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QUANTUM DYNAMICS OF A TWO-LEVEL
SYSTEM UNDER EXTERNAL FIELD

We present exact analytic solutions for non-linear quantum dynamics of a two-
level system (TLS) subject to a periodic-in-time external field. In constructing the
exactly solvable models, we use a approach where the form of external perturbation
is chosen to preserve an integrability constraint, which yields a single non-linear
differential equation for the ac-field. A solution to this equation is expressed in terms
of Jacobi elliptic functions with three independent parameters that allows one to
choose the frequency, average value, and amplitude of the time-dependent field at
will. This form of the ac-drive is especially relevant to the problem of dynamics of
TLS charge defects that cause dielectric losses in superconducting qubits.

1. Introduction
The problem of a periodically-driven two-level system (TLS) appears in

many physical contexts including magnetism, superconductivity, structural glasses
and quantum information theory [1-7]. The interest in this old problem has been
revived recently due to advances in the field of quantum computing (see, e.g., [8-
12] and references therein). First of all, a qubit itself is a two-level system and the
question of its evolution under an extermal time-dependent perturbation is
obviously of interest. Also, the physical mechanism that currently limits coherence
particularly in superconducting qubits is believed to be due to other types of
unwanted TLSs within the qubit, \whose charge dynamics under a periodic-in-time
electric field gives rise to dielectric losses directly probed in experiment. [13,14].
In what follows, we mostly apply our solution to the latter charge TLS model, but
the general methods and some particular results of this work evidently can be
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applied to a much broader range of problems.

One of the key metrics of a superconducting qubit is the quality factor,
which is defined as a ratio of the real and imaginary parts of the dielectric

response function, &(@), evaluated at the resonant frequency of the
corresponding LC-circuit, O =Reeg(w,)/Ime(w,). Very high values of the
quality factor are required for the qubit to be operational. However, existing
experiments consistently show significant dielectric losses that occur in an
amorphous dielectric (e.g.., in Al,Os3) used as a barrier in the Josephson junctions.
It is believed that the losses are primarily due to the presence of charge two-level
system defects in the barrier and/or the contact interfaces, which respond to an AC
electric field in the LC-resonator. It is still unclear what the physical origin of
these defects is, but an early work of Phillips [13] as well as very recent
comprehensive density functional theory studies point to the OH-rotor defects as
a very likely source of the dielectric losses. The determination of the physical
origin and the properties of the TLSs responsible for the dielectric loss is
investigated in the presented work.

The usual theoretical approach to calculating the quality factor and more
generally the full dielectric response function, £(@), involves a formal mapping

of charge dynamics in a double-well potential onto the problem of "spin"
dynamics i an AC field, described by the "spin" Hamiltonian

H()=b(t)-0/2, b(t)=2(A,,0,e+d,-E(1))
where o denotes the Pauli matrices and b(¢) is an effective "magnetic field" that
drives TLSs, with &, A, and d,; being the TLS energy splitting, the tunneling

amplitude between its two states, and the TLS dielectric moment correspondingly
and E(¢)is the AC electric field. A linear analysis within the canonical TLS

predicts that the dielectric function due to identical TLSs is peaked at the
frequency, v = A’ +&* . Ad-hoc inclusion of 7 and 7, relaxation processes and

the assumption about random distribution of TLS energy-splitting and tunneling
(typically assumed to be uniform and long-uniform correspondingly) lead to the

quality factor O /1+(E,/E.)", with x 2, E being the amplitude of an
applied AC electric field and £, is a critical value of the amplitude which also

encodes the information on the strength of the relaxation processes (see, e.g., [5]).
Both formulas are used widely in interpreting experimental data and probing
energetic of the relevant TLS defects.

While this linear analysis is a fine approximation to describe a majority of
regimes currently studied experimentally, the existing experiments are certainly
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capable and some do access non-linear regimes as well, where the energy of the
applied electric field is comparable or larger than the relevant TLS energies.
Hence, this non-perturbative regime is of clear experimental and theoretical
interest. More importantly studies of momlinear dynamics may provide another
effective means to probe the properties of TLS.
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FIG. 1: Schematic representation of an OH-rotor two-level system in an Al,03
oxide. [16.17]. Here, the role of the generalized variable is assigned to the angle &
defined as an angle between the OH-bond and an axis perpendicular to the vertical
AlO bond. At low enough temperatures, the phase space an isolated rotor is
reduced to the two-states corresponding to the minima of the double-well potential!
V(6). Application of external ac-field parametrically coupled to the rotor's dipole

moment induces oscillations between the two minima.

