основе / А. А. Шульженко, А. В. Ножкина, В. Г. Гаргин и др. // Сверхтвердые материалы. – 2008. – № 5. – С. 7–15.

- 4. Поликристаллические материалы на основе алмаза / А. А. Шульженко, В. Г. Гаргин, В. А. Шишкин и др. К.: Наук. думка, 1989. 192 с.
- 5. Ландау Л. Д., Лифшиц Е. М. Теория Упругости. М.: ФИЗМАТЛИТ, 2001. –259 с.

УДК 621.921.34:621.921.34-413:621.923.4:662.23.05

А. А. Шульженко<sup>1</sup>, член-корр. НАН Украины; Е. Е. Ашкинази<sup>2</sup>, Р.К. Богданов, А. Н. Соколов<sup>1</sup>, В. Г. Гаргин<sup>1</sup>, А.П. Закора, кандидаты техн. наук; В. Г. Ральченко<sup>2</sup>, канд. физ.-мат. наук; В. И. Конов<sup>2</sup>, член-корр. РАН; Г. Д. Ильницкая<sup>1</sup>, канд. техн. наук; М. В. Супрун, А. А. Хомич<sup>2</sup>, инженеры; М. В. Кандзюба<sup>2</sup>, асп.

<sup>1</sup>Институт сверхтвердых материалов им. В. Н. Бакуля НАН Украины, г. Киев <sup>2</sup>Институт общей физики им. А. М. Прохорова РАН, г. Москва

# ГИБРИДНЫЙ АЛМАЗНЫЙ КОМПОЗИЦИОННЫЙ ПОЛИКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ И ЕГО СВОЙСТВА

A new ultrahard hybrid diamond-based composite polycrystalline material (HDCPM) has been developed using a combination of high-pressure high-temperature (HPHT) sintering technique and chemical vapor deposition (CVD) of diamond.

## Введение

В настоящее время основным способом разведки новых месторождений твердых полезных ископаемых является бурение скважин в горных породах алмазным инструментом.

В мировой практике геологоразведочного бурения с применением алмазного инструмента за последние 30 лет произошли существенные изменения относительно оснащения его алмазным сырьем. Так, большинство ведущих фирм США, Англии, Швеции, Бельгии и других стран перешли на оснащение бурового инструмента синтетическими алмазами (СА) вместо применявшихся ранее в нем природных алмазов. В странах дальнего зарубежья около 80 % алмазного породоразрушающего инструмента, применяемого для бурения геологоразведочных скважин в твердых горных породах, к настоящему времени составляют коронки, армированные СА, в том числе около 5% - поликристаллами [1].

Одним из основных направлений технического прогресса при поиске и разведке месторождений полезных ископаемых должно быть снижение материальных и трудовых затрат на единицу разведанных запасов. Достигается это прежде всего благодаря созданию и применению новых марок сверхтвердых композиционных материалов в буровом инструменте, разработке его новых конструкций, рациональных технологий применения породоразрушающего инструмента.

Композиционными обычно называют многокомпонентные материалы, состоящие, как правило, из пластичной основы (матрицы), армированной наполнителями высокой прочности, жесткости и т. п. [2]. Путем подбора состава и свойств наполнителя и матрицы (связующего), их соотношения, ориентации наполнителя можно получить материалы с требуемым сочетанием эксплуатационных и технологических свойств. При использовании в материале нескольких наполнителей различной природы (гибридных композиционных материалов) значительно расширяются возможности регулирования свойств композиционных материалов.

К наиболее наукоемким и многообещающим для практики относятся гибридные алмазные композиционные поликристаллические материалы и технологии их получения. Новейшее поколение гибридных сверхтвердых материалов сочетает положительные свойства синтетиче-

Поступила 31.05.10

ского, природного и CVD-алмаза. Большинство многокомпонентных композиционных материалов представляет собой структуру типа «гость – хозяин». В алмазных композиционных гибридных материалах, состоящих из синтетического, природного и CVD-алмаза, каждый материал играет роль «хозяина», дополняя материалы своими положительными свойствами.

