УДК 621.762.5:661.657.5

Т. А. Гарбуз, канд. техн. наук; **Н. П. Беженар,** д-р техн. наук; **С. А. Божко,** канд. техн. наук; **М. Г. Лошак,** д-р техн. наук; **Л. И. Александрова,** канд. техн. наук

Институт сверхтвердых материалов им. В.Н. Бакуля НАН Украины, г.Киев

КОМПОЗИТЫ сВN, УПРОЧНЕННЫЕ ВЫСОКОМОДУЛЬНЫМИ БОРИДАМИ

Calculated estimations of coefficient of elasticity of composites cBN-Al-TiB2 binding depending on content TiB2 in an initial charge are executed. Influence of this factor on a deformation strengthening of cBN and composites hardness is shown.

Введение

Требования к свойствам композитов cBN, используемых для производства режущих пластин (PCBN), определяются их применением для лезвийной обработки разных материалов при различных режимах резания (ISO 513:2001). На черновых операциях при точении с ударом это высокая трещиностойкость, предотвращающая скол лезвия. На финишных операциях главной становится защита от прогрессирующего износа, что достигается оптимизацией физикомеханических свойств PCBN, обычно увеличением твердости и снижением трещиностойкости.

Состав и физико-механические характеристики PCBN одной из ведущих фирм мира «Element Six» приведены в табл. 1 [1]. Как и подобные материалы других известных фирм, они содержат тугоплавкие соединения, среди которых TiC, TiN, TiCN. Сведения об использовании боридов титана в инструментальных материалах отсутствуют.

Таблица 1. Состав и свойства PCBN фирмы «Element Six» и композитов cBN, упрочненных диборидами титана и циркония

Разра-	Марка PCBN	cBN,	Другие фазы в	HV,	HKN,	$K_{\mathrm{I}c},$
ботчик	(шихта)	об. %	составе РСВМ	ГПа	ГПа	МПа∙м ^{1/2}
Фирма	DBA80	80	TiC, AlN, AlB ₂	30	—	5,9
«Element	DBC50	50	TiC	27,5	_	3,7
Six»	DCN450	45	TiN	24,2	-	4,15
ИСМ им.	Киборит-2 (cBN-	82	AlN, AlB ₂ или	30	28	10,2
В.Н. Ба-	Al)		(Al_xB_yN)			
куля	cBN-Al-TiB ₂	78	Al_yB_zN , $Ti_xAl_{1-x}B_2$	35	33	6,5
HAHY cBN-Al-ZrN 7		78	AlN, ZrN,	28	24	6,9
			$Zr_xAl_{1-x}B_2$			

Результаты экспериментов и их обсуждение

В Институте сверхтвердых материалов им. В. Н. Бакуля НАН Украины разработаны опытные образцы композитов, упрочненных диборидами титана и циркония (см. табл.1). За основу был взят известный композит системы cBN–Al киборит-2. Идея состояла в том, чтобы сохранить в его структуре непрерывный каркас cBN и изменить фазовый состав и структуру связки в направлении повышения ее модуля упругости, предела текучести, твердости. Выбор высокомодульных диборидов титана и циркония определялся не только их физикомеханическими свойствами, но и изоструктурностью относительно диборида алюминия, входящего в состав связки киборита-2. Композиты получали реакционным спеканием при высоком давлении. При этом TiB₂ вводили в состав исходной шихты cBN–Al, a ZrB₂ кристаллизовался из расплава как продукт реакции в шихте cBN–Al–ZrN (табл. 2).

Тип шихты	Реакции	Композит
cBN–Al	$Al + \frac{2}{3}BN \rightarrow \frac{2}{3}AlN + \frac{1}{3}AlB_2$ или $Al + BN + Al_xB_yN$	Киборит-2
cBN-Al-TiB ₂	$Al + \frac{2}{3}BN + \frac{x}{3(1-x)}TiB_2 \rightarrow \frac{2}{3}AlN + \frac{1}{3(1-x)}Ti_xAl_{1-x}B_2$	Новый
cBN–Al–ZrN	$Al + \frac{2}{3}BN + \frac{1}{3}ZrN \rightarrow \frac{2}{3}AlN + Zr_xAl_{1-x}B_2$	Новый

Таблица 2. Реакции при спекании киборита-2 и композитов, упрочненных тугоплавкими боридами

Уточнение кристаллической структуры диборидов в композитах показало, что каждый из них представляет собой твердый раствор с AlB₂. Нитрид алюминия в композитах представляет собой твердый раствор бора на базе решетки AlN-вюрцит.

