УДК 611. 013. 7/8 + 611 - 018 + 611.24 + 611.611

© Н. И. Майструк, Е. Ю. Шаповалова, 2009.

ОРГАННЫЕ ОСОБЕННОСТИ ПРОЦЕССОВ ПРОЛИФЕРАЦИИ И АПОПТОЗА КЛЕТОК ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ У ЗАРОДЫШЕЙ ЧЕЛОВЕКА ПРИ МАТОЧНОЙ ИМПЛАНТАЦИИ

Н. И. Майструк, Е. Ю. Шаповалова

Крымский государственный медицинский университет им. С.И. Георгиевского, кафедра гистологии, цитологии и эмбриологии (зав. – профессор Е.Ю. Шаповалова) г. Симферополь, А.Р. Крым, Украина.

ORGANIC PECULARITIES OF PROLIFERATION AND APOPTOSIS OF HUMAN EMBRYOS PANCREAS CELLS DURING UTERUS IMPLANTATION

N. I. Maystruk, Ye. Yu. Shapovalova

SUMMARY

In 48 human embryos in the age from 21 day to 12 weeks of the intrauterus development, which includes stage X - XXIII and beginning of the fetal period by classification of Carnegie institute, index of proliferation (Ki-67-positive cells), index of apoptosis (p53- positive cells), index of readiness to the apoptosis (CD95- positive cells) and antiapoptosis index (Bcl-2-positive cells) of cells of branched pancreas ducts, acini and mesenchyme have been revealed. The ratio of studied cells is correlated with the age of the embryos.

ОРГАНІ ОСОБЛИВОСТІ ПРОЦЕСУ ПРОЛІФЕРАЦІЇ ТА АПОПТОЗУ КЛИТИН ПІДШЛУНКОВОЇ ЗАЛОЗИ У ЕМБРІОНІВ ЛЮДИНИ ПРИ МАТКОВОЇ ІМПЛАНТАЦІЇ

Ì. 2. Ìàéñòðóê, Î. Þ. Øàïîâàëîâà

РЕЗЮМЕ

У 48 ембріонів людини, розташованих за віковою шкалою від 21 дня до 12 тижнів внутрішньоутробного розвитку, яка включає X-XXIII стадію і початок плодового періоду (за класифікацією інституту Карнегі) імуногістохимічно вивчений індекс проліферації (Кі-67-позитивні клитини), апоптозу (р53-позитивні клитини), індекс готовності до апоптозу (СD95-позитивні клитини) і антиапоптотичний індекс (ВсІ-2-позитивні клитини) клитин у процесі закладки та розвитку чотирьох розгалужень вивідних протоків та ацінусів підшлункової залози. Отримані різні показники цих індексів у залежності від віку ембріонів людини.

Ключевые слова: эмбриональный гистогенез человека, поджелудочная железа, апоптоз, пролиферация.

Программированная смерть клеток была названа апоптозом Kerr (1972) [1]. Апоптоз является морфологическим проявлением реализации внутриклеточной программы самоуничтожения клетки и отличается от других известных форм гибели клетки высокой организацией и четкостью молекулярного каскада реакций [2]. Это общая черта развития большинства тканей и органов человека и млекопитающих. Апоптоз происходит при нормальном пренатальном развитии и важен для поддержания оптимального баланса между старыми нефункционирующими клетками и вновь образованными в результате пролиферации [7]. Гомеостаз и развитие большинства органов у позвоночных регулируется пролиферацией, дифференцировкой и смертью клеток [6]. Сведения об особенностях этих процессов в раннем развитии поджелудочной железы у человека в работах отечественных и зарубежных ученых отсутствуют.

Целью и задачей нашего исследования явилось изучение индекса пролиферации, индекса готовности к апоптозу, индекса апоптоза и антиапоптотического индекса клеток поджелудочной железы в процессе ее раннего развития у зародышей человека, развивавшихся в матке при отсутствии явно выраженных повреждающих факторов внешней и внутренней среды.

МАТЕРИАЛ И МЕТОДЫ

Изучены 48 зародышей человека в возрасте от 21 суток до 12 недель внутриутробного развития на стадиях последовательно от раннего периода нервного желобка до начала дефинитивного плодного периода. Эмбрионы и плоды быстро фиксировали 10% забуференным нейтральным формалином сразу же после операции abrasio. Материал заливали в парафин и из них изготовляли серийные срезы толщиной 5-6 мкм.

