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Starting with the model of small elastic disturbance in a non-uniformly strained body and taking
into account the weakness of the body’s acoustical inhomogeneity and anisotropy induced by
strain, a theory for integral acoustoelasticity has been developed in the paper. The theory establi-
shes mathematical models for interaction of narrow longitudinally and transversally polarized
ultrasonic beams with 3-D strain field in the body. Ray integrals of acoustoelasticity have been
established with the use of the model. These relationships connect measured phase parameters
of longitudinally and transversally polarized ultrasonic beams, crossing the body in any direction,
with integrals of initial strain distribution along this direction. They can be used to formulate
problems for tomography of the body’s stress-strained state.
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Introduction. Acoustoelasticity is a feature of solids to change their acoustical proper-
ties under strain. Physical nature of this effect consists in the dependence of the mass
density and elasticity moduli on strain and in non-additivity of strains of initial state
and a disturbance [1, 2]. In the case of homogeneous initial strained state acoustoelasti-
city relationships were obtained [1-4]. They connect phase velocities of plane waves
with components of initial strain tensor and elasticity moduli of the body.

If the body is non-uniformly strained it becomes acoustically anisotropic and
inhomogeneous. Propagation of small elastic disturbances in such object is described
by a system of hyperbolic type differential equations with variable coefficients [5].
Thereupon problems of wave field analysis in such an objects become much more
complicated. But acoustical anisotropy and inhomogeneity induced by elastic strain are
weak. This makes possible to simplify the mathematical model for interaction
of acoustical waves with non-uniformly strained solids. For instance, in papers [6, 7]
the weakness of acoustical inhomogeneity was used to build an iteration process for
a problem of small pulsed disturbance propagation in non-uniformly strained solid con-
tinuum. This approach enabled us to establish the integral acoustoelasticity relation-
ships. They express time periods for elastic pulses travelling along a given segment
in strained continuum via integrals of initial strain distribution on the segment.

1. Small elastic disturbance in a non-uniformly strained solid

Propagation of small elastic disturbance in non-uniformly strained elastic body B is
described in geometrically linear approach by hyperbolic system of equations [5]
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where p,t,w; (i = 1,_3) and x;, stand for mass density, time variable, components of the
disturbance displacement vector w and Cartesian coordinates; Cp, (i, Jiok, 1= 1,_3) are
dependent on initial strain moduli of elasticity for small elastic disturbance
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In this formula ¢, (m, n= 1,_3) stands for Cartesian components of initial strain tensor,

Ciw and Ty, are of order two and three elasticity moduli of the body.

The formula (2) is valid for small elastic strains g, of an infinitesimal order o..
Elastic disturbance is small as against initial strain field. This means that displacement
gradients ow, /dx, are quantities of higher order of smallness in comparison with strains &,,,.
2
s

For isotropic bodies, the components Cj,; and 'y, represent isotropic tensors
of rank four and six respectively
Cyr =280y +1(848 +8,8), T

J

We will consider the components dw, /0x, as quantities of the infinitesimal order o, = o
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stand for Kronecker’s delta and Levi-Civita symbols; A,u and /,m,n

Here 6 i and e iin

denote Lamé and Murnagan constants. Parentheses in the denotation FE(U)( ki)(mn)) €N

symmetrization with respect to the enclosed indices.

For many engineering materials the moduli A, u and /, m, n are quantities of the
same order of magnitude. Hence the second term in the formula (2) is quantities of the
order a,. as compared to the first one. So, acoustic anisotropy induced by strain is weak.

Let £, be a straight line crossing the area V in the direction of unit vector

-1
n=(n,n,,ny) and H@sg- /8xk ”L E(ZS“) be a norm of strain tensor gradient on the
0

segment L, = L,NV. The value [*" is characteristic of optical inhomogeneity of the

body B — the greater is /*", the weaker is optical inhomogeneity along the direction n.

2. Directional sounding of strained body

External narrow ultrasonic beam (pulsed or continuous) can be used for elastic waves
in the body excitation. A schematic model for such sounding implementation is shown
in fig. 1. It includes an ultrasound vibration generator 1, for instance, a piezoelectric
transducer and an acoustic waveguide 2 with bevel face 3. The waveguide has been
fabricated from the same material as the body. Owing to this differences in acoustical
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properties of the waveguide and the body B are small quantities of infinitesimal order

o, . The plate of the transducer 1 is rigidly connected to the bevel face 3 of the wave-

guide 2. Depending on polarization, it produces normal or tangential displacement on
some area of the bevel face 3. In-plane dimensions of the transducer plate 1 are much
bigger than the wavelength. Practically parallel and homogeneous in its cross-section
ultrasonic beam 4 is formed in the waveguide owing to this. The beam propagates in
direction n normal to the bevel face. The waveguide is applied to the body surface with
some small pressure, necessary to produce cohesion in tangential direction. The area
of contact of the waveguide and the body is wetted by immersion liquid. Another
waveguide 5, identical to the first one, is applied to the opposite surface of the body.
It serves to transfer the beam from the body to sensing devices without distorting
the wave. Such sounding technique minimizes reflection and dispersion of the incident
wave on the «waveguide-body» and «body—waveguide» boundaries.