The mathematical formulation of the non-linear TLS dynamics problem
studied in this paper is deceptively simple. We will solve the Schrédinger
equation for a spinor wave-function

0% =Lp@).ow, W= ("’J
2 7

that describes a half-integer spin subject to a periodic in time magnetic field of the
form, b(r0=2(A,,0, f(¢)), where A, is a constant describing the coupling between
the two states and the function f(¢)= f(#++7), describes the time dependent

perturbation. Despite the simplicity of the formulation, the problem is generally
unsolvable in analytic form for most cases of practical interest. The origin of this
surprising fact can be understood if we introduce a new function
R(t)=w, (t)/w_(¢), which reduces the matrix Schrédinger equation to the Riccatti
equation

O inR= 2/R+A,(1-R%).

It is a non-linear differential equation that has known analytic solution in a very

—ir)
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limited number of cases (not that case of a monochromatic perturbation is not one
of them).

Therefore, to solve for TLS dynamics driven by a specific nonequilibrium
field is equivalent to generating a particular solution to the Ricatti equation
corresponding to the perturbation. Clearly this is a challenging mathematical task
and this observation partially explains the current deficit of exact mathematical
results. The difficulties in obtaining exact solutions have led to the emergence of
several perturbative approaches, used in particular to characterize relaxation and
dephasing rates in qubits as a function of driving amplitude. These analyses
provide very useful physical insights and correctly describe the physics if the
time-dependent perturbation is weak, but it is also clear that there exist non-linear
effects beyond perturbation theory and it is desirable to have exact results to
access this qualitatively different physics.

The mathematical approach that we use to obtain exact results is to exactly
solvable Hamiltonians of specific form relevant to the problem of interest. A key
observation in our analysis is that finding a Hamiltonian corresponding to a given
solution is much easier than solving the Schrodinger equation with a given
Hamiltonian. In some generalized sense, the two procedures are related to one
another much like differentiation relates to integration. To see this, it is useful to
consider the evolution operator, or the S -matrix, which relates the initial state at
t=0 to a final state at >0 as follows, ¥(¢) =S(#)¥(0). In the absence of

relaxation process the time-evolution is unitary and it satisfies the Schrodinger
equation,
i0,S(t)=H(@®)S(?).

If we choose an arbitrary S -matrix,
S = exp(—%cb(t) . o-j esSU,,

we can immediately reconstruct the corresponding Hamiltonian that gives rise to
such evolution as follows H(¢)=i0,S(t)S™(¢). Using this method, one can

generate an infinite number of exact non-equilibrium solutions and explicit models.
These solutions may be of importance to physics of NMR, to the question of physi-
cal implementation of gate operations on a qubit as well as of some mathematical
interest. Nevertheless without additional constraints such analyses would
generally produce Hamiltonians of little importance to the problem of dynamics
of TLS charge defects.

A very useful insight that allows us to constructively narrow down the range
of relevant dynamical systems comes from the mathematically related problem
of far-from-equilibrium superconductivity. It is well-known that the reduced BCS
Hamiltonian is algebraically equivalent to an interacting XY-spin model in an
effective "inhomogeneous" magnetic field in the z-direction, whose profile is
dictated by the bare single particle-energy dispersion. Far from equilibrium,
dynamics of a given Anderson pseudospin is determined by an effective time -
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dependent self-consistent field of other pseudo-spins that it interacts with. In
many cases (determined by specific initial conditions), this BCS self-consistency
constraint dynamically selects a specific order-parameter, such that the dynamics
of essentially infinite number of spins is equivalent to the dynamics of few spins
only.

