Об одной геометрической модели временных параллельных процессов*

Ошевская Елена Сергеевна

Институт математики им С.Л. Соболева СО РАН, пр. Академика Коптюга, 4, г. Новосибирск, 630090, Россия. Тел.: 33-34-96, факс: 33-25-98. E-mail: eso@iis.nsk.su

The intention of the paper is to study geometric properties of timed concurrent processes. First, we introduce a notion of timed higher dimentional transition sistems and then we provide a category-theoretic characterization of bisimulation equivalence in the context of the model under consideration.

Введение

Последние годы активно разрабатываются формальные методы спецификации, анализа и моделирования параллельных/распределенных систем, имеющих сложную структурную и функциональную организацию. К таким системам относятся коммуникационные протоколы, системы управления производством, распределенные операционные системы и т.д. Разработка корректных параллельных/распределенных систем – нетривиальная задача, требующая для своего успешного решения проведения комплексных фундаментальных исследований, основанных на различных формальных методах и средствах.

Исследования последнего десятилетия показали, что применение теоретико-категорных методов позволяет разрабатывать, унифицировать и классифицировать различные параллельные модели [10]. Кроме того, в рамках теории категорий были предложены абстрактные определения эквивалентностей для различных параллельных моделей [8]. Оказалось, что эквивалентности, определенные на категориях интерливинговых моделей, согласуются с интерливинговой бисимуляцией Милнера, тогда как эквивалентности на категориях моделей с «истинным параллелизмом» требуют более сильной эквивалентности — усиленного варианта сохраняющей историю бисимуляци Трахтенброта. Альтернативная характеризация временной бисимуляции для временной интерливинговой модели — временных систем переходов — с использованием теоретоко-категорных методов была предложена Хунэм и Нильсеном [6].

С другой стороны, в начале 90-х годов прошлого столетия было начато исследование геометрических свойств параллельных процессов посредством методов комбинаторной алгебраической топологии, гомологической алгебры, алгебраической геометрии и т.д. В работах сначала Пратта [8], фан Глабика [2], а затем Губо и Йенсена [3] была предложена и исследована геометрическая модель многомерных автоматов (Higher Dimensional Automata). Многомерные автоматы – обобщение недетерминированных автоматов для моделирования семантики «истинного параллелизма». Параллельное выполнение двух событий в недетерминированных автоматах распознается геометрически как квадрат. В случае параллельного выполнения трех и более событий в автоматах появляются п-мерные кубы (п=3,4..). Это и привело к понятию многомерных автоматов. В вышеуказанных работах были изучены некоторые взаимосвязи между различными классами многомерных автоматов и классическими параллельными моделями, а также теоретико-категорные свойства этих геометрических моделей. Далее для разработки геометрических моделей параллельных процессов стали использовать структуры и методы алгебраической топологии (например, цепные бикомплексы (chain bicomplexes)) [3]. Позже Губо ввел временное расширение многомерных автоматов [5]. Кроме того, в 1996 году Сассоне и Каттани [9] была предложена модель многомерных систем переходов, которая встраивается в модель многомерных автоматов, сохраняя и отображая соответствующие понятия гомотопии и бисимуляции. Такое встраивание является эквивалентностью категорий для некоторого подкласса многомерных автоматных моделей. При этом было продемонстрировано, что при переходе от многомерных автоматов к многомерным системам переходов нет никаких потерь в выразительной мощности, и последняя модель адекватно представляет параллельные процессы.

В данной статье с целью более адекватного анализа поведенческих свойств параллельных систем на основе методов теории категорий и геометрических структур строится временное расширение модели многомерных систем переходов и изучаются гомотопические и теоретико-категорные свойства введенной модели.

Статья состоит из трех частей. В первой части вводится геометрическая модель временных многомерных систем переходов и строится соответствующая категория. Во второй части с помощью понятия гомотопии определяется бисимуляционная эквивалентность. В третьей части дается ее альтернативная характеризация в терминах открытых морфизмов. В заключении перечисляются результаты, полученные в рамках данной работы, и приводятся некоторые замечания по дальнейшей исследованиям.

 $^{^*}$ Работа частично поддержана Российским фондом фундаментальных исследований (грант № 04-01-00789).

