Взаимодействие оксида церия с оксидами циркония и самария при температуре 1500 °C

Е. Р. Андриевская, О. А. Корниенко, И. С. Беляева, Г. П. Барбарош

Впервые исследованы фазовые равновесия в тройной системе ZrO_2 — CeO_2 — Sm_2O_3 при температуре 1500 °C во всем интервале концентраций. Образцы различных составов были приготовлены из их азотнокислых растворов выпариванием, сушкой и термообработкой при температурах 1100 и 1500 °C. Использовали рентгенофазовый и микроструктурный анализы. Установлено образование в системе твердых растворов на основе различных кристаллических модификаций исходных компонентов и упорядоченной фазы $Sm_2Zr_2O_7$.

Системы с оксидами циркония, церия и самария являются весьма перспективными в качестве альтернативных материалов для разработки теплозащитных покрытий и топливных ячеек [1—14]. Сведения о фазовых равновесиях в тройной системе ZrO₂—CeO₂—Sm₂O₃ в литературе отсутствуют. Фазовые соотношения в ограничивающих бинарных системах ZrO₂—CeO₂, ZrO₂—Sm₂O₃, CeO₂—Sm₂O₃ исследованы в работах [3, 15—41].

В субсолидусной области диаграммы состояния системы ZrO_2 —CeO₂ при 1500 °C установлено существование следующих фаз: тетрагональной T-ZrO₂ в интервале концентраций 0—18% (мол.) CeO₂ и кубической F-CeO₂ в интервале 56—100% (мол.) CeO₂. Найдена широкая двухфазная область (F + T) в интервале концентраций 18—56% (мол.) CeO₂. Тетрагональная модификация ZrO₂ не закаливается после изотермической выдержки при 1500 °C в течение 24 ч, вместо нее наблюдали образование моноклинной фазы M-ZrO₂ [37—41].

В системе ZrO₂—Sm₂O₃ при 1500 °С обнаружены области твердых растворов на основе тетрагональной и кубической модификаций ZrO₂, моноклинной (В) модификации Sm₂O₃ и упорядоченной фазы, кристаллизующейся в кубической структуре типа пирохлора Sm₂Zr₂O₇ (Ру) [19, 15—32]. Растворимость Sm₂O₃ в T-ZrO₂ невелика и составляет 0,5% (мол.). Границы двухфазной области Т + F простираются от 0,5 до 20% (мол.) Sm₂O₃. Область твердых растворов на основе флюорита претерпевает разрыв в температурном и концентрационном интервалах существования соединения Sm₂Zr₂O₇ (Ру). Границы области гомогенности F-фазы при 1500 °C составляют 35—51 и 73—79% (мол.) ZrO₂. Период а кристаллических решеток твердых растворов возрастает от 0,5319 до 0,5349 нм и от 0,5178 до 0,5217 нм. Области гомогенности F-фазы отделены узкими двухфазными полями F + Ру от поля твердых растворов на основе упорядоченной фазы Sm₂Zr₂O₇ со структурой типа пирохлора. Протяженность гетерогенной двухфазной области Ру + F с увеличением содержания оксида самария расширяется. Границы протяженности области гомогенности цирконата самария составляют 30-45% (мол.) Sm₂O₃ (1500 °C). Период а кубической решетки твердых растворов Sm₂Zr₂O₇ возрастает от 1,0488 нм для состава 67% (мол.) ZrO₂—33% (мол.) Sm₂O₃ до

© Е. Р. Андриевская, О. А. Корниенко, И. С. Беляева, Г. П. Барбарош, 2009

1,0667 нм для состава^{*} 55% (мол.) ZrO₂—45% (мол.) Sm₂O₃. С уменьшением температуры область гомогенности твердых растворов на основе фазы пирохлора постепенно расширяется и достигает максимальной величины вблизи эвтектоида, где ожидается реакция между фазами флюорита и пирохлора с B-формой оксида самария, протекающая по схеме F-ZrO₂ \Rightarrow \Rightarrow Sm₂Zr₂O₇ + B-Sm₂O₃. Область гомогенности <B-Sm₂O₃> невелика. Растворимость ZrO₂ в B-модификации Sm₂O₃ составляет ~2% (мол.). Периоды кристаллической решетки B-фазы изменяются от *a* = 1,3925, *s* = 0,3632 и *c* = 0,8680 нм, γ = 90,42 для чистого Sm₂O₃ до *a* = 1,3897, *s* = 0,3630 и *c* = 0,8679 нм, γ = 90,10 для предельного состава твердого раствора [35].

Исследования твердофазного взаимодействия CeO₂ (тип флюорита, F) и Sm₂O₃ (моноклинная модификация оксидов редкоземельных элементов, B) при температуре 1500 °C показали, что в системе CeO₂—Sm₂O₃ образуются три типа твердых растворов, имеющих кубическую структуру, на основе F-CeO₂ и C-Sm₂O₃, а также моноклинной модификации на основе B-Sm₂O₃, которые разделены двухфазными полями F + C и C + B [1, 2, 4—14]. Границы областей гомогенности твердых растворов на основе F-CeO₂, C- и B-Sm₂O₃ определены составами с 25—30, 65—70 и 97—98% (мол.) Sm₂O₃ при 1500 °C.