For special sets of initial conditions, these spins move in unison and
therefore the self-consistent "magnetic field" (or superconducting order parameter
in the language of BCS theory) is periodic in time. The reduced BCS model is
integrable and there exists a very elegant prescription for constructing exact non-
equilibrium solutions to it. These solutions contain, in particular, exact spin
dynamics in a periodic time-dependent field that can be expressed in terms of
elliptic functions. In this paper, we generalize such anomalous soliton solutions to
encompass a wider range of time dependencies relevant to the problem of TLS
dynamics, which is of our primary interest.

2. General framework for constructing exact solutions
In this paper, we derive a family of exact solutions for the non-dissipative
TLS dynamics subject to an external ac-field. The main ingredient of our approach
is a special ansatz for the TLS's dynamics that corresponds to periodic-in-time but
non-monochromatic external fields. Before proceeding to the specific ansatz, let us
first introduce a general algebraic framework of exact solutions. We are interested
in solving the non-equilibirum Schrodinger equation for the spinor

i0¥(1) = HOW(r), W= (Zj) )

where the Hamiltonian is H(¢) =(1/2)b(t)-o . As mentioned in the introduction,

instead of solving Eq. (1) for the wave-function, we can consider the Schrédinger
equation for the evolution operator that relates the initial and final states,
W(¢) = S(#)¥(0) . This equation for the S-matrix has the form identical to Eq. (1)
i0,S(t)=H(®)S(?), S(0)=1 2)

but now it is an equation for the matrix function S(¢), which belongs to the two-
dimensional representation of the SU(2) group, while the Hamiltonian expressed in
terms of SU(2), generators belongs to the two-dimensional representation of the
su(2) algebra.

Note that the form of Eq. (2) is such that it may be generalized to an arbitrary
spin or equivalently to an arbitrarydimensional representation of SU(2) or it can be
viewed as an equation of motion in the abstract group such that

H (1) = b(2) - T € su(2), S, () = exp(=i®@(?)-J,,,) € SU(2),

where J, are the corresponding generators. Therefore, a solution of the problem
in a particular representation, i.e., an explicit form of ®(¢), immediately gives the

corresponding solutions in all other representations (e.g., a two-Ievel system dy-
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namics uniquely determines a "d-level system" dynamics in the same field). This
TLS problem that we are interested in corresponds to the two-dimensional

generators J. =(1/2)o, with o, (& =(x,y,z)) being the familiar Pauli matrices.
The problem of determining the solution, ®(¢), from the magnetic field time-
dependence b(¢) is a complicated one, but the inverse problem is almost trivial.
Indeed, if we select a specific S-matrix (defined uniquely by the choice of a
specific function, @(#) , the Hamiltonian will read
H@)=i0,5()S*(?), 3)
where

S(t) =exp [éq)(t) . O'j . (4)

Using the algebraic identities for the Pauli matrices, we obtain the corresponding
magnetic field

b(t) = ® n+sin® n+ (1—cos D) nxn], ®)
where ®(¢) =| O(¢) |n(¢), with |n(r)|=1. Note that one can generate exactly-
solvable models by simply picking an arbitrary ®(¢) dependence and using Eq. (3)
to find the corresponding Hamiltonian. However, without guidance or luck, such
an analysis would generally produce complicated non-equilibrium fields that have
little to do with an underlying physical problem. Let us however mention here that
this procedure may be of interest to quantum computing an general, because the
time-evolution governed by an S-matrix can be viewed as a "gate operation" on the
spin (if the TLS/spin corresponds to a qubit rather than to a defect within a qubit).
By picking "trajectories,” ®(¢), on the algebra that start in the origin, i.e.

@®(0) =0, but end at a specific point at a time 7, one can immediately determine

the non-equilibrium magnetic pulse, b(¢), or a class of such pulses, that will give
rise to a desired gate operator G = S(¢) = exp(—%cb(t) . aj .