В институте сверхтвердых материалов им. В. Н. Бакуля НАН Украины (ИСМ) разработан способ получения гибридного алмазного композиционного материала на основе порошков синтетического и природного алмаза [3]. Этот материал характеризуется высокими физико-механическими свойствами, что позволяет успешно использовать его для оснащения бурового инструмента.

Специалистами ИСМ и института общей физики им. А.М. Прохорова РАН (ИОФ) совместно получен ультратвердый гибридный композиционный материал, содержащий CVDалмаз (светлый), поверхность которого частично или полностью в условиях высокого давления и температуры окружена оболочкой из алмазного композиционного термостойкого материала (АКТМ) [4] со связью между зернами алмаз-алмаз, между которыми размещена активирующая добавка, при этом площадь оболочки, которая охватывает CVD-алмаз, составляет не меньше 40 % его поверхности [5–11].

В настоящее время этими же организациями разработан новый гибридный сверхтвердый материал, содержащий порошки CVD и активирующую процесс спекания добавку [12]. В этом материале содержатся порошки CVD-алмаза с размером зерен ~ 300–1000 мкм.

В основу создания нового материала положена задача получения с использованием порошков CVD-алмаза гибридного композиционного материала, при котором благодаря выбору соотношения порошков синтетических и природных алмазов, и оптимального расположению зерен CVD-алмаза в материале обеспечивается повышение их твердости и как следствие – износостойкости материала.

Цель настоящей работы – исследовать свойства (прочность, термостабильность и износостойкость), разработанных совместно ИСМ и ИОФ новых гибридных алмазных композиционных поликристаллических материалов (ГАКПМ) и их составляющих (матрицы и армирующих элементов).

#### Материалы и методики экспериментов

В качестве исходных материалов использовали алмазные микропорошки зернистостью 40/28, пластины (рис. 1, *a*), бруски (черные) (рис. 1, *б*) и порошки (светлые и серые) (рис. 1, *в*) СVD-алмаза, синтезированные в ИОФ РАН, а также бруски CVD-алмаза марки CDD (фирма «Element Six») (рис. 1, *г*).



Рис. 1. Внешний вид образцов CVD-алмаза: пластины (а), бруски (б), порошки (в), также бруски CVD-алмаза марки CDD (г)

Цвет образцов CVD-алмаза определялся степенью их чистоты и структурного совершенства, зависящих от технологии синтеза. Так называемый «черный алмаз» (black diamond) является поликристаллическим CVD-алмазом с высоким содержанием структурных дефектов, таких как микродвойники, дислокации, нанометровые аморфизованные домены [13]. Эти дефекты вызывают сильное оптическое поглощение в так называемом «черном» алмазе, в то время как включения графита в них отсутствуют. Однако при вакуумном отжиге поликристаллического алмаза, даже первоначально прозрачного, до температуры выше 1200–1300 °C на границах зерен могут формироваться тонкие прослойки кристаллизованного графита толщиной от нескольких межплоскостных расстояний [14], что также приводит к почернению материала.

Локальные спектры комбинационного рассеяния (КР) света образцов снимали на установке LABRAM HR в геометрии рассеяния света назад (длина волны возбуждающего излучения Ar+ лазера – 488 нм, диаметр лазерного пятна на поверхности образца – около 1 мкм).

Термическую обработку пластин и порошков CVD-алмаза осуществляли в муфельной печи в токе аргона при температуре T = 1150 °C в течение 600 с. Охлаждали образцы вместе с печью в токе аргона до температуры 600 °C. Указанный режим термообработки соответствовал условиям изготовления инструмента.

Исследовали также пластинки CVD-алмазов, обработанные в условиях высокого давления и температуры (HPHT) – при давлении 7,0 ГПа и температуре 1350 °C в среде графита (марки C-3) в течение 60 с (рис. 2).