2009, том 12, № 4 (48)

Пролиферативную активность клеток изучали с помощью моноклональных антител Ki-67 (MIB-1), которые идентифицируют ядерный антиген, присутствующий у большинства пролиферативных Ki-67, клеток. Антиген определяемый соответствующими моноклональными антителами, короткоживущий протеин, разрушающийся на протяжении 1-1,5 часа. Благодаря этому Кі-67 выявляется только в клетках, которые делятся, т.к. не успевает накапливаться и не остается в спокойных клетках [3]. Для оценки готовности клеток поджелудочной железы к рецепторному апоптозу и вычисления индекса готовности к апоптозу использовали моноклональные антитела к Fasрецепторам (CD 95 / Apo 1). Центральную роль в развитии апоптоза играет так называемый «дикий» («wild") тип гена – онкосупрессора wt p53 и кодируемый им протеин р53 [4]. В исследовании он используется для определения числа клеток, находящихся в стадии апоптоза. Белки типа Bcl (B-cell lymphoma) регулируют апоптоз на докаспазной стадии путем инактивирования прокаспаз. Антиапоптотический белок Bcl-2 пролонгирует жизнь клетки, блокируя апоптоз.

Иммуногистохимические реакции проводили в парафиновых срезах поджелудочной железы с использованием соответствующих первичных антител Ki-67, CD 95 / Apo 1, Bcl-2 и p53 (DAKO) и системы визуализации En vision (DAKO). Ядра докрашивали гематоксилином. Тепловое демаскирование антигенов проводили в микроволновой печи Samsung M 1915 NR при фиксированной мощности 800 Вт в течение 2 минут. Индекс пролиферации, готовности к апоптозу, индекс апоптоза, антиапоптотический индекс определяли путем подсчета количества Ki-67, CD 95 / Apo 1, p53 и Bcl-2-позитивных клеток на 100 клеток поджелудочной железы при увеличении х1350 с последующим вычислением показателя в процентах в среднем по результатам всех изученных зародышей каждого возраста.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

У зародышей 38 суток (10 мм длины) присутствуют дорзальный и вентральный зачатки поджелудочной железы. Дорзальная закладка железы представляет собой эпителиальную трубку, лежащую в брыжейке желудка. Она выстлана изнутри многорядным призматическим эпителием со слабо оксифильной цитоплазмой и овальными крупными ядрами, перпендикулярными к основанию. Индекс пролиферации и апоптоза клеток главного выводного протока дорзальной закладки невысоки и находятся примерно на одном уровне (29,7±0,35 и 20,4±0,22). Антиапоптотический индекс тех же клеток существенно выше и составляет 30,1±0,31. CD95-позитивные клетки составляют 10,6±0,11. Базальная мембрана выражена слабо. Дистальный отдел

дорзальной закладки многократно ветвиться, образуя первичные эпителиальные трубки, покрытые многорядным призматическим эпителием. Индекс пролиферации, апоптоза, готовности к апоптозу и антиапоптотический индекс клеток ветвлений протоков первого порядка составляет 34,4±0,27; $18,6\pm0,28;9,1\pm0,13$ и $39,9\pm0,25$ соответственно. По ходу вторичных ветвей в различных направлениях наблюдается образование новых эпителиальных почек, представляющих собой закладки протоков 2го порядка. В некоторых из них имеются небольшие просветы, выстланные двурядным кубическим эпителием. Индекс пролиферации, апоптоза, готовности к апоптозу и антиапоптотический индекс клеток ветвлений протоков второго порядка составляет $39,1\pm0,43;16,8\pm0,12;8,3\pm0,09$ и $45,2\pm0,38$ соответственно. Высокие показатели индекса пролиферации и антиапоптотического индекса свидетельствует об активном размножении клеток и последующей их дифференцировке [5]. Программа программированной клеточной гибели в эпителии протоков второго порядка разворачивается в небольшом числе клеток. Ближе к концевому отделу дорзальная закладка постепенно суживается. Количество ответвлений 1-го порядка уменьшается вначале до 3-4, затем до 2-х и, наконец, до одного. Вентральная закладка значительно меньших размеров. Она, также как дорзальная, ветвится и имеет протоки 1-го и 2-го порядков.

У зародышей этого возраста обе закладки поджелудочной железы располагаются в уплотняющейся дифференцирующейся мезенхиме брыжейки, ядра клеток которой принимают вытянутую форму и приобретают циркулярное направление. Индекс пролиферации, апоптоза, готовности к апоптозу и антиапоптотический индекс клеток мезенхимы вокруг главного выводного протока дорзальной закладки составляет 25,7±0,24; 16,3±0,16; 7,7±0,14 и 27,4±0,31 соответственно.