Растворимость Sm₂O₃ в F-модификации CeO₂ составляет 25% (мол.) при 1500 °C (150 ч). Период *а* кристаллической решетки возрастает от 0,5409 нм для чистого CeO₂ до 0,5446 нм для образца, содержащего 30% (мол.) Sm₂O₃. Растворимость CeO₂ в моноклинной В-модификации оксида самария составляет 3% (мол.) CeO₂ (1500 °C). Периоды кристаллической решетки В-фазы изменяются от *a* = 1,3925, *s* = 0,3632 и *c* = 0,8680 нм, γ = 90,42 для чистого Sm₂O₃ до *a* = 1,3018, *s* = 0,3578 и *c* = 0,9437 нм, γ = 88,5 для предельного состава твердого раствора [36].

В настоящей работе впервые изучено взаимодействие оксида церия с оксидами циркония и самария при температуре 1500 °С.

Для исследования приготовлены образцы, составы которых лежат на шести лучах: ZrO₂—(50CeO₂—50Sm₂O₃), CeO₂—(69ZrO₂—31Sm₂O₃), ZrO₂—(30CeO₂—70Sm₂O₃), ZrO₂—(70CeO₂—30Sm₂O₃), ZrO₂—(10CeO₂—90Sm₂O₃), Sm₂O₃—(60ZrO₂—40CeO₂) и трех изоконцентратах: 21% (мол.) ZrO₂, 45% (мол.) ZrO₂ и 85% (мол.) ZrO₂.

В качестве исходных веществ использовали азотнокислые соли циркония $ZrO(NO_3)_2 \cdot 2H_2O$ и церия $Ce(NO_3)_3 \cdot 6H_2O$ марки Ч, азотную кислоту марки ЧДА и Sm_2O_3 марки СмО-Е с содержанием основного компонента не менее 99,99%.

Образцы готовили с концентрационным шагом 1—5% (мол.) из растворов нитратов с последующим выпариванием и разложением нитратов на оксиды путем прокаливания при 1200 °C в течение 2 ч. Порошки прессовали в таблетки диаметром 5 и высотою 4 мм под давлением 10 МПа. Образцы подвергали двухступенчатой термообработке: в печи с нагревателями H23U5T (фехраль) при 1100 °C (2276 ч), некоторые образцы обжигали при 700 °C (40 ч) и в печи с нагревателями из дисилицида молибдена (MoSi₂) при 1500 °C (150 ч) на воздухе. Скорость подъема температуры составляла 3,5 град/мин.

^{*} Здесь и далее составы сплавов приведены в % (мол.).

Фазовый состав образцов исследовали методами рентгенофазового анализа и электронной микроскопии. Рентгенофазовый анализ образцов выполняли методом порошка на установке ДРОН-1,5 при комнатной температуре (Си K_{α} -излучение). Скорость сканирования составляла 1— 4 град/мин в диапазоне углов 2 θ = 15—80°. Периоды кристаллических решеток рассчитывали методом наименьших квадратов, используя программу LATTIC с погрешностью не ниже 0,0004 нм для кубической фазы.

Микроструктуры изучали на шлифах отожженных образцов с использованием данных локального рентгеноспектрального анализа (ЛРСА), выполненного на установке Superprobe-733 (JEOL, Japan, Palo Alto, CA), в обратно (BSE) и во вторично отраженных электронах (SE), характеристическом излучении. Состав образцов контролировали с помощью спектрального и химического анализов выборочно. По полученным результатам построено изотермическое сечение диаграммы состояния системы ZrO₂—CeO₂—Sm₂O₃ (рис. 1). Исходный химический и фазовый составы образцов, обожженных при 1500 °C, периоды кристаллических решеток фаз, находящихся в равновесии при заданной температуре, приведены в табл. 1.

Новые фазы в тройной системе ZrO_2 — CeO_2 — Sm_2O_3 не обнаружены. Характер фазовых равновесий в системе при 1500 °C определяет строение ограничивающих двойных систем. Установлено, что в тройной системе образуются твердые растворы на основе тетрагональной модификации ZrO_2 ,

Рис. 1. Изотермическое сечение диаграммы состояния системы ZrO₂—CeO₂—Sm₂O₃ при температуре 1500 °C (○ — одно-, • — двух-, • — трехфазные образцы).

Химический состав, % (мол.)		состав, .)	Фазовый состав	Период <i>а</i> кристалли- ческих решеток фаз, ±0,0002 нм		
ZrO ₂	CeO ₂	Sm_2O_3		<f></f>	Ру	<c></c>
1	2	3	4	5	6	7
		Ра	азрез ZrO ₂ —(50CeO ₂ —50Sr	$n_2O_3)$		
0	50	50	<c></c>		_	1,0916
5,4	47,3	47,3	<c>+<f></f></c>		_	1,0870
16	42	42	$<$ C $>\downarrow$ + $<$ F $>$	0,5403	_	1,0807
20	40	40	$<$ C $>\downarrow$ + $<$ F $>$	0,5403	_	_
22	39	39	<c>+<f></f></c>	0,5392		1,0779
27	36,5	36,5	<f></f>	0,5380	_	
32	34	34	<f></f>	0,5368		
37	31,5	31,5	<f></f>	0,5342		
42	29	29	<f></f>	0,5328	_	
47	26,5	26,5	<f> + Py</f>	0,5303	1,0606	
57	21,5	21,5	<f>+ Py</f>	0,5277	_	_
62	19	19	<f></f>	0,5252	_	_
67	16,5	16,5	<f></f>	0,5239	_	_
72	14	14	<f></f>		_	
76	12	12	<f></f>	0,5211	_	_
81,4	9,3	9,3	<f></f>	0,5184	_	
86	7	7	<f>och. + <t>*</t></f>	0,5153	_	_
90,8	4,6	4,6	$<\!\!F\!\!>\!+\!<\!\!T\!\!>\!\!\ast\!\uparrow$	0,5167	_	_
95,4	2,3	2,3	$<\!\!F\!\!>\!+\!<\!\!T\!\!>\!\!\ast\!\uparrow$	0,5168		
96	2	2	$\downarrow + *$	0,5166		
97,2	1,4	1,4	$<$ F $>\downarrow\downarrow$ + $<$ T $>*\uparrow\uparrow$	0,5135	_	
98	1	1	<t>*</t>	_	_	_
99	0,5	0,5	<t>*</t>	_	_	_
Разрез CeO ₂ —(69ZrO ₂ —31Sm ₂ O ₃)						
69	0	31	Ру		1,0547	
68	1	31	Ру		1,0542	
67	2	31	Ру		1,0554	
66	3	31	Ру		1,0555	