1. Временные многомерные системы переходов

Построенная в 1996 году Сассоне и Каттани [9] модель многомерных систем переходов носит теоретикомножественный характер. Один из недостатков такого подхода – отсутствие наглядности. В 1991 году Пратт предложил изображать состояния точками, действия – отрезками, а одновременное исполнение п действий – пмерными (закрашенными) кубами (n=2,3...). Использование этой идеи сделало построение и исследование моделей параллельных систем и процессов естественным и интуитивно понятным. К примеру, исполнение многопроцессорной системой какой-либо последовательности действий теперь можно было изобразить просто кривой (траекторией). На таком геометрическом представлении и основанно дальнейшее изложение.

Пусть $Q^n := \{(t_1, ..., t_n) \in \mathbb{R}^n | 0 \le t_i \le 1, i = 1, ..., n \}, Q^0 := \{0\};$ и пусть $\inf Q^n$ обозначает внутренность множества Q^n , причем $\inf Q^0 := \{0\}.$

Определим функцию $\delta_i^k:Q^{n-1}\to Q^n$, $n\in\mathbb{N}, i\in\{1,...,n\}, k=0,1$, следующим образом $\delta_i^k(t_1,...,t_{n-1})=(t_1,...,t_{i-1},k,t_i,...,t_{n-1}).$

Пусть $n \in \mathbb{N}$ – фиксированное.

Определение 1.1. Пусть X — топологическое пространство. Система непрерывных функций $F = \{x_{\alpha}^n\}_{\alpha \in A, n \in \{0,...,N\}}$ (A — счетное) называется **кубической**, если $\forall \alpha \in A, \forall n \in \{0,...,N\}$ $x_{\alpha}^n : Q^n \to X$ индуцирует гомеоморфизм $\operatorname{int} Q^n$ на $x_{\alpha}^n(\operatorname{int} Q^n)$, и выполняется следующее условие:

если
$$x^n \in F$$
 , то $x \circ \delta_i^k \in F$ при всех $i \in \{1,...,n\}, k = 0,1$.

Определим $F^n := \{x \in F \middle| dom(x) = Q^n\}.$

Введем понятие временной многомерной системы переходов.

Определение 1.2. Тройка (X, L, i_0) называется *временной многомерной системой переходов* (обозн. THDTS), если X — хаусдорфово топологическое пространство, L — множество меток, i_0 — начальное состояние, и выполнены условия:

- для X задана кубическая система функций F такая, что $X = \bigcup_{x \in F^n, n \in \{0, \dots, N\}} x(\operatorname{int} Q^n);$
- задана функция $l: F^1 \to L$ такая, что

$$\forall x \in F^2 \ l(x(\delta_i^0(Q^1))) = l(x(\delta_i^1(Q^1))), i = 1, 2,$$

$$\forall x \in F^n, n > 1, \quad l(x) := \bigoplus \{l(y) | y = x(\underbrace{\delta_i^0 \circ \ldots \circ \delta_i^0}_{(n-1)}(Q^1)), i = 1, \ldots, n \}$$
, где ' \oplus ' обозначает

объединение мультимножеств;

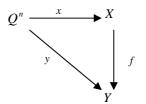
- $\forall n \in \{1,...,N\}$ выполняется следующее условие: если $x_1, x_2 \in F^n$ такие что $x_1(\underbrace{\mathcal{S}_1^0 \circ ... \circ \mathcal{S}_1^0}_n(0)) = x_2(\underbrace{\mathcal{S}_1^0 \circ ... \circ \mathcal{S}_1^0}_n(0)), x_1(\underbrace{\mathcal{S}_1^1 \circ ... \circ \mathcal{S}_1^1}_n(0)) = x_2(\underbrace{\mathcal{S}_1^1 \circ ... \circ \mathcal{S}_1^1}_n(0)),$ $l(x_1) = l(x_2), \text{ то } x_1 = x_2;$
- X снабжено семейством норм $\|\cdot\|_u$ на касательном пространстве $(T_u X = T_u x (\operatorname{int} Q^n), \quad \text{где} \quad x \in F^n \text{ такая}, \quad \text{что} \quad u \in x (\operatorname{int} Q^n)))$ таким, что функция $P(u,\dot{u}) = \|\dot{u}\|$ непрерывна по u и является нормой.