У зародышей в возрасте 45 суток (16 мм длины) окончательно завершается слияние вентрального и дорзального зачатков железы. На левой полуокружности двенадцатиперстной кишки открываются два протока поджелудочной железы: спереди - главный выводной проток дорзальной закладки, а кзади от него – главный выводной проток вентральной закладки. Оба протока выстланы многорядным призматическим эпителием с оксифильной цитоплазмой и светлыми овальными ядрами, образующими 2-3 ряда. Индекс пролиферации и апоптоза этих клеток самый невысокий по сравнению с эпителиоцитами других выводных протоков железы зародышей этого возраста и составляет 22,6±0,21 и 21,4±0,18. От главных выводных протоков закладок отходят в различных направлениях многочисленные ответвления протоков 1-го и 2-го порядков. По направлению к хвостовому отделу железы количество вторичных ответвлений главного протока дорзальной закладки постепенно уменьшается до 5-3-х и, наконец, до одного. Стенка протоков 1-го и 2-го порядков выстлана двух-трёхрядным призматическим эпителием. Его клетки оксифильны. Индекс пролиферации, апоптоза, готовности к апоптозу и антиапоптотический индекс эпителиоцитов выводных протоков 1-го и 2-го порядков составляет 32,0+0,45; $19,1\pm0,35$; $10,3\pm0,24$ и $39,3\pm0,24$ соответственно. Обнаруживаются третичные ответвления выводных протоков в виде эпителиальных почек, отходящих от вторичных ответвлений и внедряющихся в окружающую мезенхиму брыжеек. Они представлены тяжами эпителиальных клеток без просвета, имеющих высокий индекс пролиферации (38,9+0,33) и антиапоптотический индекс (46,1+0,29). Клетки этих закладок слабо подвержены апоптозу: индекс апоптоза $-15,7\pm0,31$ и индекс готовности к апоптозу – 8,9±0,22. Характерной особенностью развития поджелудочной железы у зародышей в возрасте 60 суток (30 мм длины) является усиление формообразовательных процессов. Ростковые концы эпителиальных трубок удлиняются, образуя новые железистые трубки. Так появляются внутридольковые протоки 4-го порядка. Они представляют собой эпителиальные почки, которыми слепо заканчиваются многочисленные выводные протоки 3-го порядка. Они образованы призматическими клетками со слабо базофильной цитоплазмой и крупными ядрами, располагающимися у базальной мембраны. Очень высокий антиапоптотический индекс (46,7+0,24) и высокий индекс пролиферации (38,5+0,39)

свойственны этим клеткам, что свидетельствует об активных процессах формообразования и дифференцировки. Клетки этих закладок слабо подвержены апоптозу: индекс апоптоза — $15,9\pm0,18$ и индекс готовности к апоптозу — $8,5\pm0,11$. Эпителиальная выстилка первичных, вторичных и третичных ответвлений главного выводного протока железы представлена двухрядным призматическим эпителием. Клетки базального ряда оксифильны, тесно прилежат друг к другу. Индекс пролиферации, апоптоза, готовности к апоптозу и антиапоптотический индекс эпителиоцитов выводных протоков 1-го — 3-го порядков составляет $24,6\pm0,24;\ 22,7\pm0,36$ (рис. 1); $12,5\pm0,20$ и $33,8\pm0,21$ соответственно.

Главный выводной проток поджелудочной железы образовался при слиянии закладок органа. Проксимальный отдел его располагается в заднем сегменте головки железы. Он развился из вентральной закладки. Из дорзальной закладки развился дистальный отдел главного протока, лежащий в теле и хвосте железы. Эпителий главного выводного протока высокий призматический с двух-, иногда трехрядным расположением ядер.

Все изученные индексы здесь самые низкие, что, возможно, связано с ослаблением процессов формообразования и дифференцировки. Индекс пролиферации, апоптоза, готовности к апоптозу и антиапоптотический индекс эпителиоцитов главного выводного протока составляет 19.5 ± 0.31 ; 18.6 ± 0.17 ; 10.2 ± 0.15 и 20.1 ± 0.24 соответственно.

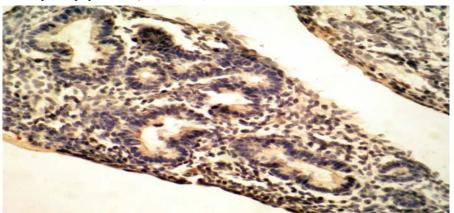


Рис. 1. Плодный период. Зародыш в возрасте 60 суток (30 мм длины). Клетки в состоянии апоптоза в эпителии вторичных и третичных выводных протоков и окружающей мезенхиме поджелудочной железы. Окраска p-53 с докраской ядер гематоксилином. Визуализация в системе En vision .

Увеличение: об. 40, ок. 10.