Таблица 1. Исходный химический и фазовый составы образцов системы ZrO₂—CeO₂—Sm₂O₃ после обжига образцов при 1500 °C (по данным РФА)

Продолжение таблицы 1

1	2	3	4	5	6	7
66		30	D _V		1 0542	,
65	- - 5	30	I y Dv		1,0542	_
62	10	20	r y Dv		1,0542	
02 50	10	20	ГУ		1,555	
59	14	27	Py	_	1,0543	_
55	19	26	Ру		1,0583	
49	29	22	<f> + Ру сл.</f>	0,5292	1,0584	
46	34	20	<f></f>	0,5297	—	
42	39	19	<f></f>	0,5305	—	
39	44	17	<f></f>	0,5311	—	
36,1	48,4	15,5	<f></f>	0,5310	—	
32	53	15	<f></f>	0,5330	—	_
28	58	14	<f></f>	0,5333	—	—
25	63	12	<f></f>	0,5341	—	
18	74	8	<f></f>	0,5358	—	
11	84	5	<f></f>	0,5374	—	
3	95	2	<f></f>	0,5392	—	
		Ра	азрез ZrO ₂ —(30СеО ₂ —70Sr	$n_2O_3)$		
2	29,5	68,5	<c></c>	_	_	1,0886
3	29	68	<c></c>	_	—	1,0888
4	29	67	<c></c>	_	—	1,0896
5	29	66	<c></c>	—	—	1,0897
10	27	63	<c></c>	_	_	1,0856
15	25,5	59,5	<f>+<c></c></f>	_	—	1,0840
25	23	52	<f>+<c></c></f>	0,5392		
30	21	49	<f>+<c></c></f>	0,5385		
40	18	42	<f></f>	0,5349	—	—
45	16,5	38,5	<f></f>	0,5341	—	—
50	15	35	<f>+ Py</f>	0,5309	1,0621	
55	13,5	31,5	<f>+ Py</f>	0,5293	1,0584	—
65	10	25	<f>сл. + Ру осн.</f>	0,5260	1,0521	—
70	9	21	<f>+ Py</f>	0,5239	1,0478	
75	8,5	16,5	<f></f>	0,5215	_	
80	6	14	<f></f>	0,5193	—	
85	5,5	9,5	<f>+<t>*</t></f>	0,5172	_	
90	3	7	$<\!\!F\!\!>\!+\!<\!\!T\!\!>\!\!*\!\uparrow$	0,5187		_

