Formal specifications and decomposition of logic syems

for purposes of analysis, synthesis and diagnostics

Jan Bafa, Juraj Giertl, Vladimir Chladny

Department of Computers and Informatics,
Faculty of Electrical Engineering and Informatics,
Technical University of KoSice, Letna 9, 042 00ikeSSlovakia
Phone: +421 55 602 2573, Fax: +421 55 633 0115
E-mails: Jan.Baca@tuke.sluraj.Giertl@tuke.skVlado.Chladny@tuke.sk

Abstract

The contribution deals with different formal spemations of logic system that are
used for solving of analysis, synthesis and diafices$asks. Particular attention is given to
analysis of applicability of separate descriptionthe purpose of system decomposition. The
data structure for algebraic expressions with cdrftee grammar utilization is also defined
in the contribution. We also propose algorithm efcdmposition of logical systems specified
by this expression and finally a procedure for taeh and isomorphic circuit search.

Introduction

In relationto logic systems the tasks of synthesis, analysisdaagnostics are being
solved. In separate tasks the systems are engggditfdrent descriptions. The definitions of
the system can be divided into two basic groupshénfirst group the system is defined upon
its function what means functional dependence batwts values. In the second group the
system is defined upon its structure what means upe connections between the system
components. In these cases the function of theesystin be derived from the functions of
separate components and connections between theeomderstand the dependence between
separate system descriptions it is essential t@eg#hat the given function can be realized by
different structures, however the given structuiréhe circuit realizes a unique determined
function. So that the transformation between déffiiersystems description could be distinct,
sometimes additional information is needed.

If the complexityz(n) of the solution of the task doesn’t rise with stgen in linear
c(n) # O(n), but polynomialc(n) = O(ri‘), or exponentiat(n) = O(d') way, then to reducing
of the total solution complexity the decompositmfithe systen$(n) into subsystem$;(ny),
S(ny), ..., $(Np), Ni < n, is used with great advantage. Decomposition madesesif lowering
of the solution time in decomposed systems is gretlitan increase of the solution time
related with decompositiagsand reverse compositidgof the system.

t(S(n)) > it(s| (ni)) + tds + tcs

1 Formal systems specification

The starting specification of systems is often gedpressed by the function of the
system described in common spoken language. This &b description has a disadvantage in
the fact that for an exact description of a functied very complex verbal description is
needed. This is the reason why for exact functiescdption formal description as input —
output sequences (normal form), regular expressignggrams, Petri nets, finite state
automata are used [1].

The task of system synthesis is related to theesystpecification by function that
means determination of a system structure, whiahzes given function. Decomposition of
the given function is being made in relation tettaisk with the aim to simplify the synthesis.

Structure of the designed systems is mostly reptedeby a structural scheme. This
scheme represents graphical elements, which themsysonsist of and connections between
them. Inner representation of the graphical prediemt is very complex and is hidden to the
user therefore the text description of the schemetlist is used where the lists of elements
and relations between them are mentioned.

The task of system analysis is related to the systescription by its structure; that
means the determination of a system function thatquivalent to the assigned structure.
Other task is the system diagnostics, where als®system decomposition is used with great
advantage.

Between function assignment and description o$titscture there exists a whole row
of other possible system descriptions that descdhibestructure of a system in various ways.
The structure of sequential logic system is oftesctibed by a set of excitation and output
functions that represent combinational sectdrthe system. Combinational logic systems
present specific case of sequential systems witmaumory section and are fully described by
a set of output functions.

Netlist and a set of excitation and output funcdioepresent descriptions that are
suitable for presentation of logic systems by solubf basic tasks of their analysis, synthesis
and diagnostics. That's why we will deal with thepecifications later.

Transformation of a structure to algebraic expmssif circuit functions expressed by
netlist is described in [2]. Reverse transformatadnalgebraic function expressions of a
circuit into the circuit’s structure is described[B]. Due to this fact we can obtain algebraic
expression of the circuit’'s excitation and outpuidtions independently to the fact the circuit
was expressed by its function or by its structlifeis expression represents the strings of
symbols that meet the rules defined by the grammé&a.can solve many tasks related to
analysis, synthesis and diagnostics of logic ciscy analyzing the mentioned strings.

