
Formal specifications and decomposition of logic systems

for purposes of analysis, synthesis and diagnostics

Ján Bača, Juraj Giertl, Vladimír Chladný

Department of Computers and Informatics,
Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
Phone: +421 55 602 2573, Fax: +421 55 633 0115

E-mails: Jan.Baca@tuke.sk, Juraj.Giertl@tuke.sk, Vlado.Chladny@tuke.sk

Abstract

The contribution deals with different formal specifications of logic system that are
used for solving of analysis, synthesis and diagnostics tasks. Particular attention is given to
analysis of applicability of separate description for the purpose of system decomposition. The
data structure for algebraic expressions with context-free grammar utilization is also defined
in the contribution. We also propose algorithm of de/composition of logical systems specified
by this expression and finally a procedure for identical and isomorphic circuit search.

Introduction

In relation to logic systems the tasks of synthesis, analysis and diagnostics are being
solved. In separate tasks the systems are engaged by different descriptions. The definitions of
the system can be divided into two basic groups. In the first group the system is defined upon
its function what means functional dependence between its values. In the second group the
system is defined upon its structure what means upon the connections between the system
components. In these cases the function of the system can be derived from the functions of
separate components and connections between them. To understand the dependence between
separate system descriptions it is essential to realize, that the given function can be realized by
different structures, however the given structure of the circuit realizes a unique determined
function. So that the transformation between different systems description could be distinct,
sometimes additional information is needed.

If the complexity z(n) of the solution of the task doesn’t rise with its size n in linear
c(n) ≠ O(n), but polynomial c(n) = O(nk), or exponential c(n) = O(gn) way, then to reducing
of the total solution complexity the decomposition of the system S(n) into subsystems S1(n1),
S2(n2), ..., Sp(np), ni < n, is used with great advantage. Decomposition makes sense if lowering
of the solution time in decomposed systems is greater than increase of the solution time
related with decomposition tds and reverse composition tcs of the system.

csds

p

ii-
ii tt))(nt(S t(S(n)) ++++++++>>>>∑∑∑∑

1 Formal systems specification

The starting specification of systems is often being expressed by the function of the
system described in common spoken language. This form of description has a disadvantage in
the fact that for an exact description of a function a very complex verbal description is
needed. This is the reason why for exact function description formal description as input –
output sequences (normal form), regular expressions, programs, Petri nets, finite state
automata are used [1].

The task of system synthesis is related to the system specification by function that
means determination of a system structure, which realizes given function. Decomposition of
the given function is being made in relation to this task with the aim to simplify the synthesis.

Structure of the designed systems is mostly represented by a structural scheme. This
scheme represents graphical elements, which the system consist of and connections between
them. Inner representation of the graphical presentation is very complex and is hidden to the
user therefore the text description of the scheme – netlist is used where the lists of elements
and relations between them are mentioned.

The task of system analysis is related to the system description by its structure; that
means the determination of a system function that is equivalent to the assigned structure.
Other task is the system diagnostics, where also the system decomposition is used with great
advantage.

Between function assignment and description of its structure there exists a whole row
of other possible system descriptions that describe the structure of a system in various ways.
The structure of sequential logic system is often described by a set of excitation and output
functions that represent combinational section of the system. Combinational logic systems
present specific case of sequential systems without memory section and are fully described by
a set of output functions.

Netlist and a set of excitation and output functions represent descriptions that are
suitable for presentation of logic systems by solution of basic tasks of their analysis, synthesis
and diagnostics. That’s why we will deal with these specifications later.

Transformation of a structure to algebraic expression of circuit functions expressed by
netlist is described in [2]. Reverse transformation of algebraic function expressions of a
circuit into the circuit’s structure is described in [3]. Due to this fact we can obtain algebraic
expression of the circuit’s excitation and output functions independently to the fact the circuit
was expressed by its function or by its structure. This expression represents the strings of
symbols that meet the rules defined by the grammar. We can solve many tasks related to
analysis, synthesis and diagnostics of logic circuits by analyzing the mentioned strings.

One of the main tasks is the decomposition of string to substrings. According to tasks
that are to be solved, specific features have to be kept by created substrings. For example
factorization demands searching of identical substring in a string corresponding to one
function, pre-realization - searching of identical substrings in a string corresponding to more
functions, diagnostics – searching of isomorphic substring in a string corresponding to one
function or more functions.