Let us note here that the function, ®@(¢) , contains complete information about

the solution to the original problem, Eq. (1), including the overall quantum phase
accumulated by the wave-function during the time evolution (as we shall see
below, this phase is of particular interest to the problem of dielectric response of
TLSs in superconducting qubits). An interesting question is whether and how
purely quantum phase can be restires from a solution of the corresponding classic
Bloch equations that are usually considered in this context. Let us recall that a
classical mapping can be achieved by introducing the average magnetic moment,

m(t) = ‘P*(t)%‘}’(t) . (6)
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Therefore m’(t)=1/4 and the classical equations of motion for the spin moment
follow from

8,m(t) = %‘P O[H(),0]¥ ()

and yield the familiar result

0,m(t) = b(t)xm(t) @)
Let us recall that these Bloch equations are a saddle point of quantum spin
dynamics, much in the same way that Newton's equations of motion governed by
the force, [-VV(r)], represent a saddle point of the action describing a quantum
particles in the potential, V' (), and therefore do not contain direct information

about quantum intformation and tunneling effects. Similarly, Egs. (7) do not
directly contain the quantum phase and to determine it one has to go back to the
Schrodinger equation. Another more abstract way to see this is by noticing that.

Egs. (7) describe the motion on a two-dimensional (Bloch) sphere, m(t)=S>,
while the original quantum problem Eq. (2) describes motion on a three-
dimensional sphere since S, (f) e SU(2) S°.

Now let us recall that there exists the Hopf fibration such that

abs

SU(2)/U(1) = S*, which summarizes the fact that classical equations, namely Egs.

(7), represent quantum motion modulo the U(1) phase dynamics. Fortunately, this
phase dynamics can generally be restored from exact dependence of the m(r)

solution, albeit in a non-local way. To see this, we can write the magnetization in
terms of the 5-matrix as follows

m(t) = %‘P O)[S* (oS |'¥(0),

where W(0) and the corresponding m(0) =" (0)(c/2)W¥(0) are initial conditions
for the wave-function and Bloch magnetization, correspondingly. Using again the
well-known identities for the Pauli matrices, we find the evolution matrix for the
Bloch equations, as follows m, (1) = R, (t)m;(0) , as follows

m, (1) = 06,5 cosP@+n,ny(1-cosP)—&,,n, sin® ®)
This three-dimensional matrix describes a rotation, R(?) € SO(3), and can be
represented equivalently as

0 —-e e

R(t):exp[—CD(t)-L], L=| e Oz —;X , )
—-e, e, 0

where L €s50(3) so(2) belong to the three-dimensional vector representation of

the so(2) algebra. They are related to the “usual” spin 1 representation (where J;

is diagonal) via simple linear transform.
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Therefore, we see that if we known an arbitrary solution to the Bloch
equation, m(¢#) we can at least in principle restore the function, ®(¢), (see, Egs.
(9) and (4)), which uniquely determines the entire quantum solution. It also
suggests that if we choose an arbitrary dynamics function on a sphere we may be
able to restore the quantum Hamiltonian that would give rise to it, via mappings
m(t) > R(t) > S(t) > H . However, the second step in this chain of transforms
involves effectively calculating a 1ogarithm of the rotation matrix, which due to a
complicated "analytic" structure of this matrix-logarithm function requires a
careful calculation non-local in time.

The sequent Sections are devoted to constructing exactly solvable periodic-in-
time Hamiltonians based on a specific anzats for the classical Bloch
“magnetization”, m(z). It further involves a restoration of the corresponding

quantum U(l) phase via a straightforward integration. More specifically, we
reverse ' the following Hamiltonian

H=Ao +f(@t)o., (10)
where f(#)=f(+T)) is a periodic function, with an arbitrary period, 7. Our

solution below also allows tuning of the average splitting, & =< f(¥) >r s and the

AC field amplitude, 4, =/<| (1) —¢ [’>, . As mentioned in the introduction, this

problem is of great importance to the physical problem of externally-driven TLS
dynamics in superconducting qubits (with A, corresponding to tunneling between

the wells, ¢ to a splitting of energy levels in a double-well potential, and 7, and
A, being the period and the amplitude of the AC-electric field correspondingly).

Our "guess" for the relevant ansatz for the Bloch "magnetization," m(¥), is

based on a set of formal solutions discovered in the related problem of quenched
dynamics of fermionic superfluids [19-21,24,25]. Formally, the quenched
dynamics of each individual Cooper pair is described by the Bogoliubov-de
Gennes Hamiltonian, which is essentially a spin Hamiltonian that reduces to (10)
after the unitary transformation o, — o, ando, - —o_. with A, corresponding

to a single particle energy level and f(¢) to the superfluid order parameter.