Интуитивно временную многомерную систему переходов можно представить себе как хаусдорфово топологическое пространство X, состоящее из соединенных между собой деформированных п-мерных кубов, причем n=1,..,N. Кубы изогнуты так, что существует покрытие пространства картами $x_{\alpha}^n:Q^n\to X$, область значений каждой из которых — соответствующий деформированный п-мерный куб. На касательном пространстве к X задано семейство непрерывных норм.

Определим понятие морфизма между временными многомерными системами переходов.

Определение 1.3. Пусть $(X, L_X, i_{0_X}), (Y, L_Y, i_{0_Y})$ — THDTS, а F_X, F_Y — их кубические системы соответственно, $l_X: F_X^1 \to L_X$, $l_Y: F_Y^1 \to L_Y$,. Тогда отображение $\langle f, \alpha \rangle$ (где $\alpha: L_X \to L_Y$ — частично определенное отображение, $f: X \to Y$ — всюду определенное отображение) — **морфизм**, если

- 1. $f(i_{0_v}) = i_{0_v}$;
- 2. $\forall x \in F_x^n, n \in \{1, ..., N\},$
- если $|\alpha(l_x(x))| = n$, то $\exists y \in F_y^n$ такая, что диаграмма



коммутативна, а $l_Y(y) = \alpha(l_X(x))$; кроме того, верно, что $f(x(\delta_i^k(Q^{n-1}))) = y(\delta_i^k(Q^{n-1}))$, для всех $i=1,\dots n$, k=0,1,

- если $\left|\alpha(l_X(x))\right| = q < n$, то $f(x) = f(x(\delta_{j_1}^0 \circ \cdots \circ \delta_{j_q}^0(Q^{n-q})))$, где j_1, \dots, j_q такие, что $\alpha(l_X(x)) = \alpha(l_X(x \circ \delta_{j_i}^0 \circ \cdots \circ \delta_{j_q}^0))$;
- 3. $||d_u f|| \le 1, u \in X$.

Из этого определения следует, что $y^{-1} \circ f \circ x = id$, а значит, $f \in C^{\infty}$.

Таким образом, мы получаем категорию **THDTS**, чьи объекты даются определением 1.2, а морфизмы – определением 1.3.

Определение 1.4. Путем в THDTS (X, L, i_0) называется непрерывная функция $\gamma: [0,1] \to X$ такая, что

- 1. $\exists I_k = (a_k, a_{k+1}), k = 0, ..., m$, такие, что $\exists x_k^n \in F^n, n \in \{1, ..., N\}$, такие, что $\gamma \Big|_{I_k} : I_k \to x_k^n (\mathbf{int} \, Q^n)$, причем $\gamma(a_k) = x_k^n (\underline{\delta^0 \circ \cdots \circ \delta^0}(0)), \gamma(a_{k+1}) = x_k^n (\underline{\delta^1 \circ \cdots \circ \delta^1}(0));$
- 2. γ $_{I_{\iota}}$ дифференцируемая функция;
- 3. $(x_k^n)_i \circ \gamma \Big|_{I_k}$ неубывающая функция для всех i=1,...n, но каково бы ни было открытое множество $U \subset x_k^n (\mathbf{int} Q^n)$ найдется такое $j \in \{1,...,n\}$, что $(x_k^n)_i \neq const$ на $U \cap \gamma(I_k)$.

Пробегом называется путь, начинающийся в начальном состоянии i_0 .

Утверждение 1.5. Морфизмы категории THDTS сохраняют гомотопность путей.

Доказательство этого утверждения очевидно, ведь по определению морфизма при его действии не могут появляться новые "дырки". А значит, если была гомотопия между путями, то она сохранится.

Определение 1.6. *Длиной* пути γ называется

$$length(\gamma) = \int_{0}^{1} \left\| \frac{d\gamma}{dt}(t) \right\|_{\gamma(t)} dt.$$

Пусть $\Pi(u,v)$ обозначает множество всех путей из точки u в точку v в X.

