Діаграма стану системи Al₂O₃—HfO₂—La₂O₃. І. Ізотермічний переріз при 1250 °С

Я.С.Тищенко

Вперше побудовано ізотермічні перерізи діаграми стану системи Al_2O_3 — HfO_2 — La_2O_3 при 1250 °C. Встановлено фазові рівноваги при цих температурах. Потрійних сполук та помітних областей твердих розчинів на основі компонентів чи подвійних сполук в системі не знайдено.

Потрійні системи Al₂O₃—Zr(Hf)O₂—Ln₂O₃, де Ln — лантаноїди та La, привертають увагу матеріалознавців з ряду причин. Оксид алюмінію відомий як сполука з високою температурою плавлення — 2039 °C, яка має унікальні хімічні та механічні властивості. Він стійкий до агресивних середовищ, на повітрі при високих температурах. Має високі зносостійкість, модуль Юнга, міцність та твердість. Діоксиди цирконію та гафнію використовують для створення конструкційних матеріалів (лопатки газотурбінних двигунів, вузли двигунів внутрішнього згоряння, теплозахисні покриття і т. д.), матеріалів вищої вогнетривкості (деталі футерування високотемпературних печей, тиглів для плавлення тугоплавких металів і сплавів), функціональних матеріалів (нагрівачі опору, що працюють при ~2000 °C, тверді електроліти, датчики кисню і т. д.). Оксид лантану цікавить нас, в першу чергу, як стабілізатор для ZrO₂ та HfO₂.

Ліквідус діаграми стану системи Al₂O₃—HfO₂ — евтектичного типу з координатами 33% (мол.)* HfO2, 1890 °C [1] (рис. 1). Нові фази в системі не утворюються. Крім евтектичного процесу, в інтервалі концентрацій 2—18% Al₂O₃ в системі відбувається метатектичний нонваріантний процес фазового перетворення F 🛱 T + L твердих розчинів на основі HfO₂ з кубічною структурою типу флюориту (F) у тверді розчини з тетрагоструктурою (Т). При цьому знижується температура нальною перетворення від 2530 °С для чистого НfO₂ до 2460 °С. Координата метатектичної точки — 18% Al₂O₃. Фазове перетворення твердих розчинів на основі HfO₂ з тетрагональною структурою у тверді розчини з моноклінною структурою (М) відбувається у твердому стані за евтектоїдним механізмом Т 🛱 М + АL. При цьому знижується температура перетворення від 1830 °С для чистого НfO₂ до 1790 °С. Розчинність на основі фази Al₂O₃ практично відсутня. На основі фази HfO₂ утворюється вузька область твердих розчинів, ширина якої при температурі метатектики не перевищує 2, а при евтектичній температурі — 4% Al₂O₃ [1]. Діаграму стану системи Al₂O₃—HfO₂ наведено на рис. 1.

Систему HfO_2 —La₂O₃ в інтервалі температур 1200—2820 °С вивчено в роботі [2]. У цій системі утворюється сполука La₂ Hf_2O_7 (LH₂) зі структурою типу пірохлору, яка плавиться конгруентно при 2435 °С і має досить широку область гомогенності, що змінюється з температурою.

^{*} Тут і далі концентрацію наведено у % (мол.).

[©] Я. С. Тищенко, 2008

3 вихідними оксидами фаза LH₂ утворює евтектики з координатами 2335 °C, 23% La₂O₃ та 2085 °C, 64% La₂O₃. Фазові перетворення структур HfO₂ кубічна \leftrightarrows тетрагональна \leftrightarrows моноклінна (F \leftrightarrows T \leftrightarrows M) та La₂O₃ кубічна \leftrightarrows високотемпературна гексагональна \leftrightarrows низькотемпературна гексагональна (X \leftrightarrows H \leftrightarrows A) відбуваються у твердому стані та на ліквідусі не проявляються. Характер цих перетворень — евтектоїдний. Розчинність на основі T-HfO₂ не перевищує 5% La₂O₃ при температурі 2100 °C евтектоїдного перетворення F \leftrightarrows LH₂ + T, вище цієї температури розчинність на основі F-HfO₂ досягає 16% La₂O₃ при температурі 2335 °C евтектичного перетворення L \leftrightarrows F + LH₂. Розчинність на основі M-HfO₂ не перевищує 2% La₂O₃ при температурі 1770 °C евтектоїдного перетворення T \leftrightarrows M + LH₂.