A realization of each particular form of the superfluid order parameter
dynamics in a steady state can be unambiguously determined by the initial
conditions using the exact integrability of BCS model. Note that a self-consistency
condition for the order parameter provides a limitation on the set of functions for
which the corresponding problem is integrable and for some initial conditions
periodicin-time self-consistent dynamics, f(¢), can be realized. While in ourTLS

problem, there is no natural selfconsistency constraint, such insights and
constraints from the BCS problem help us narrow down the range of possible
ansatze to restore reasonable physical Hamiltonians, which are also exactly

80



solvable by construction. In what follows, we generalize the solution analysis of
the paper [16] and find a general soliton configuration, characterized by three
independent parameters, which we denote as A, and A, . For the physical problem
of interest, this conveniently implies that some, generally speaking, non-trivial
combination of these parameters will determine the arbitrary frequency, amplitude,
and the dc-component of the field. Due to the periodicity, we can generally
represent the AC-perturbation as a Fourier series

f(t):g+A/.ifn cos(nw,t) . (11)

Note that for certain specific choices of the parametersA the leading

+,a
coefficient f, f, (n=(2,3,...) and one recovers the limit of a monochromatic

AC-field, albeit in the regime of weak driving 4, f, max{A,&}. Therefore, our

non-linear analysis contains the standard linear response results as a simple special
case.

3. Non-dissipative dynamics of the ac-drived TLS

Further we provide the details on the derivation of the exact solution for the
TLS dynamics. We devote the special attention to the analysis of the U(1) phase
of the \wave function. We also elucidate the relations betwecn the parameters of
our solution and the amplitude, phase and the dc-component of the external field,
which may be useful for experimental applications of our theory.

We now focus on the Schrodinger equation for the half-integer spin in the
magnetic field, b(¢) =2(4,,0, £(¢)). When written in terms of spinor components,

it has the form
il/./+=A,V/7+f(t)V/+> (12)

v =My, - fy .
The corresponding Bloch equation is

m(1) = 2(A,.,0, £(1)x (1)) . 13)
Let us now make the following anzats for its exact solution [25]:
m =D-Cf*, m =B f,m =Af(t)+F. (14)

From two of the Eqs. (13) we find 4=2A,B and B=C. Thus among five
parameters in (14) only three are independent: P,B and D . The equation for the
external field, f(f), can be obtained from (14) using the condition m* =1/4 . This
resulting equation for the function f(#) acquires the form

f2=—f4—402f2+801f—4c3 (15)
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where coefficients ¢, are given by some combinations of parameters B, D

and F' (see Egs. (30) below). Equation (15) can be cast to a more symmetric form,
using another set of parameters A, and A, , which are chosen to be positive and

are related to coefficients ¢ ; as

cl = _&(Ai _A%): Cz = _l(Ai +A3 +2Ai)9
14 4 (16)
¢ =7 (AT~ AN (A} 24

Without loss of generality and to be more specific we also assume A, > A for the

remainder of this paper, while A, can be assigned an arbitrary value. By virtue of
expressions (16) equation (15) now reads

=4l -6 a2 [A - (f +A2], (17)
Below we will make several transformations that allow us to reduce (17) to an
equation for the Weierstrass elliptic function. Firstly, let us introduce a function,

»(@,

f=4, [i—l}—Aa, (18)
y(0)
which satisfies the following equation
dy\’ At
(_yj =4(y-a)y-a)y-1), x=—= (19)
dx Ja.a_

where a, =2A, /(A, +2A,£A ). Now, Eq. (19) can be easily reduced to a well-

known equation for the Weierstrass elliptic function by rescaling the parameters
via the transformation

a,+a +1

¥(x) = Z(x)+ (20)

so that
[d_Z} _4(Z-e)Z—e)Z-e), 1)
dx

where parameters e, satisfy the following conditions e >e, >e; and ¢ +e, +.
+e; =0. Coefficients e; are determined by the parameters A, and A,. The
specific expressions for the coefficients e, , however, depend on the relative values

of the initially introduced set of parameters. Solution of the equation (21) is
K(x")

>
Je —e

Z(x)=p(x+x"), o'= (22)
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where ((x) is a Weierstrass elliptic unction, K is a complete elliptic integral of

the first kind and «'=./(e, —e,)(e, —¢;) . Function Z(x) is a doubly-periodic

function with the period along the physical time axis determined by, / = 2w, where

®=~1-x" is a modulus of elliptic functions. Combining (22) with Egs. (20) and
(18) allows us to express f(¢) in terms of elliptic functions. Expression for f(¢)
can be compactly written in terms of Jacobi elliptic functions. Just as it is the case
for the parameters e;, the particular form of the resulting expression depends on
the relation between A, and A, .