Продолжение таблицы 1

1 2 3 4 5 6 7 Paages ZrO2(70CeO230Sm ₂ O ₃) 5 66,5 28,5 <f> + <c> 0,5282 - - 15 59,6 25,4 <f> + <c> 0,5397 - 1,07 25 52 23 <f> 0,5357 - - 45 38 17 <f> 0,5303 - - 50 35 15 <f> 0,5287 - - 50 35 13,5 <f> 0,5260 - - 60 27,5 12,5 <f> 0,5260 - - 65 24 11 <f> 0,5208 - - 70 20,5 9,5 <f> 0,5208 - - 71 8 <f> 0,5208 - - - - 80 14 6 <f> + <t>* - -</t></f></f></f></f></f></f></f></f></f></c></f></c></f>	——————————————————————————————————————
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60
70 $20,5$ $9,5$ $$ $0,5208$ $ -$ 75 17 8 $$ $0,520$ $ -$ 80 14 6 $ + *cn.$ $0,5184$ $-$ 85 10 5 $ + *cn.$ $0,5178$ $-$ 90 7 3 $ + **cn.$ $0,5208$ $-$ 90 7 3 $ + **cn.$ $0,5178$ $-$ 90 7 3 $ + **cn.$ $0,5178$ $-$ 90 7 3 $ + **cn.$ $0,5208$ $ -$ 90 7 3 $ + **cn.$ $0,5208$ $ -$ 90 7 3 $ + **cn.$ $0,5208$ $ -$ 90 88 $ + - - 4 9,5 86,5 + + - 10 9,5 80,5 + + + - $	65
75 17 8 $$ 0,520	70
80 14 6 $ + *cn.$ 0,5184	75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80
90 7 3 $\langle F \rangle + \langle T \rangle^{**} \circ CH.$ 0,5208 — — Paspes ZrO_2 —(10 CeO_2 —90 Sm_2O_3) 2 10 88 $\langle B \rangle + \langle C \rangle$ — — — — 3 10 87 $\langle B \rangle + \langle C \rangle$ — — — — 4 9,5 86,5 $\langle B \rangle + \langle C \rangle + \langle F \rangle$ — — — — 5 9,5 85,5 $\langle B \rangle \downarrow + \langle C \rangle + \langle F \rangle$ — — — — 10 9,5 80,5 $\langle B \rangle \downarrow + \langle C \rangle + \langle F \rangle$ — — — — 15 9 76 $\langle B \rangle \downarrow + \langle C \rangle + \langle F \rangle$ — — — — 15 9 76 $\langle B \rangle \downarrow + \langle C \rangle + \langle F \rangle$ — — — — 21 1 78 $\langle B \rangle + \langle F \rangle$ — — — — — 21 2 77 $\langle B \rangle + \langle F \rangle$ + $\langle F \rangle$ — — — — — 21 3 76 $\langle B \rangle + \langle F \rangle + \langle C \rangle c\pi$. — — — — 21 4 75 $\langle B \rangle + \langle F \rangle + \langle C \rangle c\pi$. — — — — 21 5 74 $\langle B \rangle c\pi$ + $\langle F \rangle$ + $\langle C \rangle c\pi$ — — — — 21 20 59 $\langle F \rangle + \langle C \rangle$ — — — — — 21 20 59 $\langle F \rangle$ + $\langle C \rangle$ — — — — — 21 30 49 $\langle F \rangle$ + $\langle C \rangle$ — — — — — —	85
Paspes ZrO ₂ —(10CeO ₂ —90Sm ₂ O ₃) 2 10 88 $<$ B> + $<$ C> — — — 3 10 87 $<$ B> + $<$ C> — — — 4 9,5 86,5 $<$ B> + $<$ C> + $<$ F> — — — 5 9,5 85,5 $<$ B> + $<$ C> + $<$ F> — — — 10 9,5 80,5 $<$ B> + $<$ C> + $<$ F> — — — 10 9,5 80,5 $<$ B> + $<$ C> + $<$ F> — — — 15 9 76 $<$ B> + $<$ C> + $<$ F> — — — 15 9 76 $<$ B> + $<$ F> — — — 15 9 76 $<$ B> + $<$ F> — — — 21 2 77 $<$ B> + $<$ F> + $<$ C> — — — 21 3 76 $<$ B> + $<$ F> + $<$ C> — — — 21 4 75 $<$ B> + $<$ F> + $<$ C> — — — 21 5 74 <td>90</td>	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5
15 9 76 $\langle B \rangle \downarrow + \langle C \rangle \uparrow + \langle F \rangle$ — … <	10
Изоконцентрата 21% (мол.) ZrO_2 21 1 78 $\langle B \rangle + \langle F \rangle$ — — — — — 21 2 77 $\langle B \rangle + \langle F \rangle \uparrow$ — — — — — 21 3 76 $\langle B \rangle + \langle F \rangle + \langle C \rangle cn.$ — — — — 21 4 75 $\langle B \rangle + \langle F \rangle + \langle C \rangle cn.$ — — — — 21 5 74 $\langle B \rangle cn. + \langle F \rangle + \langle C \rangle cn.$ — — — — 21 10 69 $\langle B \rangle + \langle F \rangle + \langle C \rangle cn.$ — — — — 21 20 59 $\langle F \rangle + \langle C \rangle$ — — — — — 21 25 54 $\langle F \rangle + \langle C \rangle$ — — — — — 21 30 49 $\langle F \rangle + \langle C \rangle$ — — — — —	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21
21 30 49 <f>+ <c> — — —</c></f>	21
	21
21 35 44 $\langle F \rangle + \langle C \rangle \downarrow$ — — — —	21
21 45 34 <f>+ <c>сл. — — —</c></f>	21
Pa3pe3 Sm ₂ O ₃ (60ZrO ₂ 40CeO ₂)	
60 40 0 <f>+<t> 0.5288 -</t></f>	60
57 38 5 <f> 0.5249 — —</f>	57
53,5 36,5 10 <f> 0,5269 — -</f>	53,5

Продолжение таблицы 1

1	2	3	4	5	6	7
39,5	25,5	35	<f></f>	0,5349	_	
36	24	40	<f>осн. + <С>сл.</f>	0,5374		
9,5	5,5	85	$<\!\!B\!\!> + <\!\!F\!\!> + <\!\!C\!\!>$	0,5380		
6	4	90	< B > + < F > + < C >	0,5414		
3	2	95	< B > + < F > + < C >			
2,5	1,5	96	< B > + < F > + < C >			
2	1	97	< <u>B</u> >			
1,5	0,5	98				
0,5	0,5	99				
		И	Ізоконцентрата 45% (мол.)	ZrO ₂		
45	0	55	<f></f>	0,5349	_	
45	1	54	<f></f>	0,5358		
45	2	53	<f></f>	0,5357		
45	3	52	<f></f>	0,5363		
45	4	51	<f></f>	0,5363		
45	10	45	<f></f>	0,5358		
45	20	35	<f></f>			
45	45	10	<f></f>	0,5292		
45	50	5	<f></f>	0,5239		
45	55	0	<f>+<t>(a = 0,5292;</t></f>	0,5287		
			<i>c</i> = 0,5315; <i>c</i> / <i>a</i> = 1,0)			
		И	Ізоконцентрата 85% (мол.)	ZrO ₂		
85	0	15	<f></f>			
85	11	4	<f>och. + <t>*</t></f>			
85	12	3	<f>+<t>**</t></f>			
85	13	2	<f>+<t>**осн.</t></f>		_	
85	14	1	<f>сл. + <t>**осн.</t></f>		_	
85	15	0	<t>**</t>			_
				-		

*При заданных условиях (T = 1500 °C, 150 ч, на воздухе) T-ZrO₂ не закаливается, вместо нее наблюдали образование M-ZrO₂.

