов:

$$c_4 \succ 0, \qquad c_2 \succ 2\sqrt{c_4}. \tag{13}$$

Невиконання першої з них зумовлює нестійкість дивергентного типу, другої — типу флатер. Критичні швидкості руху рідини, при яких настане динамічна нестійкість, визначатимуться в свою чергу із співвідношення

$$U_{\Phi}^{2} = U_{1,2}^{2} = -\frac{d_{2}}{2d_{1}} \pm \sqrt{\frac{d_{2}^{2}}{4d_{1}^{2}} - \frac{d_{3}}{d_{1}}},$$
(14)

де

$$d_1 = \alpha_0^2 - 4\alpha_1 \alpha_2; \qquad d_2 = -2(\omega_1^2 + \omega_2^2)\alpha_0 + 4(\omega_1^2 \alpha_2 + \omega_2^2 \alpha_1); \qquad d_3 = (\omega_1^2 - \omega_2^2)^2.$$
(15)

Частота автоколивань оболонки р виражатиметься відповідно так:

$$p = \sqrt{\frac{\omega_1^2 + \omega_2^2 - \alpha_0 U_{\Phi}^2}{2}}.$$
(16)

На рис. 2 наведено графіки залежності безрозмірних величин $\overline{\Omega}^2$ від швидкостей руху рідини \overline{U} , побудовані для оболонки з параметрами $E = 0.67 \cdot 10^{11}$ Па; $\rho = 2.7\rho_0$; $\rho_0 = 10^3 \text{ кг/м}^3$; l/R = 5; $h = 6.4 \cdot 10^{-4}$ м; R = 0.16 м; $\mu = 0.32$ з використанням формули (12) при $m_1 = 1$, $m_2 = 2$ та різних значеннях колового параметра n: n = 4.5, 6. При отриманні результатів було прийнято [4] $\overline{U} = U/k_0$, $\overline{\Omega} = \Omega l/k_0$, де $k_0 = \pi^2/l\sqrt{D/(\rho h)}$ (D — циліндрична жорсткість оболонки).

З цих графіків видно, що дивергентна втрата стійкості оболонки передусім наступить при збудженні в ній колової форми з числом хвиль n = 4. Швидкість руху рідини при цьому $\overline{U}_{A}^{(1)} = 4,32$. Нестійкість типу флатер, яка буде реалізована при появі кратних коренів рівняння (10), матиме місце при збудженні іншої колової форми, а саме n = 5. У табл. 1 наведені числові значення знайдених із співвідношення (14) безрозмірних швидкостей \overline{U}_{Φ} , що відповідають різним комбінаціям колових (n) та осьових (m_1, m_2) хвильових параметрів. Жирним позначені величини мінімальних швидкостей \overline{U}_{Φ} , при яких виникнуть неосесиметричні коливання оболонки з прогресуючими амплітудами для кожної із серій параметрів m_1, m_2 . Відзначимо, що ці швидкості відповідають взаємодії сусідніх

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, № 5

осьових форм, тобто форм з параметрами m_1 та $m_2 = m_1 + 1$. Врахування в апроксимації (9) форм з будь-якими іншими комбінаціями параметрів m_1 , m_2 призведе до виникнення флатеру при більших значеннях швидкостей U. Зауважимо також, що відсутність у деяких випадках додатних розв'язків U означає, що рівняння (10) не має кратних коренів, внаслідок чого втрата стійкості оболонки за типом флатер в даній ситуації взагалі неможлива.

Величини безрозмірних частот \overline{p} ($\overline{p} = pl/k_0$) флатерних коливань оболонки, отримані на підставі формули (16), наведені в табл. 2.