All cases considered here are summarized by the following compact
expression for the function, f(#), \written in terms of Jacobi elliptic function as
following
n.sn’(z,x)—1

f@O=A (23)

a?®

" nosn*(z,x)+1

4K (1) A (7 +7.
T, = , A =— ———|. 26
ToJla 28 - Ng ey 2 { n +1 j (26)

Lastly, the average value of the function f(z) over its period is

where variable z is

_Am | o o A =
< f(t)>= ” {1 77+K(K)H( 77_,1()} A, =¢ 27

with K(x) and [I(77,x) being a complete elliptic integral of the first and third

kind correspondingly. As we have already mentioned, quantity (27) describes the
dc-component of the external field. One can view Egs. (26, 27) as the definition of
yet another set of parameters 4,, @, =27/T, and & =< f(¢) >, which allows us

to cast external field f(¢) into the form given by (11). The dependence of the

parameters of the external field, f(¢), on the ratio A /A, allows to determine the

limits of strong and weak ac-driving. In particular, we can see that the regime of
the strong ac-driving should be achieved for moderate values of A, and
A /A, 02.

Expressions (23,,24,25) constitute our main results. Quite generally, our solution
represemnts the superposition of monochromatic waves with frequencies integer
urultiples of @, =27 /T,, The solution (23) can be reduced to the monochromatic

wave with frequency 2A, when A, =0 and A A,.
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OIIEHKA MEXAHU3MA KOOPIUHAIIUN CUCTEMBbI
IINTAHUPOBAHUA

The assessment mechanism to coordinate the planning system. The possibility of
well-coordinated system with large external and internal factors.

IHocranoBka npodiembl. [Ipu paccMOTpeHHH MHOTOYPOBHEBBIX CHCTEM YacTO
MIPUXOJUTCS OTKA3bIBATHCS OT TPEOOBAHUS CTPOTOM TI00ATBFHONW ONTHMATBHOCTH
YOPaBISIIOIIMX BO3ACHCTBUM W JOKaIbHBIX pemieHud. [leno B ToM, uyTOo B
MPAKTHYECKUX CHUTYAIUSIX CTPOTHI ONTHMYM IO MHOTHM IPUYHHAM OKAa3bIBACTCS
Hepeann3yeMbIM. Yaire BCero 3To CBS3aHO C HEOCTATOYHOCTHIO MH(OpMAIH O
(akTopax, BIMSIONINX HA PE3yNbTAThl BHIOPAHHBIX PEHICHUN WM YIPABISIOMIAX
BO3/ecTBUN. B KilaccMuecKuX CUTyalusix YIpaBiICHUS W TPUHATHS pelIeHUN
HCIOJH30BaHNE AJNTOPUTMOB ONTHMH3AIMK OINPABABIBACTCA B TEPBYIO OUYEpEIb
TeM ¢akToM, YTO OHH Pa3pelIaloT HEKOTOpble MpoOJIeMbl, CBSI3aHHBIE C
UMEIONIUMHUCS B JaHHOW CHTyallid HeompeJelieHHOoCTIMHU. Fcmombs3ys Tak
Ha3bIBACMBIN AJTOPUTM ONTHUMHU3AIMHM, MOXHO BBIOpPAaTh IOCIICAOBATEILHOCTh
JNCHCTBUH, KOTOpas MPHBOAMT K HYXXHBIM pe3yibTaTaMm, eciu HH(opMarus u
TUIOTE3bl, HA KOTOPBIX OCHOBAaH aJTOPUTM, JOCTATOYHO TOYHBI. [Ipu moctaHOBKE
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