**Наблюдали частичную стабилизацию Т-фазы. Обозначения фаз: <T>, , <C>, <F> — твердые растворы на основе соответственно тетрагональной модификации ZrO₂, моноклинной модификации Sm₂O₃, кубической модификации Sm₂O₃, кубической модификации со структурой типа флюорита CeO₂, ZrO₂; Py упорядоченная фаза Sm₂Zr₂O₇ типа пирохлора. Другие обозначения: осн. — фаза, составляющая основу; сл. — следы фазы; ↑ — содержание фазы увеличивается; ↓ — количество фазы уменьшается.

моноклинной (B) и кубической (C) модификаций Sm_2O_3 , кубической модификации типа флюорита (F) CeO_2 и ZrO_2 , а также упорядоченной фазы типа пирохлора $Sm_2Zr_2O_7$ (Py).

Рис. 2. Концентрационные зависимости периодов решетки твердых растворов типа флюорита (F, \diamond) и фазы Sm₂Zr₂O₇ (Py, \Box) по разрезу CeO₂—(69ZrO₂—31Sm₂O₃) в системе ZrO₂—CeO₂—Sm₂O₃ после обжига образцов при 1500 °C.

Рис. 3. Концентрационные зависимости периодов решетки

твердых растворов типа флюорита (F, Δ) по разрезу ZrO₂—(50CeO₂—50Sm₂O₃) в системе ZrO₂—CeO₂—Sm₂O₃ после обжига образцов при 1500 °C.

Для определения положения границ фазовых полей наряду с данными о фазовом составе образцов использовали концентрационные зависимости периодов решетки образующихся фаз (рис. 2, 3).

Используя значения периодов решетки фазы флюорита, а также данные РФА и электронной микроскопии, определили координаты фигуративных точек фазы F в вершинах конодного треугольника трехфазной области (B + F + C) (табл. 2).

Систему триангулировали по разрезу Sm₂Zr₂O₇—CeO₂. Составы сосуществующих в равновесии фаз на основе пирохлора и F-CeO₂ находятся в плоскости сечения, что подтверждено экспериментально.

Фаза	Состав фаз, % (мол.)			
i usu	ZrO ₂	CeO ₂	Sm ₂ O ₃	
	2	1	97	
<c></c>	8	28	64	
<f></f>	35	3	62	

Таблица 2. Координаты вершин конодного треугольника в системе ZrO_2 —CeO₂—Sm₂O₃ после обжига образцов при 1500 °C (по данным РФА)

В области с высоким содержанием ZrO₂ образуются твердые растворы на основе тетрагональной модификации ZrO₂. Узкое поле этих твердых растворов вытянуто вдоль стороны ограничивающей двойной системы ZrO₂—CeO₂ (0—18CeO₂). Растворимость La₂O₃ в T-ZrO₂ невелика и составляет ~0,5% (мол.), что подтверждается данными PФА. Граница области гомогенности твердого раствора на основе T-ZrO₂ при 1500 °C проходит вблизи двухфазных ($T_{och} + F_{cn}$) составов: $85ZrO_2$ —14CeO₂— $1Sm_2O_3$, 90ZrO₂—7CeO₂—3Sm₂O₃. Следует отметить, что твердые растворы на основе T-модификации ZrO₂ не закаливаются при используемых режимах охлаждения. На дифрактограммах, полученных при комнатной температуре, присутствуют линии, характерные для M-ZrO₂. Для ряда составов вдоль изоконцентраты 85% (мол.) ZrO₂ и по разрезу ZrO₂—(70CeO₂—30Sm₂O₃) наблюдали частичную стабилизацию T-фазы (см. табл. 1). На дифрактограммах проявлялись линии T-фазы с незначительными следами моноклинной модификации ZrO₂.

Твердый раствор на основе цирконата самария при 1500 °C состоит в равновесии с фазой типа флюорита. Растворимость оксида церия в Sm₂Zr₂O₇ по разрезу CeO₂—(69ZrO₂—31Sm₂O₃) составляет 20% (мол.) CeO₂. Период *а* кубической решетки твердых растворов Sm₂Zr₂O₇ (Ру) изменяется от 1,0547 нм для бинарной фазы до 1,0583 нм для предельного состава твердого раствора, содержащего 55ZrO₂—19CeO₂—26Sm₂O₃ (рис. 2, см. табл. 1).

Границы области гомогенности фазы $Sm_2Zr_2O_7$ в равновесии с F-ZrO₂ при 1500 °C имеют заметную протяженность вдоль стороны ZrO_2 — Sm_2O_3 концентрационного треугольника.