Определение 1.7. *Минимальное время* между точками u и v в X есть

$$t_i^X(u,v) = \inf_{\gamma \in \Pi(u,v)} length(\gamma).$$

Максимальное время между точками u и v в X есть

$$t_s^X(u,v) = \sup_{\gamma \in \Pi(u,v)} length(\gamma).$$

2. Бисимуляционная эквивалентность

Для T — THDTS полагаем, что F_T — ее кубическая система, i_T — начальное состояние. Определим $S_T:=\{s(Q^0)\big|s\in F_T^0\}$ — множество состояний. Определим функции $b,e:F_T\to S_T$ следующим образом: если $x\in F_T^n$, то $b(x)=x(\underbrace{\delta_1^0\circ\ldots\circ\delta_1^0}(Q^0))$, $e(x)=x(\underbrace{\delta_1^1\circ\ldots\circ\delta_1^1}(Q^0))$.

С каждым путем γ мы ассоциируем натуральное число $m=m(\gamma)$ — число интервалов разбиения $\{I_k=(a_k,a_{k+1})\}$ из определения 1.4 пути, и сам набор точек $\{a_k\}_{k\in\{0,\dots,m\}}$. Обозначим $\gamma_i=\gamma\Big|_{[a_{i-1},a_i)}$ при всех $i=1,\dots,m-1$ и $\gamma_m=\gamma\Big|_{[a_{m-1},a_m]}$. Тогда путь γ можно представить в виде $\gamma=\gamma_1\cdots\gamma_m$, т.е. γ — это результат последовательной композиции путей $\gamma=\gamma_1,\dots,\gamma_m$. Причем полагаем, что $l(\gamma_i):=l(x_i^n)$, где x_i^n — из определения 1.4 пути.

Определение 2.1. Пусть T_1, T_2 — THDTS, а $R \subseteq S_{T_1} \times S_{T_2}$ — отношение на их множествах состояний. Пути $\gamma = \gamma_1 \cdots \gamma_m$, $\widetilde{\gamma} = \widetilde{\gamma}_1 \cdots \widetilde{\gamma}_m$ в T_1 , T_2 соответственно называются R-соотносимыми, если $\gamma(a_i)R\widetilde{\gamma}(a_i)$ и $l(\gamma_i) := l(\widetilde{\gamma}_i)$ при всех $i \in \{0, \ldots, m\}$.

Определение 2.2. Пути γ и $\widetilde{\gamma}$ *R-бисимуляционны* (обозначается $\gamma \leftrightarrow_{\scriptscriptstyle R} \widetilde{\gamma}$), если

- пути γ и $\widetilde{\gamma}$ R-соотносимы;
 - для любого пути β в T_1 такого, что $\beta \sim \gamma$, существует $\widetilde{\beta} \sim \widetilde{\gamma}$ в T_2 такой, что β и $\widetilde{\beta}$ R-соотносимы,

- для любого пути $\widetilde{\beta}$ в T_2 такого, что $\widetilde{\beta} \sim \widetilde{\gamma}$, существует $\beta \sim \gamma$ в T_1 такой, что β и $\widetilde{\beta}$ R-соотносимы;
- длины путей γ и $\widetilde{\gamma}$ совпадают.

(где '~' обозначает отношение гомотопности в обычном смысле).

Определение 2.3. *Бисимуляция* между THDTS T_1 и T_2 – это отношение $R\subseteq S_{T_1}\times S_{T_2}$ такое, что если γ и $\widetilde{\gamma}$ – пробеги в T_1 и T_2 соответственно – R-бисимуляционны, $\gamma(a_m)=s$, $\widetilde{\gamma}(a_m)=\widetilde{s}$, то

- для любого пути $\beta = \beta_1$ $(m(\beta) = 1)$ такого, что $\beta(a_0) = s$, $l_{T_1}(\beta) = \mu$, существует путь $\widetilde{\beta} = \widetilde{\beta}_1$ $(\widetilde{\beta}(a_0) = \widetilde{s} \ , \ l_{T_2}(\widetilde{\beta}) = \mu$) такой, что $\gamma\beta$ и $\widetilde{\gamma}\widetilde{\beta}$ R-бисимуляционны.
- для любого пути $\widetilde{\beta}=\widetilde{\beta}_1$ $(m(\widetilde{\beta})=1)$ такого, что $\widetilde{\beta}(a_0)=\widetilde{s}$, $l_{T_2}(\widetilde{\beta})=\mu$, существует путь $\beta=\beta_1$ $(\beta(a_0)=s$, $l_{T_1}(\beta)=\mu$,) такой, что $\gamma\beta$ и $\widetilde{\gamma}\widetilde{\beta}$ R-бисимуляционны.