В зависимости от *p*,*T*-параметров спекания и содержания в шихте алюминия и тугоплавких соединений последние полностью принимали участие во взаимодействии или оставалась некоторая их часть, представленная в структуре локальными поликристаллическими участками TiB₂ и ZrN. Это стало проблемой на пути достижения высокой твердости композитов, и в первую очередь из шихты cBN–Al–ZrN. Оптимальное соотношение твердости и трещиностойкости получили в композитах из шихты cBN, 10 масс. % Al, (5–10 масс. %) TiB₂. Физико-механические свойства такого композита свидетельствуют о его конкурентоспособности относительно близкого по составу DBA80 (см. табл. 1).

Сравнение физико-механических свойств киборита-2 и нового композита cBN–Al–TiB₂ указывает на упрочнение диборидом титана, которое достигается не только аддитивным влиянием высокомодульной связки на модуль упругости композита, но и ее влиянием на деформационное упрочнение cBN, что подтверждается исследованием его реальной кристаллической структуры методами рентгеновской дифракции (табл. 3) и электронной микроскопии (рис. 1).

Таблица 3. Р	Размер ОКР	cBN (L) и плотность	дислокаций ($\rho_L = 3$,	/L ²) в композитах в за	.ви-
симости от	содержания	ТіВ ₂ в шихте сВN-Ті	B ₂ –10 % Al и <i>р,Т-</i> па	раметров спекания	

		4		<u> </u>		
% TiB ₂	<i>p</i> , <i>T</i>	<i>L</i> , нм	ρ, 10 ¹¹ см ⁻²	<i>p</i> , <i>T</i>	<i>L</i> , нм	ρ, 10 ¹¹ см ⁻²
0	4,2 ГПа,	25,7	4,5	7,7 ГПа,	24,0	5,2
5	1750 K	22,7	5,8	2300 К	22,0	6,2
10		_			19,6	7,8
15		21,4	6,6		20,6	7,1

Рис. 1. Деформированное зерно cBN с пересекающимися двойниками в композите cBN-Al (a) и со сложными дислокационными построениями в композите cBN-Al-TiB₂ (б)

Повышение температуры спекания и увеличение содержания TiB₂ в шихте аддитивно влияли на уменьшение размера OKP cBN, являющегося критерием деформационного упрочнения [2]. С увеличением доли титана в твердом растворе $Ti_xAl_{1-x}B_2$ и общей доли TiB₂ в связке релаксация касательных напряжений на межфазных границах cBN-связка затрудняется. Соответственно повышаются напряжения на межзеренных границах cBN-cBN, что инициирует размножение дислокаций с переходом от легкого скольжения (рис. 1*a*) к образованию сложных дислокационных построений (рис. 1*б*).

Результат деформационного упрочнения – изменение твердости композита с изменением содержания в шихте TiB₂ – показан на рис. 2.

Рис. 2. Зависимость твердости композита, полученного из шихты сBN–10 % *Al*–*TiB*₂, от содержания в шихте *TiB*₂

Расчетные оценки модуля упругости связки и композитов cBN-Al-TiB₂. Результаты исследования композитов системы cBN-Al-TiB₂ методами электронной микроскопии показали, что распределение в структуре связки продуктов реакции AlN и Ti_xAl_{1-x}B₂ можно считать статистически однородным. Анализ различных подходов к расчету эффективных модулей упругости двухфазных структур при стохастическом распределении фаз приведен в [3]. Один из подходов состоит в том, что оценки упругих постоянных композитов исходят из предположений о постоянстве деформаций в структуре композита или о постоянстве напряжений. Это методы Фойгта и Рейсса соответственно. Первый метод дает верхнюю границу значений, второй – нижнюю.