При изучении гистологических препаратов зародышей 9-10 недель (33-45 мм длины) впервые отмечается начало формирования концевых секреторных отделов поджелудочной железы. На дистальных концах протоков 4-го порядка выявляются эпителиальные почки, которые имеют грушевидную форму и представляют собой зачатки ацинусов. Эти зачатки состоят из плотно лежащих кубических клеток

со слабо базофильной цитоплазмой. Очень высокий антиапоптотический индекс $(46,2\pm0,29)$ и высокий индекс пролиферации $(37,9\pm0,34)$ насчитывается среди этих клеток, что свидетельствует об активных процессах формообразования и дифференцировки. Клетки этих закладок слабо подвержены апоптозу: индекс апоптоза $-16,7\pm0,22$ и индекс готовности к апоптозу $-10,2\pm0,14$. В расположении эпителиальных

2009, том 12, № 4 (48)

структур железы ясно видна дольчатость. Внутридольковые выводные протоки 2-го, 3-го и 4-го порядков и междольковые выводные протоки, являющиеся первичными ответвлениями главного выводного протока присутствуют в поджелудочной железе. Главный выводной проток железы на всем протяжении внутрижелезистой части, расположен-

ной в заднем сегменте головки и в области тела, имеет единый канал.

Он выстлан изнутри двухрядным призматическим эпителием, который в области головки становится однорядным призматическим. Среди эпителиоцитов продол-жается снижение всех изученных индексов (рис. 2).

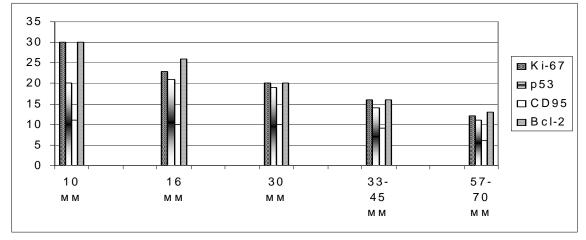


Рис. 2. Индекс пролиферации (Ki-67-позитивные клетки), апоптоза (p53-позитивные клетки), индекс готовности к апоптозу (CD95-позитивные клетки) и антиапоптотический индекс (Bcl-2-позитивные клетки) эпителиоцитов главного выводного протока поджелудочной железы.

Вокруг новообразованных на концах протоков 4го порядка ацинусов происходит ускоренное, по сравнению с другими участками, развитие эмбриональной соединительной ткани. Самый высокий клеток среди эмбриональной соединительной ткани поджелудочной железы антиапоптотический индекс (33,9±0,25) и индекс пролиферации (33,4±0,22) свойственны этим клеткам, что свидетельствует об активных процессах формообразования и дифференцировки. Клетки этих закладок слабо подвержены апоптозу: индекс апоптоза – $11,5\pm0,12$ и индекс готовности к апоптозу $-7,8\pm0,12.$

выводы

- 1. В эпителии главного выводного протока поджелудочной железы по мере взросления зародышей индекс пролиферации и антиапоптотический индекс постепенно снижаются, но остаются заметно выше, чем индекс апоптоза и готовности к апоптозу.
- 2. В эпителии вновь появившихся закладок выводных протоков и ацинусов и мезенхиме вокруг них присутствует высокий индекс пролиферации и антиапоптотический индекс составляющих их клеток. Индекс апоптоза и готовности к апоптозу низкие.
- 3. В эпителии главного выводного протока поджелудочной железы насчитываются самые низкие показатели изученных индексов, по сравнению с эпителием других имеющихся выводных протоков.
- 4. В эпителии сформировавшихся протоков, по сравнению с эпителием вновь появившихся протоков

индекс пролиферации и апоптоза его клеток примерно одинаковы.

ЛИТЕРАТУРА

- 1. Милованов А. П. Внутриутробное развитие человека / А. П. Милованов, С. В. Савельева. Москва, 2006. 382 с.
- 2. Цымбалюк В. И. Нейрогенные стволовые клетки / В. И. Цымбалюк, В. В. Медведев. К.: «Коваль», 2005. 596 с.
- 3. Cell proliferation in the growing human heart: MIB-1 immunostaining in preterm and term infants at autopsy/ V. Huttenbach, M. L. Ostrowski, D. Thaller, H. S. Kim// Cardiovask. Pathol. 2001. Vol. 10, N 3. P. 119-123.
- 4. Fesus L. P. Apoptosis; Molecular mechanisms in programmed cell death / L. P. Fesus, J. A. Davis, M. Piacentini // Europ. J. Cell Biol. 1991. Vol. 747. P. 195-204.
- 5. LeBrun D. P. Expression of Bcl-2 in fetal tissues suggests a role in morphogenesis / D. P. LeBrun, R. A. Warnke, M. L. Cleary // Am OJ Pathol. 1993. Vol. 142, N 3. P. 743-753.
- $6.\,Prochazkova\,J.$ Involvement of p53 and Bcl-2 family proteins in regulating programmed cell death and proliferation in human embryogenesis / J. Prochazkova, V. Lichnovsky, D. Kylarova // Gen Physiol Biophys 2004. Vol. 23, N 2. P. 209-229.
- 7. Zusman I. Immune systems and human intrauterine development/Itzhak Zusman, Pavel Gurevich, Herzel Ben-Hur. Transworld Research Network: Kerala, India, 2008. 239 p.