Розчинність на основі A-La₂O₃ сягає 7% HfO₂ при 1700 °C і 8,5% HfO₂ при температурі 1840 °C евтектоїдного перетворення H \leftrightarrows A + LH₂. Розчинність на основі H-La₂O₃ досягає 9% HfO₂ при температурі 1840 °C евтектоїдного перетворення H \leftrightarrows A + LH₂ і до 12% HfO₂ при температурі 1960 °C евтектоїдного перетворення X \leftrightarrows H + LH₂. Розчинність на основі X-La₂O₃ сягає 13% HfO₂ при температурі 1960 °C евтектоїдного перетворення X \leftrightarrows H + LH₂ і до 17% (мол.) HfO₂ при температурі 2085 °C евтектичного перетворення L \leftrightarrows X + LH₂.

Ширина області гомогенності фази LH₂ знаходиться в інтервалах 25,5—37,5% La₂O₃ при евтектичній температурі 2335 °C, 23—38% La₂O₃ при евтектичній температурі 2085 °C і 29—37% — при температурі 1900 °C. Діаграму стану системи HfO₂—La₂O₃ наведено на рис. 1.

В системі Al_2O_3 — La_2O_3 утворюються дві сполуки: з перовскітоподібною структурою LaAlO₃ (LA) (просторова група *Pbnm*), що плавиться $T_1 \circ C$

Рис. 1. Бінарні системи, що обмежують систему Al₂O₃--HfO₂--La₂O₃.

конгруентно при 2110 °С, та з гексагональною структурою $La_2O_3 \cdot 11Al_2O_3$ (β-фаза) (просторова група *P63/mcm*), що плавиться інконгруентно при 1848 °С [3—6]. Фаза з 80% La_2O_3 з ромбічною структурою (R), що знайдена авторами робіт [4, 6], є метастабільною. Помітної розчинності компонентів і подвійних сполук не виявлено. Фазові перетворення La_2O_3 відображені на ліквідусі у вигляді метатектичних точок з координатами 2140 °С, 89% La_2O_3 та 2050 °С, 85% La_2O_3 . Узагальнену діаграму стану системи Al_2O_3 —La₂O₃ наведено на рис. 1.

Відомості про взаємодію в потрійній системі Al₂O₃—HfO₂—La₂O₃ в літературі відсутні.

Зразки для досліджень готували керамічним методом з оксидів. Вихідними речовинами слугували Al_2O_3 марки ЧДА (ТУ 6-09-426-75) Донецького заводу хімреактивів, HfO_2 марки ГФО-2 з вмістом основної речовини 99,95% Донецького заводу хімреактивів та La_2O_3 марки ОСЧ ЛаоД (ОСТ-48-194-81). Перед зважуванням порошки Al_2O_3 та HfO_2 випалювали у повітрі при 800 °С протягом 2 год з метою видалення адсорбованих розвинутою поверхнею вологи та інших летючих речовин. Ще теплі порошки переносили в бюкси з притертими кришками і зберігали в ексікаторі над силікагелем.

Порошок La₂O₃ вимагає особливої підготовки до зважування. Оксид лантану дуже легко гідратується парами води і зберігати його тривалий час можна лише у герметичній упаковці в ексикаторі над безводним P₂O₅. Тому кожен раз перед зважуванням порошок La₂O₃ прокалювали при 800 °C протягом 2 год та швидко охолоджували від 300 °C до кімнатної температури.