THDTS T_1 и T_2 бисимуляционны $(T_1 \sim_R T_2)$, если между ними существует бисимуляция R такая, что $i_{T_1}Ri_{T_2}$.

3. Теоретико-категорная характеризация бисимуляционной эквивалентности

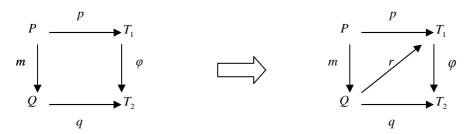
Определение 3.1. *Наблюдение* — это ацикличная THDTS (P, L, i) следующей формы

$$u_1(Q^1)u_2(Q^1)...u_k(Q^1)v(Q^n),$$

где $u_1,u_2,...,u_k \in F^1$, $v \in F^n$, и кроме того, $b(u_1)=i$, $e(u_j)=b(u_{j+1})$, $j \in \{1,...,k-1\}$, $e(u_k)=b(v)$.

Обозначим через **Obs** подкатегорию наблюдений категории **THDTS**. Подкатегория **Obs** является полной. Чтобы определить понятие **Obs**-открытости, нужно наделить **THDTS** следующей структурой: обозначим через **THDTS** $_{\rm L}$ подкатегорию всех тех THDTS с множеством меток L, морфизмы между которыми имеют тождественную (там, где она определена) компоненту α (определение 1.3). Такие морфизмы будем называть *стрелками*. Таким образом, далее говоря об **Obs**-открытости, мы предполагаем, что рассматриваемые объекты принадлежат одной подкатегории **THDTS** $_{\rm L}$.

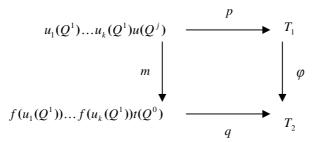
Определение 3.2. Пусть T_1 и T_2 – THDTS. Стрелка $\varphi:T_1\to T_2$ называется **Obs-открытой**, если для любых P, Q из **Obs** и для любых стрелок p,q,m таких, как на коммутативной диаграмме ниже, существует стрелка $r:Q\to T_1$, удовлетворяющая соотношениям $r\circ m=p$ и $\varphi\circ r=q$.



Определение 3.3. THDTS T_1 и T_2 **Obs-***бисимуляционны*, если существуют THDTS T и **Obs**-открытые стрелки φ_1, φ_2 такие, что $T_1 \xleftarrow{\varphi_1} T \xrightarrow{\varphi_2} T_2$.

Лемма 3.4. Пусть T_1, T_2 — THDTS, $\varphi = \langle f, \alpha \rangle : T_1 \to T_2$ — **Obs**-открытая стрелка. Тогда если $v \in F_{T_1}^n$, то $f \circ v \in F_{T_n}^n$ при всех $n \in \{0, ..., N\}$.

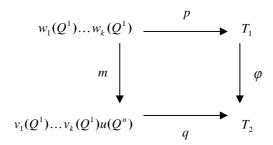
Доказательство. Пусть существует $u \in F_{T_1}^{\,j}$ $(1 \le j \le n)$ такая, что $f \circ u = t \in F_{T_2}^{\,0}$. Всегда найдутся $u_1, \dots, u_k \in F_{T_1}^{\,1}$ такие, что $u_1(Q^1) \dots u_k(Q^1) u(Q^j) \in \mathbf{Obs}$. Тогда диаграмма



 $(m=
ho\circ \phi\Big|_{u_1(Q^1)...u_k(Q^1)u(Q^j)}$, где $\rho:T_2 o f(u_1(Q^1))...f(u_k(Q^1))t(Q^0)$, причем $\rho\Big|_{f(u_1(Q^1))...f(u_k(Q^1))t(Q^0)}=id$, а p,q тождественные вложения) коммутативна. Тогда по определению **Obs**-открытой стрелки существует стрелка $r:f(u_1(Q^1))...f(u_k(Q^1))t(Q^0) o T_1$ такая, что $p=r\circ m$. Но образ $t(Q^0)$ при морфизме r может быть только точкой, а образ $u(Q^j)$ при тождественном вложении p имеет размерность j>0. Получили противоречие. Значит, $u\in F_{T_1}^n$ влечет $f\circ u\in F_{T_2}^n$. Лемма доказана.