System Sq (u1, u2, … , um) is isomorphic to system Sp (v1, v2, … , vm) if Sq can be
obtained from Sp by substitution ui ← vj, i,j ∈∈∈∈ <<<<1, m>>>>. Sets U = (u1, u2, … , um),
V = (v1, v2, … , vm) represent input, inner and output values of the systems.

Systems Sp (v1, v2, … , vm) and Sq (u1, u2, … , um) are identical, if they are isomorphic
to each other and ui ≡ vj.

Excitation and output functions represent Boolean functions (B-functions). Algebraic
expressions of B-functions represent a string of symbols that represent operands, operators
and other symbols defining the priority of operations.

2 Definition of data structure for algebraic expression of a logic system
function

By decomposition of logic systems it is necessary to differentiate between

combination and sequential logic circuits. In the case of combination circuits the algebraic
expression – disjunctive normal form (DNF), conjunctive normal form (CNF), Sheffer’s form
(realization by the NAND elements), Pierce’s form (realization by the NOR elements), the
bracket expression (result of factorization), expression by non-equivalence (realization by the
XOR elements) or their combination is fully sufficient. Function of combination circuit can
by expressed as follows:

identifier_of_function = algebraic_expression

For the function identifier, usually the symbol F, or other upper case letter of alphabet
is used. Algebraic expression is a string consisting of variable identifiers, operators belonging
to individual operations and brackets that designate operations priority. For variable
identifiers lower case letters are used that can be supplemented by numbers or other symbols.

For combination circuit with more outputs, the equal expression as mentioned before
is used, but with the difference, that functions of separate outputs are written in individual
lines. Function identifiers are usually supplemented with the output number.

Typical model of a sequential circuits function is the finite state automat, or its
transition and output table. Structure of the circuit representing the finite state automat is
given by its combinational section and a memory section. The memory section is decomposed
into elementary automats matching to individual inner variables of the sequential circuit. Only
the combinational section represented by excitation and output functions will be decomposed,
and due to this fact the algebraic expression can be used for its description. The equal
expression to the description of combination circuit with many outputs is used. Every function
is written in individual line, where for identifier of the excitation function symbols D, T, R, S,
J, K, are used depending on the used type of an elementary automat, and for the output
function identifier symbol Y is used. Number of the elementary automat, or the output number
is supplemented to every identifier.

2.1 Context-free grammar for the language of B-functions

Structure defined in this way can be formally defined with context-free grammar [4]
consisting of the following rules (terminal symbols are written in normal type, non-terminal in
italics):

START � START NEW_LINE FUNCTION_ID = EXPR | FUNCTION_ID = EXPR

EXPR � EXPR + EXPR | EXPR ↑ EXPR | EXPR ↓ EXPR | EXPR⊕ EXPR | EXPR EXPR | (EXPR) | ¬ EXPR
| VAR_ID

FUNCTION_ID � A NUMBER | … | Z NUMBER | A | … | Z

VAR_ID � a NUMBER | … | z NUMBER | a | … | z

NUMBER � NUMBER 0 | ...| NUMBER 9 | 1| ...| 9

NEW_LINE � \n

2.2 Lexical analysis of input

The objective of the lexical analysis is to find out if only allowed symbols are at input.
In order to achieve simpler implementation it is suitable to predefine some symbols used for
operator marking. Instead of Sheffer’s algebra operator ‘↑ ‘ symbol ‘|‘ is used, instead of
Pierce’s algebra operator ‘↓ ‘symbol ‘!‘ is used, instead of the non-equivalency operator ‘⊕ ‘,
symbol ‘#‘ is used and instead of the operator of negation ‘¬ ‘, symbol ‘\‘ is used.