потрійній системі Al₂O₃—HfO₂—La₂O₃ склади зразків для дослідження вибирали цілеспрямовано, виходячи з результатів вивчення ізотермічних перерізів ліаграми стану системи-аналога Al₂O₃—ZrO₂—La₂O₃ [7, 8]. Було вибрано сім зразків. Склади зразків наведено в таблиці. Суміші оксидів пресували в таблетки діаметром і заввишки 5 мм. Тиск пресування не перевищував 490 МПа. Одержані таблетки випалювали у повітрі в печі ШП-1 з силітовими нагрівачами при 900 °С з метою видалення органічних речовин і часткового реагування компонентів суміші один з одним. Останнє є особливо важливим, оскільки необхідно зв'язати вільний La₂O₃ у вигляді подвійних сполук та твердих розчинів, інакше неминуча реакція вільного La2O3 з атмосферною вологою, утворення La(OH)₃ i, як наслідок, руйнування таблеток.

Оскільки у обмежуючих подвійних системах відсутні значні області розчинності у твердому стані, було вирішено одержати зразки у плавленому стані і провести рентгенофазовий аналіз для підтвердження розташування фазових полів при температурі ізотермічного перерізу. Аналогічні дані по системі Al₂O₃—ZrO₂—La₂O₃ [7] свідчать, що будова ізотермічних перерізів після відпалу зразків при різних температурах відрізнялась дуже несуттєво. Координати вершин конодних трикутників визначали, виходячи з будови подвійних обмежуючих систем.

Зразки плавили в установці для високотемпературного диференційного термічного аналізу (ВДТА) [9, 10] у середовищі водню в молібденових тиглях і відпалювали при температурі нижче температури солідуса протягом 1 год. Температуру ізотермічного перерізу вибирали, виходячи з верхніх температурних меж стабільності надструктур в системі HfO₂—Ln₂O₃ (рис. 2).

Зразок	Хімічний склад, % (мол.)			Фазовий склад
	Al_2O_3	HfO ₂	La_2O_3	
1	75	20	5	α -Al ₂ O ₃ , β -Al ₂ O ₃ , M
2	70	20	10	β-Al ₂ O ₃ , M, LA
3	60	20	20	β -Al ₂ O ₃ , LA, M
4	55	20	25	β -Al ₂ O ₃ , LA, M
5	40	20	40	LA, M
6	29	28	43	LA, LH ₂
7	19	50	31	LA, LH_2, M

Хімічний та фазовий склади зразків системи Al₂O₃—HfO₂—La₂O₃, відпалених при 1250 °C, за даними рентгенофазового аналізу

Рис. 2. Залежність верхньої температури межі стабільності сполук—надсполук від номера атома лантаноїда в системі HfO₂—Ln₂O₃.

Для аналізу плавлених зразків використовували метод рентгенівського фазового аналізу (РФА). Аналіз при кімнатній температурі виконано на установці ДРОН-1,5 (Си K_{α} -випромінювання, Ni-фільтр) зі швидкістю сканування 1/4—4 град/хв в інтервалі кутів 2 θ = 15—100 град. Інтенсивність ліній оцінювали візуально за десятибальною шкалою або в відсотках за відносною висотою піків на дифрактограмі. Періоди кристалічних граток кубічних фаз розраховано за методом найменших квадратів з використанням програми LATTIC з помилкою не вище 0,0004 нм. Фазовий аналіз зразків проводили із застосуванням карток X-Ray Powder Diffraction File.

Рентгенофазовий аналіз зразка 1 (таблиця) показав, що він складається з трьох фаз: Al₂O₃ у вигляді α -корунду (AL) з параметрами гратки a = 0,4758 нм, b = 1,2986 нм; β -Al₂O₃ (β) з параметрами гратки a = 0,5555 нм, b = 2,2066 нм та твердих розчинів HfO₂—Y₂O₃ з моноклінною структурою (М) (рис. 3, *a*). Співвідношення інтенсивностей рефлексів вказує на те, що зразок 1 містить сліди фази М. Одержані дані свідчать, що склад зразка 1 перебуває у трифазній області AL + β + M.