Аналогично тому, как в двойной системе ZrO₂—Sm₂O₃ наблюдали разрыв растворимости фазы F-ZrO₂ в области существования соединения Sm₂Zr₂O₇, поле твердых растворов на основе флюорита в тройной системе также претерпевает разрыв в области образования упорядоченной фазы типа пирохлора. Границы области гомогенности F-фазы проходят от соответствующих координат в ограничивающих двойных системах ZrO₂-СеО₂ (56—100СеО₂), ZrO₂—Sm₂O₃ (65—49 и 27—21Sm₂O₃), CeO₂—Sm₂O₃ (60—100СеО₂). Верхняя концентрационная граница области гомогенности фазы типа флюорита вогнута в направлении к вершине ZrO₂ и проходит ниже изоконцентраты 85% (мол.) ZrO₂. Протяженность F-фазы определяют двухфазные составы, содержащие 85ZrO₂—5,5CeO₂— 9,5Sm2O3 по лучу ZrO2—(30CeO2—70Sm2O3) и 86ZrO2—7CeO2—7Sm2O3 по лучу ZrO₂—(50CeO₂—50Sm₂O₃). Нижняя концентрационная граница области гомогенности на основе F-фазы также прогибается в сторону увеличения содержания ZrO₂ и проходит выше изоконцентраты 21% (мол.) ZrO₂. Границы области гомогенности F-фазы по лучу ZrO₂— (50CeO₂—50Sm₂O₃) составляют 29—46 и 61—84% (мол.) ZrO₂. Период *а* кристаллической решетки кубической фазы типа флюорита изменяется от 0,5392 до 0,5303 нм и от 0,5277 до 0,5153 нм для предельных составов твердых растворов (см. рис. 3, табл. 1).

Предельная растворимость F-фазы по лучу CeO₂—(69ZrO₂—31La₂O₃) составляет 49% (мол.) ZrO₂. Период *а* решетки при этом изменяется от 0,5409 нм для чистого CeO₂ до 0,55292 нм для двухфазного образца состава 49ZrO₂—29CeO₂—22Sm₂O₃ (см. рис. 2, табл. 1).

Фаза типа флюорита присутствует в двухфазных (B + F), (C + F), (T + F), (Py + F) и трехфазной (C + F + B) областях.

Протяженность F-фазы определяют рентгенограммы образцов следующих $27ZrO_2$ —36,5CeO₂—36,5Sm₂O₃, $62ZrO_2$ —19CeO₂—19Sm₂O₃, составов: 46ZrO₂—34CeO₂—20Sm₂O₃, 80ZrO₂—6CeO₂—14Sm₂O₃, 75ZrO₂—8,5CeO₂— 45ZrO₂—16,5CeO₂—38,5Sm₂O₃, $40ZrO_2$ —18CeO₂— $42Sm_2O_3$, $16,5Sm_2O_3$, 75ZrO₂—17CeO₂—8Sm₂O₃, 25ZrO₂—52CeO₂—23Sm₂O₃ — однофазные (F); $49ZrO_2 - 29CeO_2 - 22Sm_2O_3$, $57ZrO_2 - 21,5CeO_2 - 21,5Sm_2O_3$ 70ZrO₂— 9CeO₂—21Sm₂O₃, 50ZrO₂—15CeO₂—35Sm₂O₃ — двухфазные (F + Py); 15ZrO₂—59,6CeO₂—25,4Sm₂O₃, $22ZrO_2$ —39CeO₂—39Sm₂O₃, 30ZrO₂— 21CeO₂—49Sm₂O₃ — двухфазные (F + C); 85ZrO₂—5,5CeO₂—9,5Sm₂O₃ двухфазный (F + T).

В подсистеме с низким содержанием ZrO_2 обнаружены области гомогенности твердых растворов на основе В- и С-модификаций оксида самария. Область гомогенности твердого раствора на основе $B-Sm_2O_3$ простирается до 3% (мол.) CeO_2 и 2% (мол.) ZrO_2 в соответствующих двойных системах и проходит вблизи состава $2ZrO_2$ — $1CeO_2$ — $97Sm_2O_3$ на разрезе Sm_2O_3 —(60 ZrO_2 —40 CeO_2). Границы двухфазной области В + F подтверждены данными РФА образцов составов $21ZrO_2$ — $1CeO_2$ — $78Sm_2O_3$, $21ZrO_2$ — $2CeO_2$ — $77Sm_2O_3$, расположенных вдоль изоконцентраты 21% (мол.) ZrO_2 .

Граница области гомогенности С-модификации Sm_2O_3 выгнута в направлении к вершине ZrO_2 и проходит от соответствующих координат в ограничивающей двойной системе CeO_2 — Sm_2O_3 (30—60CeO₂). Протяженность С-фазы определяют двухфазные составы образцов, содержащие $16ZrO_2$ — $42CeO_2$ — $42Sm_2O_3$ по лучу ZrO_2 —(50CeO₂— $50Sm_2O_3$) и $15ZrO_2$ — $25,5CeO_2$ — $59,5Sm_2O_3$ по лучу ZrO_2 —(30CeO₂— $70Sm_2O_3$).

В области системы с высоким содержанием Sm₂O₃ обнаружена одна трехфазная область (С + F + B), образование которой обусловлено термодинамической стабильностью моноклинной В-фазы.

Таким образом, изучены фазовые равновесия в системе ZrO_2 — CeO_2 — Sm_2O_3 при 1500 °C. Для исследованной системы характерно образование ограниченных твердых растворов на основе различных кристаллических модификаций исходных компонентов.