It is suitable to use the tool called “Lex” to create a lexical analyzer. It can generate
the source code in “C” language based on specification file. This can be later used either
standalone, or in combination with a syntax analyzer. The listing of specification file example
created upon the principles described in [5] is the following:

DIGIT [0-9]
PDIGIT [1-9]
NUMBER {PDIGIT}|{PDIGIT}({DIGIT})+
FID [A-Z]
VAR [a-z]

%%
" " ;
"\n" {return NEW_LINE;}
{NUMBER} {return NUMBER;}
{FID} {return FID;}
{VAR} {return VAR;}
"=" {return ASSIGN;}
"(" {return L_BRACKET;}
")" {return R_BRACKET;}
"+" {return OR;}
"|" {return NAND;}
"!" {return NOR;}
"#" {return XOR;}
"\\" {return NOT;}
. {printf("lexical error: wrong input:\"%s\"\n",yytext);}
%%

2.3 Syntactical analysis of input

The syntactical analyzer task is to find out, if the symbols recognized by lexical
analyzer are ordered in accordance with the formal grammar described in section 2.2.

It is suitable to use the tool called “Yacc” to create a syntax analyzer. It can generate
the source code in “C” language based on specification file. It is necessary then to compile
this code into executable form using “C” language compiler. The compiler produces the
executable program that can determine whether the given input belongs to the language
described by the formal grammar, or can transform the input. In our case the transformation of
input means decomposition into normal forms. The listing of part of specification file
example is the following, where formal grammar based upon principles described in [5] is

written. This file has to include a code in “C” language, that will provide an input file
opening, syntax analysis, semantic analysis, code generation, or other functions related to the
task of system decomposition.

%token VAR NUMBER FID
%token ASSIGN L_BRACKET R_BRACKET NEW_LINE
%token NAND NOT OR NOR XOR
%start START

%%
START : START NEW_LINE FUNCTION_ID ASSIGN EXPR
 | FUNCTION_ID ASSIGN EXPR
 ;
EXPR : EXPR OR EXPR
 | EXPR NAND EXPR
 | EXPR NOR EXPR
 | EXPR XOR EXPR
 | EXPR EXPR
 | L_BRACKET EXPR R_BRACKET
 | NOT EXPR
 | VAR_ID
 ;
FUNCTION_ID : FID
 | FID NUMBER
 ;
VAR_ID : VAR
 | VAR NUMBER

 ;
%%

3 De/composition of logical systems

3.1 Decomposition of algebraic expression into substrings

Decomposition of algebraic expression comes out from an expression described by the
grammar (section 2.1), which is analyzed in bottom-up way. The result of decomposition is
the decomposition of an algebraic expression into substrings that are realizable with only one
elementary logic gate.

Algorithm of decomposition of an algebraic expression into substrings can be
described in the following steps:

For a function of every primary output do following:

1. Search substring realizable with one elementary logic gate. Gates NOT, AND, OR,
NAND, NOR, XOR, are considered.

2. Substitute found substring by one variable, marked by symbol x and two numeric
values. First indicates the level of the substring, the second serves as an identifier for the
substring within the given level. Every substring can include only primary variables and
variables used for substitution of lower level substrings.

3. Express the function with substitution variables.

4. Repeat steps 1, 2, 3, until the expression is reduced to only one elementary logic gate.

Example of an application of the presented algorithm for the circuit realizing full adder
circuit can be following (Figure 1). The circuit has two outputs – sum and carry into higher
level:

s = ¬ (¬ (a)b + a¬ (b))c + (¬ (a)b + a¬ (b))¬ (c)

p = ab+ (¬ (a)b + a¬ (b))c

Function Substitution
s = ¬ (¬ (a)b + a¬ (b))c + (¬ (a)b + a¬ (b))¬ (c) x[1,1] = ¬ (c)
s = ¬ (¬ (a)b + a¬ (b))c + (¬ (a)b + a¬ (b)) x[1,1] x[1,2] = ¬ (b)
s = ¬ (¬ (a)b + a¬ (b))c + (¬ (a)b + a x[[1,2]) x[1,1] x[2,1] = a x[1,2]
s = ¬ (¬ (a)b + a¬ (b))c + (¬ (a)b + x[2,1]) x[1,1] x[1,3] = ¬ (a)
s = ¬ (¬ (a)b + a¬ (b))c + (x[1,3] b + x[2,1]) x[1,1] x[2,2] = x[1,3] b
s = ¬ (¬ (a)b + a¬ (b))c + (x[2,2] + x[2,1]) x[1,1] x[3,1] = (x[2,2] + x[2,1])
s = ¬ (¬ (a)b + a¬ (b))c + x[3,1] x[1,1] x[4,1] = x[3,1] x[1,1]
s = ¬ (¬ (a)b + a¬ (b))c + x[4,1] x[1,4] = ¬ (b)
s = ¬ (¬ (a)b + a x[1,4])c + x[4,1] x[2,3] = a x[1,4]
s = ¬ (¬ (a)b + x[2,3])c + x[4,1] x[1,5] = ¬ (a)
s = ¬ (x[1,5] b + x[2,3])c + x[4,1] x[2,4] = x[1,5] b
s = ¬ (x[2,4] + x[2,3])c + x[4,1] x[3,2] = (x[2,4] + x[2,3])
s = ¬ (x[3,2])c + x[4,1] x[4,2] = ¬ (x[3,2])
s = x[4,2] c + x[4,1] x[5,1] = x[4,2] c
s = x[5,1] + x[4,1] x[6,1] = x[5,1] + x[4,1]
s = x[6,1]