У зразку 2 рентгенофазовий аналіз виявив три фази: β -фазу з параметрами гратки a = 0,5550 нм, b = 2,200 нм, М-фазу та сліди фази LaAlO₃ (LA). Співвідношення інтенсивностей рефлексів свідчить, що зразок 2 містить найбільше β -фази. Одержані дані показують, що склад зразка 2 при 1250 °C знаходиться у трифазній області β + M + LA біля сторони конодного трикутника β —М—LA. Дифрактограму зразка 2 наведено на рис. 3, δ .

Зразок 3, за даними РФА, містить чотири фази: β , LA, M і T. У сплаві 3 зросла кількість фази LA, зменшилась кількість фази β і з'явилась фаза T, що співіснує з фазою М. Параметри кубічної викривленої гратки фази LA становлять: a = 0,5282 нм, c = 1,2908 нм. Наявність у зразку одночасно фаз M і T вказує на незавершеність фазового перетворення T \leftrightarrows M, яке, очевидно, може відбуватись за трансформаційним (L + T \leftrightarrows M + LA) або перитектичним (L + T + $\beta \leftrightarrows$ M) механізмами. Відповісти на це питання можна після вивчення поверхні ліквідуса потрійної системи і встановлення реакцій, що проходять в ній при рівноважній кристалізації сплавів. Виходячи з одержаних даних та закономірностей фазових рівноваг в потрійних системах, а також враховуючи будову подвійних обмежуючих систем, можна прогнозувати знаходження складу зразка 3 в конодному трикутнику β + M + LA. Дифрактограму зразка 3 наведено на рис. 3, e.

За даними РФА, зразок 4 складається з тих же фаз, що і зразок 3, однак у інших співвідношеннях: зросла кількість фази LA і зменшилась кількість β-фази. Параметри кубічної викривленої гратки фази LA становлять: a = 0,5351 нм, c = 1,3165 нм. Наявність моноклінної фази свідчить про незавершеність інконгруентних реакцій, що проходять за участі рідини. Одержані дані дозволяють прогнозувати знаходження складу зразка 4 також у трифазній області $\beta + M + LA$ в середині конодного трикутника β —М—LA. Дифрактограму зразка 4 наведено на рис. 3, *г*.

Зразок 5, за даними РФА, містить дві фази: LA та La₂Hf₂O₇ (LH₂) зі структурою типу пірохлору. Параметри кристалічної гратки фази LA становлять a = 0,5357 нм, c = 1,3148 нм. Виходячи з того факту, що склад зразка знаходиться на промені, що з'єднує склади фаз LA та HfO₂, та враховуючи правила триангуляції потрійних систем [11], слід було очікувати наявність у зразку замість фази LH₂ фази М. Але результати РФА свідчать про протилежне. Цей факт можна пояснити, як і для сплавів 3 та 4, проходженням у потрійній системі інконгруентних трансформаційних перетворень за участі рідини, які закінчуються утворенням фази M, але не встигли завершитись на момент кристалізації сплаву. Виходячи з викладеного та закономірностей фазових рівноваг у потрійних системах, можна припустити, що склад зразка 5 лежить на промені, що з'єднує фази LA та M-HfO₂. Дифрактограму зразка 5 наведено на рис. 3, ∂ .

Зразок 6, згідно з даними РФА, складається з двох фаз: LA та LH₂. Параметри кристалічної гратки фази LA становлять: a = 0,5364 нм, c = 1,3237 нм. Склад даного зразка знаходиться на промені, що з'єднує подвійні фази LA та LH₂. Одержані результати свідчать, що склад сплаву

належить перерізу LA—LH₂, який може служити триангулюючим для системи Al₂O₃—HfO₂—La₂O₃. Дифрактограму плавленого зразка 6 наведено на рис. 3, *е*.

Наявність у зразку 7 трьох фаз (LA, LH₂ та F) вказує на те, що склад сплаву при 1250 °C знаходиться у конодному трикутнику LA—LH₂—M і що інконгруентні процеси за участі рідини не встигли пройти до кінця і перетворити фазу F на фазу M. Дифрактограму плавленого зразка 7 наведено на рис. 3, \mathcal{M} .