Uniform in its cross-section sounding beam crosses the interface «waveguide—
body» and penetrates into the body’s volume V. Here it interacts with acoustically

inhomogeneous medium and gains some gradients in normal to n directions. However,
as the medium inhomogeneity is weak and the beam’s diameter is small enough, acqui-
red nonuniformity of sounding wave field will be also small. We will use this to simp-
lify the mathematical model (1). To do this we rewrite the system (1) in a Cartesian

system { Vis Vs y3} , whose y; axis is directed along n
o*w. o*w ow ; o*w. o*w. ow ;

(1+¢) 6t21 =ag" Py 2} +b;" 6y3j + gy Py 6;3 + gy Py ﬁyj +byy ayj , )
3 o 0~>p o

where o,p=1,2, e=¢;| +€,, +£;3 is the first invariant of the initial strain tensor,
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po is mass density of unstrained body, n, =(n,,,n,,,n,3) is unit vector of y, axis.

en

en en . .
The components a;;",a,; and a,,; inequation (3) are quantities of the same order

of magnitude. However, since the body is sounding by homogeneous in its cross-section
narrow beam and acoustical inhomogeneity of the body is weak, we can consider the

derivatives 82w, /6y08y3 and 0°w, /ayoﬁyp as small quantities as against 0*w, / vy’

Similarly, the coefficients 55" and b7 are quantities of the same order of magnitude, but
derivatives dw, /0y, are small quantities as against dw, /dy, . Hence, in the first appro-
ximation we can neglect the last three terms in the right hand side of equation (3), con-
tained normal to n gradients of the disturbed wave field. This yields (using notation y; =y )
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In the absence of initial strain we should substitute ;=0 into (2). This reduces
the system (4) to the system of 1-D wave equations for homogeneous elastic body

2 2
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where ag-" are components of acoustical tensor for unstrained body

On _ —1 On On _

For the body isotropic in its initial unstrained state
-1
" =py ((k+u)ninj +u8[j).
In the basis {n,,n,,n} the matrix a;" becomes diagonal

af =ay =u/po=C;, a3y = (h+2p /Po—CL :

Here C; and Cy are the phase velocities of longitudinal and transversal acoustic waves.
It is useful to represent tensors aj;" and bj" in the form

a =a" (3, 11 ). B = (1) eyt (6)

Here %" S akj -3 ZS"S "bi; ,Sg" stands for components of tensor inverse

i Y5
-1

to tensor represented by components C;; o (S ) = (an )

Dimensionless components K"

for strain-induced acoustical anisotropy and inhomogeneity of the body in direction n.
) looks like

and yg-" represent material tensors responsible

In the basis of the system { VisVas y3} the matrix ( i

n n n
AXT€—Yr€n Yr€a XLE€31
en n n n
(K[j ) = Yr€12 Xr€—Vrén XL€32 > (M
n n n
Aré13 X1€23 Y E+2Y 1833

where ¢} stands for initial strain components in the basis {n,,my,n}, y7,%7.7..%;
are dimensionless elasticity moduli
n m 2m 21
= (®)

Yr=7"—> Xr=—> Xo=71 ~~> VL=77 A1~ -
r 2u r 0 L (k+2p) L (k+2p)
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3. Models for sounding by longitudinally and transversally polarized plane waves

Longitudinally and transversally polarized plane waves propagate in solids with distinct
phase velocities C;, and Cr. This enables us to consider the cases of sounding of the
body by longitudinal and transversal waves separately.

Let body is sounding by longitudinal plane wave w3 (y,t)=W; f(C.t-y).
In this case on the body inside surface z=+0 boundary conditions for displacement
vector components w; acts

o =Wof(Cut), ©)

where W, stands for an amplitude of the transmitted wave, f(...) is a given function.

z=0 z=0

z=

At these conditions, the transverse waves wy(z,¢) and w,(zt) are excited

in the body volume only by the longitudinal wave transmitted into V. Since acoustical

anisotropy is weak, the coefficients a3 ,b3 and a33,b55 in the first and second equa-

tions (3) are small quantities of infinitesimal order o, . Hence, amplitudes of the

transverse waves w (z,7) and w,(z,¢) will be small as compared to the longitudinal

one’s w;(z,7). Since the coefficients a},b5; and a3y ,b;; at the terms, accounting
in the third equation (3) the effect of the transverse waves on the longitudinal one, are

also small quantities of infinitesimal order a,, the terms a5} (62w1 / 8y2),

by (0w, /oy) and az; (82w2 / éyz),bﬂ' (0w, /6y) are small quantities of infinitesimal