p = ab + (¬ (a)b + a¬ (b))c x[1,6] = ¬ (b)
p = ab + (¬ (a)b + a x[1,6])c x[2,5] = a x[1,6]
p = ab + (¬ (a)b + x[2,5])c x[1,7] = ¬ (a)
p = ab + (x[1,7] b + x[2,5])c x[2,6] = x[1,7] b
p = ab + (x[2,6] + x[2,5])c x[3,3] = (x[2,6] + x[2,5])
p = ab + x[3,3] c x[4,3] = x[3,3] c
p = ab + x[4,3] x[1,8] = ab
p = x[1,8] + x[4,3] x[5,2] = x[1,8] + x[4,3]
p = x[5,2]

3.2 Composition of logic system from substrings

A composition of logic system comes out of a system of substrings obtained by a
decomposition of algebraic expression (section 3.1). The result of a composition is a system
of algebraic expressions of all circuit outputs functions and algebraic expression of system
modules outputs functions. Except the system of substrings the level of modules, which the
composed circuit should consist of is the input for the algorithm. Determination of modules
level depends upon a type of used logic elements and upon a task which is the de/composition
done for.

Algorithm of logic system composition from substrings representing one-level circuits
can be described in the following steps:

For every primary output function of the circuit do following:

1. Let n be level of function, let m be level of modules the designed circuit consist of. Let
m_temp = n – (n mod m).

2. Substitute all modules of higher level than m_temp by module composition of lower
level by substitution of particular substrings into function expression until the function
is not expressed only by modules outputs of m_temp be level or lower.

3. In this expression, substitute all modules with level lower than m_temp by substitution
of particular substrings until the function is not expressed only by modules outputs
x[m_temp,i], x[m_temp-m,i], primary variables, or modules whose level could be lower
than m_temp, but are not suitable for substitution as their outputs are also inputs on
lower level of the circuit.

4. In this expression, for every module x[p,q] do following:

4.1. If p ≥ m, let m_temp = p – m, else m_temp = p

4.2. Proceed to step 2

Example of an application of the presented algorithm for a full adder circuit is
presented in next table. Functions of outputs s = x[6,1], p = x[5,2] gained by substitutions
presented in section 3.1 are input for the algorithm. We chose m = 3, because the circuit has
to be realized by logical elements NOT, AND, OR, and so gain a circuit consisting of three-
level modules.

Function Substitution
s = x[6,1] x[6,1] = x[5,1] + x[4,1]
s = x[5,1] + x[4,1] x[5,1] = x[4,2] c
s = x[4,2] c + x[4,1] x[4,2] = ¬ (x[3,2])
s = ¬ (x[3,2])c + x[4,1] x[4,1] = x[3,1] x[1,1]
s = ¬ (x[3,2])c + x[3,1] x[1,1] x[1,1] = ¬ (c)
s = ¬ (x[3,2])c + x[3,1] ¬ (c)

x[3,2] = (x[2,4] + x[2,3]) x[2,4] = x[1,5] b
x[3,2] = (x[1,5] b + x[2,3]) x[2,3] = a x[1,4]
x[3,2] = (x[1,5] b + a x[1,4]) x[1,5] = ¬ (a)
x[3,2] = (¬ (a) b + a x[1,4]) x[1,4] = ¬ (b)
x[3,2] = (¬ (a) b + a ¬ (b))