Изотермическое сечение системы ZrO_2 — CeO_2 — Sm_2O_3 при 1500 °C пересекает одну трехфазную (C + F + B) и пять двухфазных (F + C, B + C, Py + F, F + T, B + F) областей.

Результаты исследований могут быть использованы для оптимизации выбора добавок при разработке нового класса композиционных материалов с повышенными физико-механическими характеристиками.

Авторы выражают признательность Украинскому Государственному Фонду Фундаментальных Исследований за финансовую поддержку настоящей работы (грант "ДФФД-РФФИ-2009" № Ф28.3/030 по договору Ф28/252-2009; І-7-09).

- 1. Sato K., Yugami H., Hashida T. Effect of rare-earth oxides on fracture properties of ceria ceramics // J. of Mater. Science. - 2004. - 39. - P. 5765-5770.
- 2. Mori Toshiyuki, Drennan John, Lee Jong-Heun et al. Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems // Solid State Ionics. - 2002. -154—155. — P. 461—466.
- 3. Chong Wang, Matsvei Zinkevich and Fritz Aldinger. Experimental investigation and thermodynamic modeling of the ZrO₂-SmO₁₅ system // J. Amer. Ceram. Soc. - 2007. - 90, No. 7. – P. 2210–2219.
- 4. Chung Dong Yong, Lee Eil Hee. Microwave-induced combustion synthesis of Ce_{1-x}Sm_xO_{2-x/2} powder and its characterization // J. Alloys and Comp. - 2004. - 374, No. 1—2. — P. 69—73.
- 5. Dudek Magdalena, Bogusz Władisław, Zych Łukasz, Trybalska Barbara. Electrical and mechanical properties of CeO₂-based electrolytes in the CeO₂-Sm₂O₃-M₂O₃ (M - La, Y) system // Solid State Ionics. - 2008. - 179. - P. 164-167.
- Li Ji-Guang, Ikegama Takayasi, Mori Toshiyuki, and Wada Toshiaki. Reactive Ce_{0.8}RE_{0.2}O_{1.9} 6. (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) powders via carbonate coprecipitation. 1. Synthesis and characterization // Chem. Mater. — 2001. — 13. — P. 2913—2920.
- Pebng Ranran, Xia Changrong, Peng Dingkun, Meng Guangyao. Effect of powder 7. preparation on (CeO₂)_{0.8}(Sm₂O₃)_{0.1} thin film properties by screen-printing // Mater. Lett. -2004. — **58**. — P. 604—608.
- 8 Mandal Balaji P., Grover V., Tyagi A. K. Phase relations, lattice thermal expansion in Ce1-xEuxO2-x/2 and Ce1-xSmxO2-x/2 systems and stabilization of cubic RE2O3 (RE: Eu, Sm) // Mater. Science and Engineering. - 2006. - A430. - P. 120-124.
- 9. Clarke David R. Materials selection guidelines for low thermal conductivity thermal barrier coatings // Surface and Coat. Techn. — 2003. — **163**—**164**. — P. 67—74. *Omar Shobit, Wachsman Eric D., Nino Juan C.* Higher conductivity Sm³⁺ and Nd³⁺ co-doped
- 10. ceria-based electrolyte materials // Solid State Ionics. - 2008. - 178. - P. 1890-1897.
- Burghartz M., Matzke Hi, Léger C. et al. Inert matrices for the transmutation of actinides: 11. fabrication, thermal properties and radiation stability of ceramic materials // J. Alloys and Comp. — 1998. — 271—273. — P. 544—548.
- Lee Y. W., Kim H. S., Kim S. H. et al. Preparationof simulated inert matrix fuel with 12. different powders by dry milling method // J. Nucl. Mater. - 1999. - 274. - P. 7-14.
- Yamamura Hiroshi, Takeda Saori, Kakinuma Katsuyoshi. Relationship between oxide-ion 13. conductivity and dielectric relaxation in Sm-doped CeO₂ // Solid State Ionics. - 2007. -178, No. 13-14. - P. 889-893.
- 14. Wang Feng-Yun, Jung Guo-Bin, Su Ay et al. Fabrication of highly porous samaria-doped ceria by acid leaching magnesia-samaria-doped ceria ceramics // J. Amer. Ceram. Soc. -2007. — 90, No. 10. — P. 3357—3359.
- Rouanet A. Contribution a l'etude des systemes zirconia-oxydes des lanthanides au 15 voisinage de la fusion: Memoire de these // Rev. Internat. Hautes Temp. et Refract. -1971. — **8**. — P. 161—180.
- Perez M., Jorba Y. Contribution a letude des systems zircone-oxides de terres rares // 16. Annual. Chem. - 1962. - 7, No. 7-8. - P. 479-511.
- Rouanet A., Foex M. Study at high temperature of systems formed by zirconia with 17 samarium and gadolinium sesquioxides // C. R. Acad. Sci. Paris, Ser. C. - 1968. - 267, No. 15. – P. 873–876.
- Гавриш А. М., Алексеенко Л. С., Тарасова Л. А., Орехова Г. П. Структура и некоторые 18. свойства твердых растворов в системах ZrO_2 — R_2O_3 (R = Sm, Dy) // Изв. АН СССР. Неорган. материалы. — 1981. — 17. — С. 1541—1544.