Спекание нового материала проводили в многопозиционной матрице, которую спрессовали из чешуйчатого графита с линейным размером частичек 0,5–1,0 мм и толщиной около 1 мкм. Матрица имела диаметр 18 мм и высоту 5 мм с цилиндрическими гнездами диаметром 4,5 мм, в которые засыпали алмазный микропорошок ACM 40/28. После этого на поверхность алмазной массы укладывали 1–5 пластинок из поликристаллического CVD-алмаза и вдавливали их пуансоном в алмазную массу.

Для формирования пропитывающего слоя приготовили смесь из порошка кремния с размером частиц менее 100 мкм, чешуйчатого графита и алмазного нанопорошка с размером частиц менее 0,01 мкм. Однородность смеси обеспечивалась смешиванием компонентов в шаровой мельнице. Из полученной смеси спрессовали диски, закрывающие гнезда матрицы, в которых размещалась алмазная масса с пластинками CVD-алмаза. Матрица помещалась в ячейку высокого давления.



Рис. 2. Внешний вид пластинок CVD-алмазов, обработанных в НРНТ-условиях (p = 7,0 ГПа, T = 1350 °C) в среде графита (марки C-3) в течение 60 с

Материал спекали в аппарате высокого давления типа «тороид» с диаметром центрального углубления 30 мм.

Спекание осуществляли в два этапа.

На первом этапе содержимое многопозиционной матрицы подвергали баротермической обработке при давлении 8 ГПа и температуре 1170 К в течение 50 с. Затем температуру повышали до температуры плавления кремния при заданном давлении (1570 К) и выдерживали в течение 90 с [13].

После спекания поверхность полученных образцов композиционного материала на основе АКТМ и CVD-алмаза подвергали химической обработке в целях очищения от остатков графита. Эффективность применения CVD-алмаза в инструменте определяется прежде всего его прочностью и термостабильностью, поэтому знание прочностных характеристик CVD-алмаза имеет важное научное и прикладное значение.

При определении прочности хрупких материалов наблюдаются общие закономерности, такие как существенное рассеяние результатов испытаний на прочность, снижение прочности с увеличением размеров и пр.

Для определения прочности применяли разрывную машину WPM-1000. При испытании на ней использовали шкалу 0–500 кг. Разрушение осуществлялось между двумя опорами из твердого сплава марки BK2M; скорость приложения нагрузки составляла 40 кг/с.

Исследовали прочность при одноосном статическом сжатии «светлых» пластин CVDалмаза размером 1,0×1,0×0,4 мм (рис. 1, *a*). Зародышевая сторона пластины была гладкой (зеркальной), противоположная (ростовая) – шероховатой. Для соблюдения плоскопараллельности на ростовую сторону помещали медную фольгу толщиной 0,02 мм.

Также исследовали прочность порошков CVD-алмаза зернистостью 630/500 (рис. 1, *в*). Как видно на рис. 1, *в* порошки состояли из светлых и серых зерен. Для исследования влияния окраски зерен CVD-алмаза на прочность их условно разделили на «светлые» и «серые».

В результате предварительных экспериментов было установлено, что кристаллы CVD-алмаза при достижении критических напряжений разрушались на мелкие фрагменты, так что фиксирование момента разрушения CVD-алмаза не вызывало трудностей.

Испытания на износостойкость проводили при точении на токарно-винторезном станке модели ДИП-200 коростышевского гранита XI категории буримости. Этот гранит имеет стабильные свойства, высокую твердость и абразивность. При этом использовали специальное оснащение для закрепления керна горной породы в виде разрезного цилиндра и стакана, а также специальное приспособление для закрепления исследуемого образца породоразрушающего элемента в резцедержателе на основе сверлильного патрона. Исследуемый образец породоразрушающего элемента закрепляли в патроне специального приспособления и подводили к поверхности керна горной породы, где и осуществляли его продольное точение с заданной глубиной внедрения.

Износ по массе породоразрушающих элементов измеряли электронными весами типа Sartorius с точностью до 0,0001 г.

Параметры режима резания были следующие: частота вращения – 355 мин<sup>-1</sup>, глубина внедрения – 1,0 мм.

Контролируемыми параметрами служили глубина внедрения (с точностью до 0,05 мм) и продолжительность точения (с точностью до 1 с).