x[3,1] = (x[2,2] + x[2,1]) x[2,2] = x[1,3] b
x[3,1] = (x[1,3] b + x[2,1]) x[2,1] = a x[1,2]
x[3,1] = (x[1,3] b + a x[1,2]) x[1,3] = ¬ (a)
x[3,1] = (¬ (a) b + a x[1,2]) x[1,2] = ¬ (b)
x[3,1] = (¬ (a) b + a ¬ (b))

p = x[5,2] x[5,2] = x[1,8] + x[4,3]
p = x[1,8] + x[4,3] x[4,3] = x[3,3] c
p = x[1,8] + x[3,3] c x[1,8] = ab
p = ab + x[3,3] c

x[3,3] = (x[2,6] + x[2,5]) x[2,6] = x[1,7] b
x[3,3] = (x[1,7] b + x[2,5]) x[2,5] = a x[1,6]
x[3,3] = (x[1,7] b + a x[1,6]) x[1,7] = ¬ (a)
x[3,3] = (¬ (a) b + a x[1,6]) x[1,6] = ¬ (b)
x[3,3] = (¬ (a) b + a ¬ (b))

It is obvious that modules x[3,1], x[3,2] and x[3,3] have identical structure and so are
realized only once (pre-realization). We can also find out that the module s is isomorphic to
the module x[3,1], what becomes interesting from the diagnostic point of view. The procedure
of search of identical and isomorphic modules is described in section 4. Structural scheme of
a de/composed full adder circuit is shown in figure 1.

Figure 1. Structural scheme of a de/composed full adder circuit

4 Identification of identical and isomorphic circuits

Identification of identical circuits can be executed in the process of decomposition to
one-stage circuits by comparison of expressions x[i,j] , for j=1, 2, …, u, where u is the count

of expression with the level i. Identical expressions x[i,j] and x[i,j+v] are replaced by
expression x[i,j] .

By the comparison of expressions we have to take in account the validity of
commutative rules. Expressions that differ only by permutation of variables are identical.

Detection of isomorphic circuits is executed after the substitution of identical
expressions, so that the identical variables should come only with one labeling. To
determination of the isomorphism of circuits it is necessary to find out, if the conditions of
identity of relevant operation (type of the operator and number of operand) and also the
condition of variables substitution are fulfilled. Detection of the last mentioned condition is
very demanding, because the number of different substitutions is equal to the number of
variables permutations. That’s why the condition of substitution is detected only when all
other conditions are fulfilled.

For easier detection of expressions identity and circuits’ isomorphism it is useful to
order the variables in them according to the alphabet and indexes and introduce the circuit’s
scheme evaluation [6].

5 Conclusion

Decompositions of strings and suggested possibilities of their application in different
task in the areas of analysis, synthesis and diagnostics of logic circuits are proposed in the
contribution. There are many other areas where the decomposition of strings is used [7].
Implementation of string decomposition into mentioned tasks exceeds the range of this
contribution. Some of the mentioned tasks and also the generalization of grammar for other
types of strings and processing of program systems for their lexical, syntactic and semantic
analysis are in the plan for the future.

References

[1] Bača, J.: Logické systémy. EF TU Košice, 1992

[2] Antalík, R., Bača, J., Beneš, B.: Faults Detector and Locator. In.: Proceedings of the
EMES 2003, Oradea-Felix Spa, Romania, May 29-31, 2003, pp. 7-12

[3] Petrovský, B.: Zostavovanie štruktúry logických obvodov. Diploma thesis. DCI FEI TU
Košice, 2000.

[4] Kollár, J., Havlice Z.: Technológia jazykových systémov. Vydavateľstvo elfa, s.r.o.,
Košice, 2001. ISBN 80-89066-12-7

[5] Levine, J. R., Mason, T., Brown, D.: Lex & Yacc. O’Reilly & Associates, Inc., Sebastopol,
California, 1992. ISBN 15-65920-00-7

[6] Bača, J.: Decomposition of Logic Circuits. In: Proceedings of International Conference
Electronic Computers and Informatics ’98, FEI TU Košice- Herľany, October 1998.
pp.100-103. ISBN 80-88786-94-0

[7] Tzeytlin, G. E.: Vvedenije v algoritmiku, Sfera, Kyjev 1998, ISBN 960-7267-14-8