- 19. Зоз Е. И., Фомичев Е. Н., Калашник А. А., Елисеева Г. Г. О структуре и свойствах цирконатов и гафнатов РЗЭ // Журн. неорган. химии. 1982. 27, № 1. С. 95—99.
- 20. Andrievskaya E. R., Lopato L. M. Influence of composition on the $T \rightarrow M$ transformation in the systems ZrO_2 — Ln_2O_3 (Ln = La, Nd, Sm, Eu) // J. Mater. Sci. 1995. **36**, No. 10. P. 2591—2596.
- Katamura J., Seki T., Sakuma T. The cubic-tetragonal phase equilibria in the ZrO₂—R₂O₃ (R = Nd, Sm, Gd, Y) // J. Phase Equilibria. — 1995. — 16, No. 4. — P. 315—319.
- 22. *Tabira Y., Withers R. L.* Structure and crystal chemistry as a function of composition across the wide range nonstoichiometric $(1 \varepsilon)ZrO_2 \varepsilon SmO_{1.5}$ (0,38 < ε < 0,55), oxide pyrochlore system // J. of Solid State Chem. 1999. **148**. P. 205-214.
- 23. *Wang Ch.* Experimental and computational phase studies of the ZrO₂-based systems for thermal barrier coatings // Ph. D. Thesis, University of Stuttgart, 2006.
- 24. Стегний А. И., Шевченко А. В., Лопато Л. М. и др. Термический анализ оксидов с использованием солнечного нагрева // Докл. АН УССР. Сер. А. 1979. № 6. С. 484—489.
- 25. *Lefevre J.* Some structural modifications of fluorite-type phase in the systems based on ZrO₂ or HfO₂ // Annual. Chem. 1963. **8**, No. 1—2. P. 254—256.
- Klee W. E., Weitz G. Infrared spectra of ordered and disordered pyrochlore-type compounds in the series Re₂Ti₂O₇, Re₂Zr₂O₇ and Re₂Hf₂O₇ // J. Inorg. and Nucl. Chem. — 1969. — **31**, No. 8. — P. 2367—2372.
- Michel D., Rouaux Y., Perez M., Jorba Y. Ceramic eutectics in the system ZrO₂—Ln₂O₃ (Ln — lanthanide): Unidirectional solidification, microstructural and crystallographic characterization // J. Mater. Sci. — 1980. — 15. — P. 61—66.
- Kazuo Sh., Masahiro M., Koji K., Osamu S. Oxigen-ion conduction in the Sm₂Zr₂O₇ pyrochlore phase // J. Amer. Ceram. Soc. 1979. 62. P. 538—539.
- Barry E. S., William B. White characterization of anion disorder in zirconate A₂B₂O₇ compounds by raman spectroscopy // Ibid. 1979. 62. P. 468—469.
- Глушкова В. Б., Сазонова Л. В. Влияние добавок редкоземельных окислов на полиморфизм двуокиси циркония // Химия высокотемпературных материалов. — Л.: Наука, 1967. — С. 83—90.
- 31. Портной К. И., Тимофеева Н. И., Салибеков С. Е. Синтез и исследование сложных оксидов и циркония // Изв. АН СССР. Неорган. материалы. 1972. 8, № 2. С. 406—408.
- Faucher M., Caro P. Ordre et desordre dans certains composes du type pyrochlore // J. Solid State Chem. — 1975. — 12, No. 1—2. — P. 1—11.
- 33. *Bevan D. J. M., Sammerville E. //* Handbook on the Physics and Chemistry on Rare Earths. 1979. **3**.
- 34. Brauer G., Gradiner H. Über heterotype Mischphasen bei Seltenerdoxyden. I. // Z. Anrog. Allg. Chem. 1954. 276, No. 5—6. P. 209—226.
- Андриевская Е. Р., Корниенко О. А., Самелюк А. В. и др. Взаимодействие оксида циркония с оксидом самария при температуре 1500 °С // Современные проблемы физического материаловедения. — К.: Ин-т пробл. материаловедения НАН Украины. — 2008. — Вып. 17. — С. 16—24.
- Андриевская Е. Р., Корниенко О. А., Городов В. С. и др. Фазовые соотношения в системе CeO₂—Sm₂O₃ при температуре 1500 °C // Там же. — С. 25—29.
- 37. Longo V., Roitti S. Solid state phase relations in the system CeO₂—ZrO₂ // Ceram. Internat. 1971. 1, No. 1. P. 4—10.
- 38. *Tani E., Yoshimura M., Somiya S.* Revised phase diagram of the system ZrO₂—CeO₂ bellow 1400 °C // J. Amer. Ceram. Soc. 1983. **66**, No. 7. P. 506—510.
- 39. *Duran P., Gonzales M., Moure C. et al.* A new tentative phase equilibrium diagram for the ZrO₂—CeO₂ system in air // J. Mater. Sci. 1990. **25**. P. 5001—5006.
- 40. Андриевская Е. Р., Редько В. П., Лопато Л. М. Взаимодействие оксида церия с оксидами гафния, циркония и иттрия при 1500 °С // Порошковая металлургия. 2001. № 7/8. С. 109—118.
- 41. *Panova T. I., Glushkova V. B., Nefedova M. Yu.* Investigation into the phase formation in the ZrO₂—CeO₂ system // Glass Phys. and Chem. 2005. **31**, No. 2. P. 240—245.