Интенсивность изнашивания I (мг/м) определяли как отношение потери массы породоразрушающего элемента  $\Delta m = m_{\rm H} - m_{\rm K}$ , ( $m_{\rm H}$  и  $m_{\rm K}$  – масса образца соответственно до и после испытаний, мг) к величине проходки на вставку L:

$$I = \frac{\Delta m}{L},$$

где  $L = \frac{\pi Dn}{60}t$ ; D – диаметр керна, м; n – частота вращения шпинделя станка, мин<sup>-1</sup>; t – продолжительность точения, мин.

Образцы породоразушающих элементов испытывали при скорости резания 1,33 м/с, пути резания 545 м и продолжительности резания 410 с.

Все породоразрушающие элементы были исследованы на износостойкость как в исходном состоянии, так и после прохождения термообработки в муфельной печи в токе аргона.

Потерю массы материалов определяли по изменению пробы до и после термической обработки. Термообработку проводили при температуре 1150 °C в течение 600 с в токе инертного газа (аргона) с последующим охлаждением до температуры 150 °C. Такую термообработку проводили в целях имитации процесса спекания матрицы буровой коронки.

## Результаты

Для проведения сравнительных лабораторных исследований износостойкости были изготовлены цилиндрические породоразрушающие элементы диаметром 3,5 мм и высотой 3,7 мм из АКТМ, в котором размещали армирующие вставки CVD-алмаза следующих вариантов изготовления и размещения в оболочке АКТМ: АКТМ + CDD ( $5,0 \times 0,8 \times 0,8$  мм), АКТМ + CVD-алмаз (черный) ( $4, \times 1,0 \times 0,3$  мм), АКТМ + CVD-алмаз (черный) (режущие вставки) и АКТМ + CVD-алмаз (черный) (подрезные вставки). Следует отметить, что в первом и втором вариантах изготовления породоразрушающих элементов армирующие вставки CVD размещали вдоль оси цилиндра из АКТМ с выступанием вершины CVD на его поверхности. В третьем и четвертом вариантах изготовления дробленые армирующие вставки CVD размещали на поверхности цилиндра из АКТМ плашмя: либо узкой частью (0,3 мм) – режущий вариант, либо широкой (1 мм) – подрезной.

При выборе ориентации зерен в последних двух случаях исходили из следующих соображений.

Порошки CVD-алмаза получали в результате механического дробления поликристаллических заготовок. После дробления зерна порошка CVD-алмаза имеют уплощенную форму с торцом толщиной ~0,3–0,6 мм (рис. 3), поэтому для работоспособности инструмента большое значение имеет расположение зерна CVD-алмаза в материале.

Если вставка (торцевая) из такого материала разрушает горную породу при бурении, то зерна CVD-алмаза располагаются в гибридном сверхтвердом материале так, что их рабочая поверхность совпадает с торцом зерна. В этом случае уменьшаются усилия для проникновения зерна в породу, что повышает работоспособность инструмента.

Если вставки (подрезные) из такого материала защищают корпус породоразрушающего инструмента от преждевременного износа по диаметру, что способствует сохранению (удержанию) необходимого размера скважины, то зерна CVD-алмаза располагаются так, что их рабочая поверхность совпадает с направлением зародышевой стороны.



Рис. 3. Схематическое изображение зерна порошка СVD-алмаза: 1 – ростовая сторона; 2 – зародышевая сторона; 3 – торец

Результаты сравнительных испытаний армирующих вставок при точении коростышевского гранита XI категории по буримости приведены в табл. 1.