One of the main tasks is the decomposition of gttinsubstrings. According to tasks
that are to be solved, specific features have tédpt by created substrings. For example
factorization demands searching of identical sutxgtin a string corresponding to one
function, pre-realization - searching of identisabstrings in a string corresponding to more
functions, diagnostics — searching of isomorphibssiing in a string corresponding to one
function or more functions.

SystemS; (U1, Uy, ... , Un) IS isomorphic to systerB, (vi, W, ... , W) if S can be
obtained fromS, by substitutionu; «— v, i,j <1, m> SetsU=(u, Uy, ... , Un),
V=(w,Ww, ...,) represent input, inner and output values of tistesys.

SystemsS; (Vy, Vo, ... , M) andS; (U, Uy, ... , Uy) are identical, if they are isomorphic
to each other angi = v,.

Excitation and output functions represent Boolaamcfions (B-functions). Algebraic
expressions of B-functions represent a string ohlwyls that represent operands, operators
and other symbols defining the priority of operasio

2 Definition of data structure for algebraic expresson of a logic system
function

By decomposition of logic systems it is necessaoy differentiate between
combination and sequential logic circuits. In tleses of combination circuits the algebraic
expression — disjunctive normal form (DNF), conjiime normal form (CNF), Sheffer’'s form
(realization by the NAND elements), Pierce’s forraalization by the NOR elements), the
bracket expression (result of factorization), espren by non-equivalence (realization by the
XOR elements) or their combination is fully suféat. Function of combination circuit can
by expressed as follows:

identifier_of_function = algebraic_expression

For the function identifier, usually the symbel or other upper case letter of alphabet
is used. Algebraic expression is a string congjstivariable identifiers, operators belonging
to individual operations and brackets that desmgnaperations priority. For variable
identifiers lower case letters are used that casupplemented by numbers or other symbols.

For combination circuit with more outputs, the dgergoression as mentioned before
is used, but with the difference, that functionsseparate outputs are written in individual
lines. Function identifiers are usually supplemdmngth the output number.

Typical model of a sequential circuits function tle finite state automat, or its
transition and output table. Structure of the dircapresenting the finite state automat is
given by its combinational section and a memoryigecThe memory section is decomposed
into elementary automats matching to individuakinwariables of the sequential circuit. Only
the combinational section represented by excitadiwh output functions will be decomposed,
and due to this fact the algebraic expression carused for its description. The equal
expression to the description of combination ciretth many outputs is used. Every function
is written in individual line, where for identifi@f the excitation function symbol3, T, R, S,

J, K, are used depending on the used type of an elergeatdomat, and for the output
function identifier symboY is used. Number of the elementary automat, oothput number
is supplemented to every identifier.

2.1 Context-free grammar for the language of B-functios

Structure defined in this way can be formally definvith context-free grammar [4]
consisting of the following rules (terminal symbal® written in normal type, non-terminal in
italics):

START> START NEW_LINE FUNCTION_ID = EXPR | FUNCTION_ID XHR

EXPR-> EXPR + EXPR | EXPR EXPR | EXPRI EXPR | EXPRI EXPR | EXPR EXPR(EXPR | - EXPR
| VAR_ID

FUNCTION_ID-> A NUMBER |... |ZNUMBER JA| ... | Z
VAR_ID> aNUMBER |... | zNUMBER R | ... | z
NUMBER-> NUMBERO | ...| NUMBERO |1] ...| 9
NEW_LINE= \n

2.2 Lexical analysis of input

The objectiveof the lexical analysis is to find out if only aled symbols are at input.
In order to achieve simpler implementation it igadle to predefine some symbols used for
operator marking. Instead of Sheffer's algebra afoer'+ * symbol ‘| is used, instead of
Pierce’s algebra operator ‘symbol ‘! is used, instead of the non-equivaleroperator © °,
symbol ‘#' is used and instead of the operatoregfation - ‘, symbol ‘\' is used.

