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COLLECTIVE EXCITATIONS IN CARBON NANOTUBES  
 

The effective action functional has been built by a functional integral method 
for nanotubes. The closed, self-consistent system of equations of the system is built on 
the basis of the variational differentiation the effective action on collective variables 
of an electron-phonon subsystem. A general expression for a polarization function and 
spectrum of the system are considered. 

  
1. Introduction 

The atomic and electron structure of carbon nanotubes can be represented as, 
a two-dimensional carbon hexagonal structure rolling along a given direction and 
reconnecting the carbon bonds. Systems of carbon atoms can exist in several 
modifications: laminated graphite with a hexagonal structure, nite carbon, crystal 
diamond, the fullerenes C60, C70, C78, C8, and carbon nanotubes—two-dimensional 
extended structures rolled up in a single- or multiwall tube [1,2]. Carbon nanotubes 
were synthesized simultaneously with fullerenes and are more interesting 
structures because they model a one-dimensional system. Soliton states are known 
to be formed in such systems.  

The property of nanotubes to absorb liquid metal, hydrogen, oxygen, 
methane, and other gases opens a prospect for constructing strong thin conducting 
lines of fuel elements and creating new types of fuel. The discovery of 
superconductivity in metal-doped C60 [3] feeds the hope to find the same 
phenomenon in nanotubes filled with metal or to modify the superconductivity of 
known superconductors by injecting them in a nanotube. 

Electron spectrum of such structure is characterized by quantum numbers 
including the number of radial ( )n , azimuthal ( m ) and longitudinal ( k ) modes 
[4,5]. Its physical properties are considerably related to collective electron-phonon 
excitations and oscillations of electron density (plasmons or plasma oscillations). 

The equations, describing such excitations, can be obtained on the basis the 
functional integral method with help of the variational derivatives of the expression 
for the effective action integral. We assume that a such approach allows most 
precisely to calculate polarizing function of the carbon nanotube in view of all 
features of its atomic  structure.   
 

2. The effective action function of the system 
   The researched system consists of ions with charge Ze  and degenerate 
electrons. Then the functional integral of the system in terms of spatial coordinates 
( , ,x y z ) and imaginary time (� ) can be represented as [4,5] 

        � �exp [ ]Z D D S� � ��� � ,                                     (1) 
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where the action [ ]S �  is determined by the expression 
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Here s  is an electron spin, ( , )s x r�  is the two-component wave function of the 
nanotube lattice ( ,a b ) 
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sublattice cite, ( ) 1/ | |V x y x y� � �  is the operator of the Coulomb interaction. 
Beside, ( , )K x r  is the operator of kinetic energy of the form 
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where /r r� � � � ,  /(2 )a m�  is the kinetic energy for the a th sublattice, a�  a 
chemical potential of the a th sublattice.  

The charge density ( , )x r
  is composed of ion ( ( , )q x r
 ) and electron 
( ( , )e x r
 ) parts and equals ( , ) ( , ) ( , )q ex r x r x r
 
 
� � , where 
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The summation on �  and �  is carried out over all lattice sites  a  and b .   
 In the representation of the functional integral (1) can be rewritten as 

        � �[ , ] exp [ , ]Z D D D S�  � �  �  �� � � ,                 (3) 
where the action function [ , ]S �  , which contains an electron influence, the field 
  and its interaction, has the form   
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Integrating in (3) on Fermi fields [4] and using the known Liouville formulae, 
� � � �lg det ' Sp (ln ) 'A A� , where A  is matrix, a prime denotes a first derivative, we 

can transform (3) to the form � �exp [ ]effZ D S  � � . Here the effective action 
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allows to describe the system in collective variables.   
 The matrix Green function, ,|| ||G G� 	�  of the system is determined by the 
equation  

   '( , ) ( , ; , ) ( ) ( )x y x yK x G x y x y� � � � � � �� � �                   (5) 
At presence only the effective field, effV , of single-electron model potential of 
carbon nanotube (see [Ah]) the Green function, 0 0,|| ||G G �	 , is determined by the 
equation 

'
0 0( , ) ( , ; , ) ( ) ( )x y x yK x G x y x y� � � � � � �� � � , 

where  0 ( , ) '( , ) |
effx x iVK x K x  � � �� .   

 Using the representation 0 1'( , ) ( , ) ( , )x x xK x K x K x� � �� � , where  the function 

0 ( , ) ( ( , ) ( )) || c ||, c 1, ( , 1,2)x x eff ik ikK x ie x eV x i k�  �� � � � �  (5) can be rewritten in 
the form 
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The obtained expressions for the effective action function together with the 
equation (6) for the Green function permit build the equations determining the field 

( , )xx � .   

3. The equations for field functions 
The equations describing states of the system are obtained by equating to zero 

the variational derivation of the effective action function (4) with respect to 
generalized coordinates ( , )xx � , lq

�
, lp

�
that give the system 
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These three equality result in the system of the three equations 
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From the first equation of the system (7) follows that the field function 

� �1 2

0

( , ) ( ) ( , ) 4 ( )

( , ; , ) ( , ; , ) ,lim
y x

q

x y x y
y k

z ie dxV z x x ie dxV z x

G x y G x y
� �

 � 
 �

� � � �
!
! �

� � � � *

* �

� �
                (8) 

means the electrical field of the electrical potential of ions and electrons. This 
quantity completely determines the interaction in the system and its collective 
excitations. Taking into account that ( ) 4 ( )V x y x y+�� � � � � , the equation (8) can 
be transformed to the form 
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that together with the equation (6) consists the closed system.  For solving this 

system we introduce the new notations the 1 2G G G� �  and 0 01 02G G G� � . Then 
taking into account that for statical ions  
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which describes plasma oscillations.  



52 

The second and third equations of the system (7) determine motion of carbon 
ions. The obtained self-consistent close system of equations describes the electron 
and vibrational subsystems via collective variations.   

For calculation the electron density fluctuation induced by plasma vibration 
relative to the stationary ion lattice we will enter into (8) the polarization operator 

1 1( , ; , )P x z� �  which is determined by equality 
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Then the field function can represent in terms of the effective potential effV  and 
polarization operator P  in the form 
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 The Green function obeys the matrix equation 
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whence applying the relation  0V G PG�  we can obtain the equation     

                            2
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determining in the linear approximation the polarization P . The poles of the 
Fourier transform of the polarization function P determine plasma oscillations of 
the density relative to a ground stationary state.      
 Applying the Fourier transform to (10) we can obtain in the approximation of 
the second order in V  the expression  
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where q  and -  are coordinate and frequency components of the Fourier 
transform; Energy levels of stationary states of the electron subsystem are denoted 
as nmkE  (see [1]). The spectrum and intensity of the collective excitations are 
described  by the diagonal part of ( , ; ', ')P q q- - . 
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There has been defined the set of strictly rational strategies and the set of 
nonstrictly rational strategies of a player in the antagonistic game. On the example it 
has been shown what advantage a player obtains if it applies the set of strictly rational 
strategies by the other player swerve from the set of its optimal strategies. 
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