| Таблица 1. Сравнителы                     | ные испытания армирую    | цих вставок при 7  | гочении коросты    | шев  |  |  |
|-------------------------------------------|--------------------------|--------------------|--------------------|------|--|--|
| ского гранита XI кате                     | гории по буримости (скор | ость резания – 1,3 | 33 м/с, путь резан | ия - |  |  |
| 545 м, продолжительность резания – 410 с) |                          |                    |                    |      |  |  |
|                                           | 2.4                      | TT                 |                    |      |  |  |

| No  |                                    | Масса вставки, мг         |                | Износ         |                | Интенсив- |                         |
|-----|------------------------------------|---------------------------|----------------|---------------|----------------|-----------|-------------------------|
| п/п | п/п Материал армирующей<br>вставки |                           | Началь-<br>ный | Конеч-<br>ный | по мас-        | %         | шивания по              |
|     |                                    |                           | IIDIM          | пын           | <b>cc</b> , mi |           | (мг/м)×10 <sup>-3</sup> |
|     |                                    | Исходный                  | 86,0           | 83,6          | 2,4            | 2,80      | 4,5                     |
| 1   | CDD                                | После термо-<br>обработки | 79,2           | 78,2          | 1,0            | 1,30      | 1,8                     |
|     | CVD-                               | Исходный                  | 135,4          | 135,0         | 0,4            | 0,30      | 0,7                     |
| 2   | алмаз                              | После термо-              | 132,0          | 131,6         | 0,4            | 0,30      | 0,7                     |
|     | черный                             | обработки                 |                |               |                |           |                         |
|     | CVD-                               | Исходный                  | 125,6          | 124,4         | 1,2            | 0,96      | 2,2                     |
| 3   | алмаз                              | После термо-              | 102,4          | 102,2         | 0,2            | 0,20      | 0,4                     |
|     | режущие                            | обработки                 |                |               |                |           |                         |
|     | вставки                            |                           |                |               |                |           |                         |
|     | CVD-                               | Исходный                  | 106,2          | 105,2         | 1,0            | 0,94      | 1,8                     |
| 4   | алмаз                              | После термо-              | 103,8          | 103,4         | 0,4            | 0,39      | 0,7                     |
|     | подрезные                          | обработки                 |                |               |                |           |                         |
|     | вставки                            |                           |                |               |                |           |                         |

Как видно из полученных результатов, термообработка в муфельной печи в целом положительно влияет на породоразрушающие элементы – их износостойкость повысилась с 2,5 раз (в случае CDD) до 5,5 раз (в случае CVD-алмазной режущей вставки). Очевидно, что после термообработки наблюдается процесс снятия напряженного состояния армирующих вставок. Особенно следует отметить присутствие в процессе работы породоразрушающих элементов первых двух вариантов изготовления очевидного эффекта «самозатачивания», т. е. появление конусности на их рабочем торце при вершине армирующей вставки из CVD-алмаза (рис. 4).



Рис. 4. Внешний вид рабочего торца породоразрушающего элемента после точения

Полученный результат является положительным фактором для дальнейшего использования таких вариантов исполнения породоразрушающих элементов на базе AKTM + CVDалмаз при разработке новых конструкций буровых геологоразведочных коронок с комбинированной алмазосодержащей матрицей.

Отличие интенсивности изнашивания вставки, армированной CVD-алмазами (черными) и CVD-алмазом марки CDD, объясняется тем, что последняя имеет большую площадь контакта с породой (0,64 мм<sup>2</sup> против 0,3 мм<sup>2</sup> в случае CVD-алмаза).

Показатели прочности при одноосном сжатии пластин CVD-алмаза размером 1,0×1,0×0,4 мм темно-желтого цвета приведены в табл. 2.

| Пластины<br>CVD-алмаза                                                           | Внешний вид<br>пластин | Разрушающая<br>нагрузка, кН | Характер разрушения                                                                              | Внешний вид пластин<br>после разрушения |
|----------------------------------------------------------------------------------|------------------------|-----------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------|
| Исходная                                                                         |                        | 1,7±0,2                     | При достижении<br>критической нагрузки<br>CVD-алмаз разрушается<br>на мелкие фрагменты           |                                         |
| После НРНТ-<br>обработки (р=7,0<br>ГПа; Т=1350 °С;<br>т=60 с) в среде<br>графита |                        | 1,7±0,2                     |                                                                                                  | Такой же                                |
| После<br>термообработ-ки<br>(T=1150 °C;<br>т=600 с) в среде<br>аргона            |                        | 0,09±0,02                   | При достижении<br>критической нагрузки<br>CVD-алмаз разрушается<br>на более крупные<br>фрагменты |                                         |