It is suitable to use the tool called “Lex” to dea lexical analyzer. It can generate
the source code in “C” language based on spedtitdile. This can be later used either
standalone, or in combination with a syntax analyZbke listing of specification file example
created upon the principles described in [5] isftlewing:

DAT [0-9]

PDIA T [1-9]

NUMBER {PDIG T} {PDIAT}({DIAT})+
FI D [A Z]

VAR [a-z]

W

"\'n" {return NEW LI NE; }

{ NUMBER} {return NUMBER; }

{FI D} {return FID;}

{ VAR} {return VAR;}

{return ASSI G\; }

{return L_BRACKET; }

{return R _BRACKET; }

{return OR}

{return NAND, }

{return NOR;}

{return XOR;}

{return NOT;}

{printf("lexical error: wong input:\"%\"\n",yytext);}

—HTT A

— = = = = = =

3

2.3 Syntactical analysis of input

The syntactical analyzer task is to find out, i€ taymbols recognized by lexical
analyzer are ordered in accordance with the fogreehmar described in section 2.2.

It is suitable to use the tool called “Yacc” to & a syntax analyzer. It can generate
the source code in “C” language based on spedtitdile. It is necessary then to compile
this code into executable form using “C” languagenpiler. The compiler produces the
executable program that can determine whether thengnput belongs to the language
described by the formal grammar, or can transfdreniiput. In our case the transformation of
input means decomposition into normal forms. Treting of part of specification file
example is the following, where formal grammar loaspon principles described in [5] is

written. This file has to include a code in “C” tarage, that will provide an input file
opening, syntax analysis, semantic analysis, cedergtion, or other functions related to the
task of system decomposition.

% oken VAR NUMBER FI D

% oken ASSI GN L_BRACKET R BRACKET NEW LI NE
% oken NAND NOT OR NOR XOR

Ostart START

%o

START : START NEW.LI NE FUNCTI ON_I D ASSI GN EXPR
| FUNCTI ON_I D ASSI GN EXPR

EXPR : EXPR OR EXPR

| EXPR NAND EXPR

| EXPR NOR EXPR

| EXPR XOR EXPR

| EXPR EXPR

| L_BRACKET EXPR R _BRACKET
| NOT EXPR

| VAR ID

FUNCTION ID: FID

| FI D NUMBER
VAR | D " VAR

| VAR NUMBER

%o

3 De/composition of logical systems

3.1 Decomposition of algebraic expression into substrgs

Decomposition of algebraic expression comes oun fam expression described by the
grammar (section 2.1), which is analyzed in botigmway. The result of decomposition is
the decomposition of an algebraic expression intisgings that are realizable with only one
elementary logic gate.

Algorithm of decomposition of an algebraic expreasiinto substrings can be
described in the following steps:
For a function of every primary output do following

1. Search substring realizable with one elementaryclggte. Gates NOT, AND, OR,
NAND, NOR, XOR, are considered.

2. Substitute found substring by one variable, markgdsymbolx and two numeric
values. First indicates the level of the substrthg,second serves as an identifier for the
substring within the given level. Every substriragnencludeonly primary variables and
variables used for substitution of lower level gtibgs.

3. Express the function with substitution variables.

Repeat steps 1, 2, 3, until the expression is esdita only one elementary logic gate.

Example of an application of the presented algoritbr the circuit realizing full adder
circuit can be following (Figure 1). The circuit has twamuts — sum and carry into higher
level:

s=-(-(a)b+a- (b))c+ (- (a)b +a (b)) (c)
p =ab+ (- (a)b + a- (b))c

Function Substitution
s=-(-(a)b +a (b))c+ (- (a)b +a (b))- (c) X[1,1] =~ (c)
s=-(-(a)b +a (b))c+ (- (a)b +a (b)) x[1,1] X[1,2] =- (b)
s=-(-(@b+a (b)c+(-(a)b+ax]1,2]) x[1,1] X[2,1] = a x[1,2]
s=-(-(a)b +a (b))c + (- ()b + x[2,1]) x[1,1] X[1,3] == (a)
s=-(-(@b+a (b)c+ (x[1,3] b +x[2,1]) x[1,1] X[2,2] = x[1,3b
S=-(-(a)b+a (b))c + (x[2,2] + x[2,1]) x[1,1] X[3,1] = (x[2,2] %[2,1])
s=-(-(@b+a (b))c + x[3,1] x[1,1] X[4,1] = x[3,1] x[1,1]
s=-(-(@b+a (b))c + x[4,1] X[1,4] == (b)
s=-(-(ab+ax[1,4])c +x[4,1] X[2,3] = a x[1,4]
s=- (- (@b +x[2,3])c + x[4,1] X[1,5] = (a)
s =-(x[1,5] b + x[2,3])c + x[4,1] X[2,4] = Xx[1,5] b