На основі одержаних результатів, а також даних літератури з подвійних обмежуючих систем і результатів побудови ізотермічного перерізу діаграми стану системи-аналога Al_2O_3 —ZrO₂—La₂O₃ [7], побудовано ізотермічний переріз діаграми стану системи Al_2O_3 —HfO₂—La₂O₃ при 1250 °C (рис. 4). Ізотермічний переріз складається з десяти областей. З них одна однофазна, що знаходиться біля кута HfO₂, ширина якого не перевищує 1%. П'ять областей двофазні: AL + M, β + M, LA + M, LA + LH₂ та LA + A. Найширші двофазні області LA + LH₂ та LA + A, які спираються на однофазні області гомогенності фази LH₂ та твердих розчинів на основі A-форми La₂O₃ в подвійній обмежуючій системі HfO₂—La₂O₃. Двофазна область LA + A прилягає до подвійної обмежуючої системи Al_2O_3 —La₂O₃ в інтервалі концентрацій 50—100% La₂O₃.

Чотири області трифазні: AL + M + β , β + M + LA, LA + M + LH₂ та LA + LH₂ + A. Найвужча трифазна область AL + M + β розташована вздовж подвійної обмежуючої системи Al₂O₃—HfO₂ і відділена від неї вузькою двофазною областю AL + M. Трифазні області AL + M + β та β + M + LA розділені вузькою двофазною областю β + M. Трифазні області β + M + LA та LA + M + LH₂ відділені одна від одної вузькою двофазною областю LA + M, а області LA + M + LH₂ та LA + LH₂ + A дещо ширшою двофазною областю LA + LH₂.

Виходячи з будови ізотермічного перерізу, можна спрогнозувати триангуляцію (розбиття на вторинні трикутники) потрійної системи Al_2O_3 —HfO₂—La₂O₃. Наявність на перерізі (рис. 4) двофазних областей LA + M та LA + LH₂ дозволяє прогнозувати розташування саме в них умовно квазібінарних перерізів.

Згідно з теорією фазових рівноваг [12, 13], в потрійній системі з протяжними областями гомогенності на основі компонентів та проміжкових фаз квазібінарних перерізів не може бути, тобто нема таких перерізів, в площині яких лежать склади співіснуючих в рівновазі фаз в усьому інтервалі температур і концентрацій. Однак деякі перерізи діаграми стану потрійної системи або фазові області можуть мати певні ознаки квазібінарних систем. Обов'язковою ознакою є виконання правила Ван-Рейна про те, що сама низька фігуративна точка складу рідини в цьому перерізі повинна бути перевальною (сідловинною) точкою поверхні ліквідуса потрійної системи або максимальною на поверхні солідуса [14].

Відповісти на питання про квазібінарність перерізів LA + M та LA + LH₂ можна, побудувавши фазові діаграми цих перерізів.

Нових фаз і помітних областей розчинності на основі компонентів та подвійних сполук у потрійній системі, як і прогнозувалось, не виявлено. Будова ізотермічного перерізу визначається особливостями фазових рівноваг в обмежуючих подвійних системах, а саме утворенням сполук LA та LH₂.

Рис. 3. Дифрактограми плавлених зразків 1—7 (а—ж) системи Al₂O₃—HfO₂—La₂O₃.

Рис. 4. Ізотермічний переріз діаграми стану системи Al₂O₃—HfO₂—La₂O₃ після відпалу зразків при 1250 °C: • — двофазні зразки; • — трьохфазні.

Наявність на ізотермічному перерізі трифазних областей β + M + LA, LA + M + LH₂ та LA + LH₂ + A дозволяє прогнозувати існування в системі Al₂O₃—HfO₂—La₂O₃ потрійних евтектик аналогічного складу при температурах вище температури ізотермічного перерізу 1250 °C, оскільки слідів рідини у відпалених зразках виявлено не було.