#### Таблица 2. Показатели прочности при одноосном статическом сжатии пластин СVDалмаза размером 1×1×0,4 мм

Из приведенных данных следует, что прочность пластинок исходная и после НРНТобработки ( $p = 7 \ \Gamma \Pi a$ ;  $T = 1350 \ ^{\circ}C$ ;  $\tau = 60 \ c$ ) практически не изменилась, а после термообработки в среде аргона ( $T = 1150 \ ^{\circ}C$ ,  $\tau = 600 \ c$ ) – резко уменьшилась (~18 раз).

Показатели прочности при одноосном статическом сжатии зерен пластинчатой формы порошка CVD-алмаза зернистостью 630/500 приведены в табл. 3. Перед измерением прочности зерна были разделены, как отмечалось, на «светлые» и «серые».

| Таблица 3. Показатели прочности при одноосном | статическом сжатии порошков | СVD-алмаза |
|-----------------------------------------------|-----------------------------|------------|
| зернистостью 630/500                          | -                           |            |

| Пластины<br>CVD-алмаза                                                       | Внешний вид пластин |           | Разруша-<br>ющая<br>нагрузка,<br>кН | Характер<br>разрушения                                                                                           | Внешний вид пластин<br>после разрушения |
|------------------------------------------------------------------------------|---------------------|-----------|-------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Исходный                                                                     |                     | «светлые» | 2,0±0,2                             | При<br>достижении<br>критической<br>нагрузки CVD-<br>алмаз<br>разрушался на<br>множество<br>мелких<br>фрагментов |                                         |
|                                                                              |                     | «серые»   | 1,2±0,4                             |                                                                                                                  |                                         |
| После термообра-<br>ботки при T=1150<br>°С в течение 600<br>с в среде аргона | Z?                  | «светлые» | 1,9±0,5                             | Такой же                                                                                                         | Такой же                                |
|                                                                              |                     | «серые»   | 1,0±0,3                             |                                                                                                                  |                                         |

Как видим из данных табл. 3 прочность зерен после термообработки практически не изменилась.

Изменение внешнего вида различных образцов CVD-алмаза после термической обработки в токе аргона при температуре T = 1150 °C в течение 600 с показано на рис. 5, изменение их массы приведено в табл. 4.



Рис. 5. Изменение внешнего вида различных образцов CVD-алмаза после термической обработки в токе аргона ( $T = 1150 \ ^\circ C$ ;  $\tau = 600 \ c$ )

Таблица 4. Изменение массы CVD-алмаза после термической обработки в токе аргона (*T* = 1150 °; т = 600 с)

| N⁰        | Наименорание образия            | Масса матери | Изменение  |                |
|-----------|---------------------------------|--------------|------------|----------------|
| $\Pi/\Pi$ | Паименование образца            | исходная     | после т.о. | массы, %       |
| 1         | CDD 5×0,8×0,8 мм                | 6,20         | —          | не установлено |
|           |                                 | (1 образец)  |            |                |
| 2         | CVD-алмаз черный 4×1×0,3 мм     | 2,74         | 2,68       | -2,2           |
|           |                                 | (3 образца)  |            |                |
| 3         | CVD-алмаз желтый 1×1×0,4 мм     | 0,63         | 0,07       | -88,9          |
| 4         | CVD-алмаз светло-желтый (кусоч- | 1,66         | 1,09       | -34,3          |
|           | ки)                             |              |            |                |
| 5         | CVD-алмаз порошок,              | 2,03         | 1,72       | -15,3          |
|           | зернистость 630/500             |              |            |                |
| 6         | ГАКПМ                           | 12,58        | 12,46      | -0,9           |
|           | (CVD-алмаз черный + АКТМ)       |              |            |                |

Наиболее термостойки бруски CVD-алмаза черного цвета (потеря массы ~2,2 %).