== (x[2,4] + x[2,3])c + x[4,1] X[3,2] = (X[2,4] + X[Z])
s =- (X[3,2])c + x[4,1] X[4,2] == (X[3,2])
s =x[4,2] ¢ + x[4,1] X[5,1] =x[4,2] c
s =x[5,1] + x[4,1] X[6,1] = x[5,1] + x[4,1]
s = X[6,1]
p=ab+§((a)b+a (b))c X[1,6] =~ (b)
p=ab+§((a)b+ax1,6])c X[2,5] = a X[1,6]
p=ab+§((a)b + x[2,5])c X[1,7] = (a)
p =ab + (x[1,7] b + x[2,5])c X[2,6] = X[1,7] b
p =ab + (x[2,6] + x[2,5])c X[3,3] = (X[2,6] + x[3])
p=ab+x[3,3]c X[4,3] = X[3,3] C
p = ab + x[4,3] X[1,8] = ab
p = Xx[1,8] + x[4,3] X[5,2] = x[1,8] + x[4,3]
p=x[52]

3.2 Composition of logic system from substrings

A composition of logic system comes out of a systsubstrings obtained by a
decomposition of algebraic expression (section. 3 g result of a composition is a system
of algebraic expressions of all circuit outputsduons and algebraic expression of system
modules outputs functions. Except the system ostsings the level of modules, which the
composed circuit should consist of is the inputtfoe algorithm. Determination of modules
level depends upon a type of used logic elemerdsupon a task which is the de/composition
done for.

Algorithm of logic system composition from subsggrepresenting onewe! circuits
can be described in the following steps:

For every primary output function of the circuit fidowing:

1. Letn be level of function, let be level of modules the designed circuit condist et
m_temp = n «n mod m).

2. Substitute all modules of higher level tham tempby module composition of lower
level by substitution of particular substrings ifitmction expression until the function
is not expressed only by modules outputsnofempbe level or lower.

3. In this expression, substitute all modules witheldower thanm_tempby substitution
of particular substrings until the function is matpressed only by modules outputs
X[m_temp,i] Xx[m_temp-m,i] primary variables, or modules whose level cowdddwer
than m_temp but are not suitable for substitution as theitpats are also inputs on
lower level of the circuit.

4. In this expression, for every modwup,q] do following:
4.1. If p=m, letm_temp = p — melsem_temp = p
4.2. Proceed to step 2

Example of an application of the presented algoritfor a full adder circuit is
presented in next table. Functions of outpaits x[6,1], p = X[5,2]gained by substitutions
presented in section 3.1 are input for the algoritiVe chosen = 3, because the circuit has
to be realized by logical elements NOT, AND, ORd &0 gain a circuit consisting of three-
level modules.

Function Substitution

s = x[6,1] X[6,1] = x[5,1] + x[4,1]
s = x[5,1] + x[4,1] X[5,1] = x[4,2] ¢

s =x[4,2] ¢ + x[4,1] X[4,2] = (x[3,2])

s == (X[3,2])c + x[4,1] X[4,1] = x[3,1] x[1,1]
s =- (X[3,2])c + x[3,1] x[1,1] X[1,1] == (c)

s = - (X[3,2])c + x[3,1] - (c)

X[3,2] = (x[2,4] + X[2,3]) x[2,4] = x[1,5] b
X[3,2] = (x[1,5] b + x[2,3]) X[2,3] = a x[1,4]
X[3,2] = (X[1,5] b + a x[1,4]) X[1,5] = (@)

X[3,2] = (- (a) b + a x[1,4]) X[1,4] = (b)

X[3,2] = (- (a) b + a- (b))

X[3,1] = (x[2,2] + x[2,1]) X[2,2] =x[1,3] b
X[3,1] = (x[1,3] b + x[2,1]) X[2,1] = a x[1,2]
X[3,1] = (x[1,3] b + a X[1,2]) X[1,3] = (@)