Если в композите отсутствуют несплошности типа пор, расслоения, трещин, то прогнозированные значения модуля сдвига μ* и объемного модуля сжатия *К** для вилки Фойгта – Рейса рассчитываются из соотношений

$$K_{2} + \left[C_{1} / \left(\frac{1}{K_{1} - K_{2}} + \frac{3(1 - C_{1})}{3K_{2} + 4\mu_{2}}\right)\right] \le K^{*} \le K_{1} + \left[(1 - C_{1}) / \left(\frac{1}{K_{2} - K_{1}} + \frac{3C_{1}}{3K_{1} + 4\mu_{1}}\right)\right];$$
(1)

$$\mu_{2} + \left[C_{1} / \left(\frac{1}{\mu_{1} - \mu_{2}} + \frac{6(K_{2} + 2\mu_{2})(1 - C_{1})}{5\mu_{2}(3K_{2} + 4\mu_{2})}\right)\right] \le \mu^{*} \le \mu_{1} + \left[(1 - C_{1}) / \left(\frac{1}{\mu_{2} - \mu_{1}} + \frac{6(K_{1} + 2\mu_{1})C_{1}}{5\mu_{1}(3K_{1} + 4\mu_{1})}\right)\right], \quad (2)$$

где C_1, C_2 — объемные концентрации фаз в двухфазном композите, $C_2 = 1 - C_1$.

По полученным результатам (1) и (2) рассчитывают модуль упругости двухфазного композита:

$$E^* = \frac{9K^*\mu^*}{3K^* + \mu^*} \tag{3}$$

Если соотношение значений модуля упругости фаз в двухфазном композите невелико $(E_1/E_2 < 3)$, разница между полученными границами мала. Данные для расчета приведены в табл. 4. Как видим из данных, такое соотношение выполняется между любыми двумя значениями модуля упругости тугоплавких соединений, составляющих связку: $E_{AIN}/E_{AIB2} = 1,6$; $E_{TiB2}/E_{AIB2} = 2,5$; $E_{TiB2}/E_{AIN} = 1,5$. Отметим, что при постоянном содержании Al в шихте (10 %) модуль упругости композита будет зависеть от концентрации cBN и TiB₂; при этом $E_{cBN}/E_{TiB2} = 1,7$.

windu i. e npjine noerominise i ji onituskita ebedintenni									
Фаза	Е, ГПа	К, ГПа	μ, ГПа	υ	Литературныйи- сточник				
cBN	909	400	405	0,121	[4]				
TiB ₂	540	415	225	0,29	[5]				
AlN	350	243	139	0,26	[5]				
AlB ₂	215	170	83	0,29	[6]				

Таблица 4. Упругие постоянные тугоплавких соединений

Второй подход состоит в расчете упругих постоянных композитов по правилу смеси. При этом используют аддитивные среднеарифметические (E_a) или среднегеометрические (E_g) значения.

$$E_a^* = \sum_i C_i E_i \tag{4}$$

$$E_g^* = \prod_i E_i^{C_i} \tag{5}$$

Пример расчета по формулам (1–5) показывает, что среднее геометрическое находится в пределах вилки Фойгта–Рейсса, т. е. для изучаемых композитов значения E_g^* более корректны, чем E_a^* (рис. 3).

Рис.3. Зависимости расчетных значений модуля упругости композита cBN-Al-TiB₂ в от объемной концентрации связки (TiB₂+AlB₂+AlN)

Объемное соотношение фаз в связке композита cBN–Al постоянно при любом содержании Al в шихте и составляет AlN/AlB₂ = 0,61/0,39, расчетный модуль упругости связки E^*_{cB1} = 290 ГПа; E_{cBN}/E_{cB1} = 3,13. Расчетное значение модуля упругости композита cBN–10 % Al составило E^* = 716–756 ГПа (табл. 5). Полученное расчетное значение совпадает со значением E = 737±22 ГПа, экспериментально полученным методом динамического резонанса для коммерческой продукции BZN6000, содержащей те же 90% cBN и Co [7].