Висновки

На підставі проведених досліджень вперше побудовано орієнтовний ізотермічний переріз діаграми стану системи Al_2O_3 —HfO₂—La₂O₃ при 1250 °C. На перерізі встановлено наявність десяти областей, з яких п'ять — двофазні, чотири — трифазні і одна вузька однофазна область М-твердих розчинів біля вершини HfO₂. Нових фаз і помітних областей розчинності на основі компонентів та подвійних сполук в потрійній системі, як і очікували, не виявлено. Присутність на ізотермічному перерізі областей двофазних рівноваг LA + M та LA + LH₂ вказує на існування умовно квазібінарних перерізів, що знаходяться в цих двофазних областях і триангулюють потрійну систему на вторинні системи. Наявність на ізотермічному перерізі трифазних областей β + M + LA, LA + M + LH₂ та LA + LH₂ + A дозволяє прогнозувати існування в

системі Al₂O₃—HfO₂—La₂O₃ потрійних евтектик аналогічного складу при температурах вище температури ізотермічного перерізу 1250 °C. Фази дво- та трифазних областей можуть використовуватись як взаємно ізолюючі шари при створенні конструкційних та функціональних матеріалів. Подальше дослідження слід спрямувати на уточнення будови ізотермічного перерізу діаграми стану системи Al₂O₃—HfO₂—La₂O₃ при 1250 °C, побудову ізотермічного перерізу при більш високій (1650 °C) температурі, вивчення ліквідуса діаграми стану системи і встановлення характеру взаємодії в ній.

- 1. Шевченко А. В., Лопато Л. М., Рубан А. К. Исследование взаимодействия в системе двуокись гафния—гафнат лантана // Докл. АН УССР. Сер. Б. 1976. № 10. С. 925—927.
- 2. Шевченко А. В., Лопато Л. М., Зайцева З. А. Взаимодействие HfO₂ с оксидами лантана, празеодима и неодима при высоких температурах // Неорган. материалы. 1984. **20**, № 9. С. 1530—1534.
- 3. Бондарь И. А., Виноградова Н. В. Фазовые равновесия в системе окись лантана—глинозем // Изв. АН СССР. Сер. Хим. 1964. № 5. С. 785—790.
- Mizuno M., Berjoan R., Coutures J. P., Foex M. Phase diagram of the system Al₂O₃—La₂O₃ at elevated temperatures // J. Ceram. Soc. Jap. — 1974. — 82, No. 12. — P. 631—636.
- Ropp R. C., Libovitz G. G. The nature of the alumina-rich phase in the system La₂O₃—Al₂O₃ // J. Amer. Ceram. Soc. — 1978. — 61, No. 11—12. — P. 473—475.
- 6. *Yamaguchi O., Sagiura K., Mitsui A. M., Shimizu K.* New compound in the system La₂O₃—Al₂O₃ // Ibid. 1985. **68**, No. 2. P. C44—C45.
- 7. Лакиза С. М., Лопато Л. М. Взаємодія в системі Al₂O₃—ZrO₂—La₂O₃ при 1250 та 1650 °С // Порошковая металлургия. 2000. № 7/8. С. 99—103.
- 8. *Lakiza S. M., Lopato L. M.* Phase diagram of the Al₂O₃—ZrO₂—La₂O₃ // J. Europ. Ceram. Soc. 2005. **25**, No. 8. P. 1373—1380.
- Кочержинский Ю. А., Шишкин Е. А., Василенко В. И. Аппарат для дифференциально-термического анализа с термопарным датчиком до 2200 °С // Диаграммы состояния металлических систем. — М.: Наука, 1971. — С. 245—249.
- 10. Лопато Л. М., Шевченко А. В., Кущевский А. Е. Исследование систем высокоогнеупорных окислов // Порошковая металлургия. 1972. № 1. С. 88—92.
- 11. Захаров А. М. Диаграммы состояния двойных и тройных систем. М.: Металлургия, 1964. 240 с.
- Аносов В. Я., Погодин С. А. Основные начала физико-химического анализа. М.-Л.: Изд.-во АН СССР, 1947.— 876 с.
 Еременко В. Н., Великанова Т. Я., Артюх Л. В. и др. Тройные системы
- Еременко В. Н., Великанова Т. Я., Артюх Л. В. и др. Тройные системы молибдена с углеродом и переходными металлами IV группы. — К.: Наук. думка, 1985. — 296 с.