X[3,1] = (- (a) b + a x[1,2]) X[1,2] = (b)

X[3,1] = (- (a) b + a- (b))

p = X[5,2]

p = x[1,8] + x[4,3]
p =Xx[1,8] +x[3,3] c
p=ab+x[3,3]c

X[5,2] = x[1,8] + x[4,3]
X[4,3] = X[3,3] C
X[1,8] =ab

X[3,3] = (x[2,6] + x[2,5])
X[3,3] = (X[1,7] b + x[2,5])
X[3,3] = (X[1,7] b + a x[1,6])
X[3,3] = (-~ (a) b + a x[1,6])
x[3,3] = (- (a) b + a- (b))

X[2,6] = Xx[1,7] b
X[2,5] = a X[1,6]
X[1,7] = ()
X[1,6] = (b)

It is obvious that moduleq3,1], x[3,2] andx[3,3] have identical structure and so are
realized only once (pre-realization). We can alad but that the moduls is isomorphic to
the modulex[3,1], what becomes interesting from the diagnostic fpaiiview. The procedure
of search of identical and isomorphic modules iscdbed in section 4. Structural scheme of

a de/composed full adder circuit is shown in figlire

a_ o 1 &
x[3,2] | 1 8
[&
b 1
4’7 07
X[3,1] &
c 1
®
&
x[3,3]
&

Figure 1. Structural scheme of a de/composed full adder itircu

4 ldentification of identical and isomorphic circuits

Identification of identical circuits can be exealiie the process of decomposition to
one-stage circuits by comparison of expressidhg, for j=1, 2, ..., u whereu is the count

of expression with the leveli. Identical expressiong][i,j] and x][i,j+v] are replaced by
expressiorx|i,j] .

By the comparison of expressions we have to takeadoount the validity of
commutative rules. Expressions that differ onlypeymutation of variables are identical.

Detection of isomorphic circuits is executed aftee substitution of identical
expressions, so that the identical variables shaddhe only with one labeling. To
determination of the isomorphism of circuits itnecessary to find out, if the conditions of
identity of relevant operation (type of the operagamd number of operand) and also the
condition of variables substitution are fulfilleDetection of the last mentioned condition is
very demanding, because the number of differenstgubons is equal to the number of
variables permutations. That's why the conditionsabstitution is detected only when all
other conditions are fulfilled.

For easier detection of expressions identity amcuits’ isomorphism it is useful to
order the variables in them according to the alphaind indexes and introduce the circuit’s
scheme evaluation [6].

5 Conclusion

Decompositions of strings and suggested posséslitif their application in different
task in the areas of analysis, synthesis and dsmsoof logic circuits are proposed in the
contribution. There are many other areas wheredémmposition of strings is used [7].
Implementation of string decomposition into menddntasks exceeds the range of this
contribution. Some of the mentioned tasks and #isogeneralization of grammar for other
types of strings and processing of program systemgheir lexical, syntactic and semantic
analysis are in the plan for the future.

References

[1] Baca, J.: Logické systémy. EF TU KoSice, 1992

[2] Antalik, R., Bé&a, J., BeneS, B Faults Detector and Locator. In.: Proceedingghef
EMES 2003, Oradea-Felix Spa, Romania, May 29-3Q320p. 7-12

[3] Petrovsky, B Zostavovanie Struktury logickych obvodov. Diplarthesis. DCI FEI TU
Kosice, 2000.

[4] Kollar, J., Havlice Z. Technolégia jazykovych systémov. Vydavstso elfa, s.r.o.,
KoSice, 2001. ISBN 80-89066-12-7

[5] Levine, J. R., Mason, T., Brown,:[Dex & Yacc. O’'Reilly & Associates, Inc., Sebastb,
California, 1992. ISBN 15-65920-00-7

[6] Baca, J: Decomposition of Logic Circuits. In: Proceedingfsinternational Conference
Electronic Computers and Informatics '98, FEI TU Skom- Hefany, October 1998.
pp.100-103. ISBN 80-88786-94-0

[7] Tzeytlin, G. E Vvedenije v algoritmiku, Sfera, Kyjev 1998, ISE260-7267-14-8