Лемма 3.5. Пусть T_1, T_2 – THDTS, $\varphi = \langle f, \alpha \rangle : T_1 \to T_2$ – **Obs**-открытая стрелка. Тогда для любой функции $u \in F_{T_1}^n$ найдется такая функция $x \in F_{T_1}$, что $f \circ x = u$ при всех $n \in \{0, ..., N\}$.

Доказательство. Допустим, что существует $u \in F_{T_2}^n$ такая, что $\forall x \in F_{T_1}$ $f \circ x \neq u$. Можно считать, что существуют $v_1, \ldots, v_k \in F_{T_2}^1$ такие, что [для любого $i \in \{1, \ldots, k\}$ существует $w_i \in F_{T_1}^1$ такая, что $f \circ w_i = v_i$] и $v_1(Q^1) \ldots v_k(Q^1) u(Q^n) \in \mathbf{Obs}$. Тогда диаграмма



 $(m=
ho\circ \phi\Big|_{w_1(Q^1)\dots w_k(Q^1)},$ где $\rho:T_2 o v_1(Q^1)\dots v_k(Q^1)u(Q^n)$, причем $\rho\Big|_{v_1(Q^1)\dots v_k(Q^1)u(Q^n)}=id$, а p,q — тождественные вложения) коммутативна. Т.е. по определению **Obs**-открытой стрелки существует стрелка $r:v_1(Q^1)\dots v_k(Q^1)u(Q^n) o T_1$ такая, что $q=\varphi\circ r$. Но q — тождественное вложение. Получили противоречие. Лемма доказана.

Теорема 3.6. Две THDTS **Obs**-бисимуляционны тогда и только тогда, когда они бисимуляционны в соответствии с определением 2.3.

Доказательство. \Rightarrow . Предположим, что существуют THDTS T и $\varphi_1 = \langle f_1, \alpha_1 \rangle$, $\varphi_2 = \langle f_2, \alpha_2 \rangle$ — **Obs**открытые стрелки такие, что $T_1 \xleftarrow{\varphi_1} T \xrightarrow{\varphi_2} T_2$. Положим $R = \{(f_1(s), f_2(s)) | s \in S_T \}$. Покажем, что R — отношение бисимуляции между THDTS T_1 и T_2 .

Т.к. φ_1, φ_2 — морфизмы, то $f_1(i_T)$ и $f_2(i_T)$ — начальные состояния T_1 и T_2 соответственно, т.е. $(i_{T_1}, i_{T_2}) \in R$.

Из леммы 3.4 и леммы 3.5 следует, что, если $(s_1,s_2)=(f_1(s),f_2(s))\in R$, то для любой функции $x_1^n\in F_{T_1}^n$ такой, что $b(x_1^n)=s_1$, $l_1(x_1^n)=\mu$, существует функция $x^n\in F_T^n$ такая, что $x_1^n=f_1(x^n)$, $b(x^n)=s$, $l(x^n)=\mu$, и, кроме того, $f_1(e(x^n))=e(x_1^n)$. Аналогично, для любой функции $x^n\in F_T^n$ такой, что $b(x^n)=s$, $l(x^n)=\mu$, существует функция $x_2^n\in F_{T_2}^n$ такая, что $x_2^n=f_2(x^n)$, $b(x_2^n)=s_2$, $l_2(x_2^n)=\mu$, и, кроме того, $f_2(e(x^n))=e(x_2^n)$.