Та	Габлица 5. Расчетные значения эффективного модуля упругости E* (ГПа) для компози-										
то	гов, полученных из шихты cBN–TiB2–10% Al										
	Содержание	Ti R .	Ο	5	10	15	20	25	l l		

Содержание	TiB ₂	0	5	10	15	20	25
в шихте (масс.%)	cBN	90	85	80	75	70	65
Содержание в ком- позите (об. %) cBN		81,76	77,71	73,56	69,33	65,00	60,58
		Связі	ка (TiB ₂ –А	AB_2-AIN			
E_{\min}	*	289	321	347	366	382	394
E _{max} *		291	324	351	371	388	400
E_{g}^{*}		291	323	350	370	387	399
Композит cBN-(TiB ₂ -AlB ₂ -AlN), ГПа							
E_{\min}^*		716	705	694	680	666	651
E _{max} *		756	739	723	707	690	674
E _g *		737	721	705	689	672	657
PCBN фирмы "General Electric"							
BZN6000 (exp) [7]	737±22	_	-	_	_	—
BZN7000 (exp) [7]	_	_	709±8	_	_	_
BZN8100 (exp) [7]	_	_	_	_	_	648±11

Корреляция между расчетными значениями модуля упругости связки и деформационным упрочнением сВN показана на рис. 4.

Рис. 4. Расчетные значения модуля упругости связки и композита (a), параметры реальной структуры сBN: размер ОКР (б) и плотность дислокаций (в)

В шихте cBN–TiB₂–10 % Al с увеличением содержания TiB₂ уменьшается содержание cBN, поэтому твердость композита должна снижаться. Однако при небольшом содержании диборида (5–10 %), более существенным оказывается фактор деформационного упрочнения cBN, которое находится в прямой корреляции с модулем упругости связки. Такая корреляция поясняется ростом касательных напряжений на межфазных границах cBN-связка при увеличении модуля упругости связки. Это приводит к зависимости с максимумом твердости при 10 % TiB₂ в шихте (см. рис. 2).

Выводы

Результаты расчетных оценок упругих постоянных композита системы cBN–Al–TiB₂ и связки в этом композите (AlN, TiB₂, AlB₂) показали, что с увеличением содержания TiB₂ в шихте модуль упругости композита снижается, а модуль связки – повышается. Увеличение модуля упругости связки инициирует деформационное упрочнение cBN. Влияние этого фактора оказывается более значимым, чем снижение содержания cBN, только при небольших добавках TiB₂ (до 10 %), поэтому здесь твердость композита принимает максимальное значение (см. рис. 2).

Литература

- 1. Spriggs G. E. Hard materials// Powder Metallurgy Data. Refractory, Hard and Intermet. Mater. Berlin: Springer-Verlag, 2002. P. 28–220.
- 2. Перестройка деформационной субструктуры поликристаллов при спекании в условиях высоких давлений микронных и субмикронных порошков КНБ / Н. П. Беженар, А. А. Шульженко, С. А. Божко и др.. // Сверхтвердые матер. 2002. № 4. С. 24–34.
- 3. Новиков Н. В., Майстренко А. Л., Кулаковский В. Н. Сопротивление разрушению сверхтвердых композиционных материалов. К.: Наук. думка, 1993. 224 с.
- D'Evelyn Mark P., Zgonc Kornelija. Elastic properties of polykrystalline cubic boron nitride and diamond by dynamic resonance measurements // Diamond Relat. Mater.–1997. – № 6. – P. 812–816.
- 5. Самсонов Г. В., Винницкий И. М. Тугоплавкие соединения: справочник. М.: Металлургия, 1976. 560 с.
- 6. Crystal structure and lattice dynamics of AlB₂ under pressure and implications for MgB₂. / I. Loa, K. Kunc, K. Syassen, P. Bouvier // ArXiv cond-mat /0206051/, 2002. V. 1.
- D'Evelyn Mark P., Taniguchi Takashi. Elastic properties of translucent polykrystalline cubic boron nitride as characterized by the dynamic resonance metod // Diamond Relat. Mater. 1999. № 8. P. 1522–1526.

Поступила 21.06.10