При их использовании для армирования вставки потеря массы CVD-алмаза после термической обработки уменьшается до 0,9 %.

В [8] было установлено повышение твердости поликристаллического CVD-алмаза, подвергнутого баротермической обработке в процессе получения гибридного поликристаллического материала. При этом ширина спектров КР алмазного микропорошка ACM 40/28 (исходный материал для изготовления AKTM) и пластины CVD-алмаза (светлой), измеренная на половине высоты ее интенсивности, составила 2,5 см<sup>-1</sup>.

Внешний вид гибридного поликристаллического композиционного материала, армированного CVD-алмазом, на котором отмечены 5 точек, в которых снимались спектры КР показан на рис. 6, *а*.



Рис. 6. Вешний вид гибридного поликристаллического композиционного материала, армированного CVD-алмазом (светлым) (а) и рентгеновская микротомограмма вставки (б) [11]

Ширина лини КР в точке 1 (см. рис. 6) составила 3,8 см<sup>-1</sup>; центре – 3,8 см<sup>-1</sup>; точке 2 –  $4,0 \text{ см}^{-1}$ ; точке 3 – 19,7 см<sup>-1</sup>; точке 4 – 5,4 см<sup>-1</sup>.

Таким образом, в результате баротермической обработки пластины CVD-алмаза, играющей роль армирующего элемента в матрице из АКТМ, увеличилась ширина линии КР до 3,8-4,0 см<sup>-1</sup>, а для PcD в точке 3 - до 19,7 см<sup>-1</sup> (исходное значение -2,5 см<sup>-1</sup>).

Как следует из рентгеновской микротомограммы (рис. 6,  $\delta$ ) этот участок отличается наиболее высокой плотностью материала (чем темнее контраст, тем выше плотность).

На основании полученных экспериментальных данных сформулируем механизм повышения твердости CVD-алмаза (светлого): в процессе спекания ( $p = 7 \ \Gamma \Pi a$ ;  $T = 1570 \ K$ ) происходит пластическая деформация алмазных зерен в процессе формирования жесткого каркаса вокруг пластины CVD-алмаза, что приводит при высоком давлении к созданию сложного структурно-напряженного состояния, проявляющегося в уширении линий КР как CVD-алмаза, так и алмазов в оболочке, особенно в алмазах, наиболее близко расположенных к CVD-алмазу.

#### Выводы

1. Установлено, что износостойкость породоразрушающих вставок, армированных CVD-алмазом, после термической обработки в токе аргона (T = 1150 °C;  $\tau = 600$  c) повышается в 2,5–5,5 раз, что объясняется снятием в этих условиях напряжений в CVD-алмазе.

2. Показано, что в результате термической обработки CVD-алмаза в указанных условиях масса образцов уменьшается в зависимости от режимов их получения от 2,2 (для CVD-алмаза черного) до 89 % (для CVD-алмаза желтого). Наиболее термически устойчивой является породоразрушающая вставка, армированная CVD-алмазом черным – масса вставки уменьшилась всего на 0,95 %.

3. Исходная прочность (разрушающая нагрузка) при одноосном статическом сжатии высокая и для CVD-алмаза желтого (размер 1,0×1,0×0,4 мм) составляет 1,7±0,2 кН. После термообработки она снижается до 0,09±0,02 кН.

4. Показано, что для армирования породоразрушающей вставки можно использовать порошки CVD-алмаза, на базе которых созданы режущие и калибрующие вставки.

5. При центральном расположении CVD-алмаза и CVD-алмаза марки CDD в породоразрушающей вставке обнаружен эффект «самозатачивания», что проявляется в конусности на их рабочем торце при вершине армирующей вставки из CVD-алмаза. 6. Полученные спектры КР подтвердили механизм повышения твердости CVD-алмаза (светлого) в процессе совместного спекания микропорошков алмаза и CVD-алмаза в НРНТусловиях, который заключается в создании сложного структурно-напряженного состояния как в CVD-алмазе, так и в алмазах в оболочке.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 10-08-90438-Укр\_а, № 10-08-01256-а) и Национальной академии наук Украины (проект № 29-08-10 (У)).