Рассмотрим соответствующие $x_1^n \in F_{T_1}^n$, $x^n \in F_T^n$ и $x_2^n \in F_{T_2}^n$. Возьмем путь $\beta:[0,1] \to x_1^n(Q^n)$, $\beta(0) = b(x_1^n)$, $\beta(1) = e(x_1^n)$. Тогда его образ в T_2 , по доказанному, есть $\widetilde{\beta}:[0,1] \to x_2^n(Q^n)$, $\widetilde{\beta}(0) = b(x_2^n)$, $\widetilde{\beta}(1) = e(x_2^n)$. Покажем, что $\widetilde{\beta}$ и β R-бисимуляционны.

Они, очевидно, R-соотносимы. При действии морфизма длина пути не возрастает, т.к. $\|d_u f\| \le 1$. Рассмотрим наблюдения $u_1(Q^1)...u_k(Q^1)x^n(Q^n)$ и $v_1(Q^1)...v_k(Q^1)x_1^n(Q^n)$ из T и T_1 соответственно, $f_1(u_1) = v_1,...,f_1(u_k) = v_k$. Диаграмма

$$u_{1}(Q^{1})...u_{k}(Q^{1})x^{n}(Q^{n}) \xrightarrow{p} T$$

$$m \downarrow r \downarrow \varphi_{1}$$

$$v_{1}(Q^{1})...v_{k}(Q^{1})x_{1}^{n}(Q^{n}) \xrightarrow{q} T_{1}$$

 $(m=
ho\circ \phi\Big|_{u_1(Q^1)...u_k(Q^1)_x^n(Q^n)}$, где $ho:T_1 o v_1(Q^1)...v_k(Q^1)x_1^n(Q^n)$, причем $ho\Big|_{v_1(Q^1)...v_k(Q^1)x_1^n(Q^n)}=id$, р,q — тождественные вложения, а $r:v_1(Q^1)...v_k(Q^1)x_1^n(Q^n) o T$ — из определения **Obs**-открытой стрелки) коммутативна. При тождественном вложении q длина пути β сохранится, т.е. она сохранится при $\phi_1\circ r$, а значит, длины путей β и $\widetilde{\beta}$ ($\widetilde{\beta}$ — прообраз β при морфизме ϕ_1) совпадают. Аналогично, для $\widetilde{\beta}$ и $\widetilde{\beta}$. Таким образом, $length(\beta)=length(\widetilde{\beta})$.

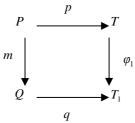
Пусть есть путь γ , $\gamma \sim \beta$, $\gamma([0,1]) \subset x_1^n(Q^n)$, тогда если $\widetilde{\gamma}$ – его образ в T_2 , то γ и $\widetilde{\gamma}$ R-соотносимы по доказанному. Кроме того, $\widetilde{\gamma} \sim \widetilde{\beta}$, т.к. морфизмы сохраняют гомотопность путей (Утверждение 1.5). Таким образом, β и $\widetilde{\beta}$ R-бисимуляционны.

Аналогично в сторону от T_2 в T_1 .