Були проведені також дослідження швидкостей U_{Φ} та частот p флатеру при інших значеннях параметрів m_1 , m_2 , n. На основі отриманих результатів зроблено такі висновки. Залежно від того, які згинні форми оболонки збуджуються при динамічній втраті стійкості, коливання, які при цьому виникають, можуть характеризуватись як близькими, так і кратними частотами. Наприклад, близькими можна вважати виділені в табл. 2 частоти коливань $\overline{p}_1 = 14,44$ і $\overline{p}_2 = 14,82$, що реалізуються за комбінованими формами $m_1 = 2$, $m_2 = 3$, n = 5 і $m_1 = 2$, $m_2 = 3$, n = 6. Швидкість руху рідини при цьому $\overline{U} \approx 6$. Фізично це означає, що динамічна втрата стійкості оболонки при даній швидкості може відбуватись шляхом одночасного збудження в ній згинних форм з різними коловими параметрами n. Відзначимо, що ця особливість (наявність внутрішніх резонансів [6–8]) повинна обов'язково враховуватися при побудові нелінійних розрахункових моделей оболонок, що взаємодіють з протікаючою рідиною.

Таблиця 1

m_1	m_2	n								
		2	3	4	5	6	7	8	9	
1	2	$16,\!12$	10,08	$7,\!17$	$6,\!34$	$7,\!82$	11,06	$15,\!36$	$20,\!60$	
	3	36,85	25,70	18,32	$13,\!18$	—	—	—		
	4	$23,\!82$	$18,\!21$	$13,\!85$	$10,\!66$	—	—	—		
2	3	$17,\!55$	$12,\!11$	8,80	6,16	6,00	$6,\!40$	8,23	$10,\!97$	
	4	$38,\!54$	30,86	23,76	$18,\!41$	$14,\!31$	10,56	—	—	
	5	23,79	20,20	16, 36	$13,\!22$	10,75	8,64	_	—	
3	4	18,29	13,73	10,48	8,28	$6,\!89$	$6,\!23$	$6,\!47$	7,79	
	5	35,56	32, 32	26,87	$21,\!90$	$17,\!85$	14,50	$11,\!34$	—	
	6	21,79	20,53	17,73	$14,\!95$	$12,\!58$	$10,\!60$	8,84	—	

Таблиця 2

m_1	m_2	n							
		2	3	4	5	6	7	8	9
1	2	42,01	$25,\!99$	$18,\!31$	$15,\!04$	11,92	2,70	$15,\!47$	24,74
	3	$183,\!45$	$127,\!86$	90,06	$61,\!68$	_	_	_	
	4	$114,\!89$	89,20	$67,\!04$	$48,\!14$	_	_	_	
2	3	$43,\!18$	$25,\!84$	$17,\!36$	$14,\!44$	$14,\!82$	12,30	$17,\!06$	$34,\!29$
	4	$305,\!41$	$248,\!95$	191,70	$147,\!15$	$111,\!05$	72,75	_	
	5	$167,\!10$	$154,\!42$	$127,\!36$	$102,\!17$	79,36	$52,\!83$	_	
3	4	$46,\!35$	$23,\!66$	$3,\!42$	$7,\!92$	5,97	$13,\!83$	13,77	20,21
	5	$369,\!80$	$350,\!84$	$294,\!44$	$239,\!67$	193, 35	$152,\!60$	$108,\!81$	—
	6	$171,\!29$	199,78	$181,\!48$	$155,\!10$	129, 19	$103,\!85$	$73,\!45$	—

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 5

3. Якщо $\varepsilon_0 \neq 0$, то стійкість несучої оболонки була досліджена на основі критеріїв Рауса–Гурвіца, які в даному випадку матимуть вигляд [9]

$$c_2 \succ 0, \qquad c_3 \succ 0, \qquad c_4 \succ 0, \qquad c_1 c_2 c_3 - c_3^2 - c_4 c_1^2 \succ 0.$$
 (17)