## Литература

- 1. Сверхтвердые материалы в геологоразведочном бурении. / П. В. Зыбинский, Р. К. Богданов, А. П. Закора, А. М. Исонкин – Донецк: НОРД-ПРЕСС, 2007. – 244 с.
- 1. Справочник по композиционным материалам. Кн. 1 / Под ред. Дж. Любина; Пер. с англ. А. Б. Геллера, М. М. Гельмонта. М.: Машиностроение, 1988. 448 с.
- 2. Пат. на корисну модель № 32235 Україна МПК СО1 В 31/06. Спосіб спікання композиційного матеріалу на основі порошків алмазу / О. О. Шульженко, В. Г. Гаргін, Н. О. Русінова та ін. Опубл. 12.05.08, Бюл. № 9.
- Алмазный поликристаллический материал для оснащения бурового инструмента / А. А. Шульженко, Р. К. Богданов, В. Г. Гаргин и др. // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения: Сб. науч. тр. – К.: Изд-во ИСМ им. В. Н. Бакуля НАН Украины, 2007. – Вып. 10. – С. 189–196.
- 4. Пат. на корисну модель № 45291 Україна МПК СО4 В 35/5831, СО4 В 35/80. Надтвердий матеріал / О. О. Шульженко, О. М. Соколов, В. Г. Гаргін та ін. – Опубл. 10.11.09, Бюл. № 21.
- 5. Пат. № 89732 Україна МПК СО4 В 35/00. Надтвердий матеріал / О. О. Шульженко, О. М. Соколов, В. Г. Гаргін та ін. Опубл. 25.02.10, Бюл. № 4.
- 6. Положительное решение по заявке № 2008152306 на выдачу патента РФ на изобретение. Сверхтвердый материал / Е. Е. Ашкинази, В. Г. Ральченко, В. И. Конов и др. – Подана 30.12.08. – Вх. № 068935.
- 7. Новый ультратвердый поликристаллический композиционный материал / А. А. Шульженко, Е. Е. Ашкинази, А. Н. Соколов и др. // Породоразрушающий и металлообрабатывающий инструмент техника и технология его изготовления и применения: сб. науч. тр. Киев: ЛОГОС, 2009. Вып. 12. С. 143–153.
- Заявка на корисну модель № и 201007108 Україна МПК8 С04В 35/5831, С04В 35/80. Гібридний надтвердий композиційний матеріал / О. О. Шульженко, Р. К. Богданов, В. Г. Гаргін та ін. – Подана 08.06.2010. – Вх. № 696357/
- 9. Ультратвердый материал / А. А. Шульженко, А. Н. Соколов, В. Г. Гаргин и др. // Синтез, спекание и свойства сверхтвердых материалов: Сб. науч. тр. К.: ЛОГОС, 2009 С. 181.
- 10. Структура и свойства УТМ с компонентами CVD алмаза / А. А. Шульженко, Е Е. Ашкинази, А. Н. Соколов и др. // XIX Петербургские чтения по проблемам прочности. Санкт-Петербург, 13-15 апреля 2010 г.: сборник материалов. – Ч. 1. – СПб., 2010. – С. 263–265.
- Structural aspects of CVD diamond wafers grown at different hydrogen flow rates / L. Nistor, J. Van Landuyt, V. Ralchenko, I. Vlasov. – Phys. Stat. Sol. (a). – 1999. – 174, N 1. – P. 5–9.
- Structure and properties of high-temperature annealed CVD diamond / V. Ralchenko, L. Nistor, E. Pleuler, et. al. – Diamond and Related Materials. – 2003. – 12. – N 10-11. – P. 1964–1970.
- 13. Пат. на корисну модель № 21897 Україна МПК СО1 В 31/06 Спосіб спікання композиційного матеріалу на основі порошків алмазу / О. О. Шульженко, В. Г. Гаргін, Н. О. Русінова. Опубл. 10.04.07, Бюл. № 4.

Поступила 25.05.10.