 \Leftarrow . Пусть $T_1 \sim_R T_2$. Построим следующую THDTS T: рассмотрим пару R-бисимуляционных пробегов $(\beta, \widetilde{\beta})$, рассмотрим их гомотопические классы эквивалентности $K_1(\beta) = \{\gamma \in \Pi(s,t) | \gamma \sim \beta\}$, $K_2(\widetilde{\beta}) = \{\widetilde{\gamma} \in \Pi(\widetilde{s},\widetilde{t}) | \widetilde{\gamma} \sim \widetilde{\beta}\}$, где $\beta(0) = s$, $\beta(1) = t$, $\widetilde{\beta}(0) = \widetilde{s}$, $\widetilde{\beta}(1) = \widetilde{t}$. Сопоставим каждой такой паре классов точку (состояние), т.е. $x^0(Q^0)$, где $x^0 \in F_T^0$. По определению, если γ и $\widetilde{\gamma}$ (пробеги в T_1 и T_2 соответственно) R-бисимуляционны, $\gamma(a_m) = s$, $\widetilde{\gamma}(a_m) = \widetilde{s}$, то для любого пути $\beta = \beta_1$ такого, что $\beta(a_0) = s$, $l_{T_1}(\beta) = \mu$, существует путь $\widetilde{\beta} = \widetilde{\beta}_1$ ($\widetilde{\beta}(a_0) = \widetilde{s}$, $l_{T_2}(\widetilde{\beta}) = \mu$) такой, что $\gamma\beta$ и $\widetilde{\gamma}\widetilde{\beta}$ R-бисимуляционны. Каждой такой паре $\beta, \widetilde{\beta}$, т.е. каждой паре функций $x_1^{[\mu]} \in F_{T_1}^{[\mu]}$, $x_2^{[\mu]} \in F_{T_2}^{[\mu]}$, таких, что $l_{T_1}(x_1^{[\mu]}) = l_{T_2}(x_2^{[\mu]}) = \mu$, $b(x_1^{[\mu]}) = s$, $b(x_2^{[\mu]}) = \widetilde{s}$, $e(x_1^{[\mu]}) = \beta(1)$, $e(x_2^{[\mu]}) = \widetilde{\beta}(1)$, сопоставим кубическую функцию $x^{[\mu]} \in F_T^{[\mu]}$, такую, что $l_T(x^{[\mu]}) = \mu$, $b(x_1^{[\mu]}) = (K_1(\gamma), K_2(\widetilde{\gamma}))$, $e(x_1^{[\mu]}) = (K_1(\gamma), K_2(\widetilde{\gamma}))$.

Очевидно, существует (естественная) стрелка $\varphi_1 = \left\langle f_1, \alpha_1 \right\rangle : T \to T_1$ (сопоставление, обратное указанному выше). Можно выбрать такие $x^{|\mu|} \in F_T^{|\mu|}$,, чтобы эта стрелка была изометрией. Тогда стрелка $\varphi_2 = \left\langle f_2, \alpha_2 \right\rangle : T \to T_2$ тоже будет изометрией (это следует из определения 2.3).

Ясно, что если диаграмма



(где $P,Q \in \mathbf{Obs}, m,p,q$ — стрелки) коммутативна, то существует стрелка $r:Q \to T$ такая, что $r \circ m = p$ и $\varphi_1 \circ r = q$. Т.е. стрелка φ_1 **Obs**-открыта.

Аналогично для стрелки $\varphi_2 = \langle f_2, \alpha_2 \rangle : T \to T_2$.

Теорема доказана.

Заключение

В работе были получены следующие результаты: введена геометрическая модель временных многомерных систем переходов; с помощью гомотопии на введенной модели определена бисимуляционная эквивалентность; построена категория временных многомерных систем переходов; дана альтернативная характеризация бисимуляции через открытые морфизмы.

В дальнейшем предполагается разработать гомологическую характеризацию бисимуляционной эквивалентности временных многомерных систем переходов.

Литература

- 1. **F. Bourceux.** Handbook of Categorical Algebra. Cambridge: Cambridge University Press (1994).
- 2. **R. van Glabbek.** Bisimulation Semantics for Higher Dimentional Automata. Manuscript available on the web as http://theory.stanford.edu/rvg/hda
- 3. E. Goubalt, T.P. Jensen. Homology of Higer-Dimensional Automata. Lecture Notes in Computer Science 630 (1992) 254–268.
- 4. E. Goubalt. Domains of Higer-Dimensional Automata. Lecture Notes in Computer Science 715 (1993).
- 5. **E. Goubalt.** The Geometry of Concurrency. PhD thesis, Ecole Normale Superieure. Available at http://www.dmi.ens.fr/goubault.
- T. Hune, M. Nielsen. Timed Bisimulation and Open Maps. Lecture Notes in Computer Science 1450 (1998) 378–387.
- M. Joyal, M. Nielsen, G. Winskel. Bisimulation from Open Maps. Information and Computation 127(2) (1996) 378–387.
- 8. V Pratt. Modeling Concurrency with Geometry. Proceedings of 18th ACM Symposium on Principles of Programming Languages. ACM Press(1991).
- 9. V. Sassone, G.L. Catani. Higher-Dimensional Transition Systems. *Proceedings of LICS* '96.
- 10. G. Winskel, M. Nielsen. Models for Concurrency. In Handbook of Logic in Compiter Science 4 (1995)