Аналізуючи ці критерії, встановлюємо, що демпфірування не змінюватиме величини критичної швидкості руху рідини $U_{\rm q}^{(1)}$, при якій настане дивергенція (нагадаємо, що $U_{\rm q}^{(1)} = \omega_1/\sqrt{\alpha_1}$). Що стосується втрати стійкості оболонки типу флатер, то вона відбудеться при деякій швидкості $U = U_{\rm p}^{(1)}$, яка при відносно малих значеннях параметра демпфірування ε_0 на незначну величину перевищуватиме швидкість $U_{\rm q}^{(2)} = \omega_2/\sqrt{\alpha_2}$. При цьому в вузькій зоні $U_{\rm q}^{(2)} \prec U \prec U_{\rm p}^{(1)}$ оболонка також знаходитиметься в зоні нестійкості дивергентного типу, оскільки в цій зоні ${\rm Im}\,\Omega = 0$.

Таким чином, при наявності демпфірування в рівняннях (1) квазістатична нестійкість оболонки плавно перейде в динамічну нестійкість. У формуванні флатерної нестійкості на початковому етапі братиме участь лише одна осьова форма m = 1. Інша форма m = 2 продовжує деякий час бути стійкою. При більш високій швидкості U, коли уявні частини коренів Ω рівняння (10) стають максимально наближеними одна до іншої, наступить так званий "класичний" флатер [1, 5], що реалізується за одночасною участю в динамічному процесі обох згаданих форм. Він характеризується більш істотним ("бурхливим") зростанням в часі амплітуд коливань оболонки порівняно з "одномодовим" флатером.

Таким чином, демпфірування є в даному випадку "дестабілізуючим" фактором, зумовленим неконсервативністю системи [1]. При його врахуванні в розрахунковій моделі флатер може наступити при менших швидкостях руху рідини, ніж при $\varepsilon_0 = 0$.

Робота виконана при частковій фінансовій підтримці ДФФД Міністерства освіти та науки України (проект Ф28/257-2009).

- 1. *Болотин В. В.* Неконсервативные задачи теории упругой устойчивости. Москва: Физматгиз, 1961. 339 с.
- 2. *Вольмир А. С.* Оболочки в потоке жидкости и газа. Задачи гидроупругости. Москва: Наука, 1979. 416 с.
- Горачек Я., Золотарев И. А. Собственные колебания и устойчивость цилиндрических оболочек при взаимодействии с протекающей жидкостью // Динамика тел, взаимодействующих со средой / Под ред. академика АН УССР А. Н. Гузя. – Киев: Наук. думка, 1991. – С. 215–272.
- Amabili M., Pellicano F., Païdoussis M. P. Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid. Part I: Stability // J. of Sound and Vibration. – 1999. – 225, No 4. – P. 655–699.
- 5. Вольмир А. С. Нелинейная динамика пластинок и оболочек. Москва: Наука, 1972. 432 с.
- 6. *Кубенко В. Д., Ковальчук П. С., Краснопольская Т. С.* Нелинейное взаимодействие форм изгибных колебаний цилиндрических оболочек. Киев: Наук. думка, 1984. 220 с.
- 7. *Кубенко В. Д., Ковальчук П. С., Подчасов Н. П.* Нелинейные колебания цилиндрических оболочек. Киев: Вища шк., 1989. 208 с.
- 8. *Kubenko V. D., Kovalchuk P. S., Kruk L. A.* On free non-linear vibrations of fluid-filled cylindrical shells with multiple natural frequencies // Прикл. механика. 2005. **41**, No 10. C. 127–138.
- 9. Меркин Д. Р. Введение в теорию устойчивости движения. Москва: Наука, 1976. 320 с.

Інститут механіки ім. С. П. Тимошенка НАН України, Київ Надійшло до редакції 02.09.2009

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, № 5

Academician of the NAS of Ukraine V. D. Kubenko, P. S. Koval'chuk, M. P. Podchasov

Analysis of stability of cylindrical shells interacting with a flowing fluid

The problem of the stability of thin cylindrical shells interacting with a flowing fluid is considered. Two different types of instability, quasistatic (divergence) and dynamic (flutter) ones, are investigated. Influence of a damping on the critical velocity of the divergence and flutter instabilities is studied.