2

order o

as compared to the term a3y (82w3 Joy? ),bg‘ (Ow; /0y) . If to neglect them

in the first approach, we will arrive from the system (5) at the equation

o*w o’ w ow
l+eg)—=ah —+ b5 — 10
(1+¢) o O o7 5 o (10)

and at the system of two inhomogeneous wave equations for the components w,,w,

82w en 82wp en 6wp
(1+¢) 8t20:a0p 2 +b;) % -g,, o,p=12. (11)

Let now the body be sounding by transversal plane wave. In this case displace-
ments w,; and w, are prescribed as functions of time on the body inside surface

z=+0 whereas the longitudinal displacement w =w; equals zero

w

p z=0

=W (Crt)s Wl =0. (12)

z=

Here W,? are the amplitudes of transmitted wave, f,(...) are given functions.
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Reasoning similarly as in the case of sounding by longitudinal wave, we reduce
the system (5) to following homogeneous system

o> o*w ow
(1+6) =52 =g ——L +pin —2 (13)
ot oy oy
and one inhomogeneous wave equation with respect to the longitudinal component w

o*w o*w
l+e)—F=a55 —

( ) atZ 33 8}}2
In formulae (10), (11), (13) and (14) the following denotations were used

2

s (14)

P €n 6wp

=—agps—5—b3 —, =—a; -b .
8o 03 ayg 03 ay g 3p ayZ 3p 8}}

4. Harmonic waves
In the case of longitudinally polarized harmonic wave
w’ (y,t)=W* exp[im(r -y/C, )] ,

where i is imaginary unit, ® is circular frequency of the wave, we will search a solu-
tion of the equation (10) in the form

w:W(y)exp[ioa(t—y/CL)]. (15)
Substituting presentation (15) into equation (10), using dimensionless coordinate
E=y / [*" and taking into account formulas (6), we will come to the ordinary differen-

tial equation in unknown function 1 (&)

AW x o dW o dW
i(1+1<§3) d£&)+ L{(H ) daga)“{u déé)

+

n ) Y3 |
+|=(€—K + =0. 16
{M( 33) ! 2} (€) (16)
Here A, =\, / [*" — dimensionless longitudinal wavelength

Since the acoustical inhomogeneity is small, the length /*" is much bigger than
the wavelength A, , hence A, is a small dimensionless parameter. We will consider it

as a small quantity of infinitesimal order o, . It follows from formulas (7), (8) that y55

is a dimensionless parameter of the order of unit. Function W(&) is slowly changing —

it varies on distances A{~1. Hence its derivatives dW¥ (§)/dE, de(E;)/ dg* are
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magnitudes of the order of W(ci) . Comparing three terms in the left hand side of equa-
tion (16) by their magnitudes, we can see that the first and the third ones are of the
order of one, whereas the second one is of the order of A, ~ o, . Neglecting the quanti-
ties of order o, in equation (16), we will obtain

d
VZFEF’) +(lv§2 il g (aﬂW(&) =0, o =((r ~De+2e8). (D)

Coefficient 1/2y5; determines the variation of the longitudinal wave amplitude,

caused by acoustical inhomogeneity of the body, parameter ¢3" is additional incre-

ment of the longitudinal wave phase, produced by strain.
Let us consider now the sounding of the body by transversally polarized harmo-

nic plane wave wj =W, exp|io(t—z/C;)], p=12.

Representing the solution of the system (13) in the form
w, =W, (z)exp|io(t-z/Cr)],

we will arrive at a time-independent system in unknown functions 1, (&) and W, (&)

of the structure similar to (16). Neglecting the terms of the order of o, as against
the terms of the order one, it will be reduced to the form

dWo (i 1 en . en
d&( )J{Eyop+z%(850p—K0p)}Wp(a)=o. (18)

Introducing 2x 1-matrix W (&)= (W1 (€).W, (c‘,))T , we can rewrite the system (18)

in a matrix form

i () { (o }
—— 2 A" —i—(E" -3 ) W (E)=0, (19)
dE xT( T) (5)
L[y g (e -2f)  2e3
where Anz—(y” YIZJ, i ,
(R 20026 (el -e)
1
o = (r ~1)(sft +o5) et |.

Matrix A" determines variations of the amplitudes of the transverse waves w, (c‘,,t) and
w, (&,t) , owing to strain-induced acoustical inhomogeneity; the parameter @3 deter-

mines an additional increment of the absolute phase each of the waves w, (c‘,,t) and
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w, (&,t) , whereas matrix E" is responsible for an increment of phase difference bet-
ween these two waves, caused by acoustical anisotropy.

5. Ray acoustoelasticity integrals

Due to (9), we should subordinate solution of equation (17) W(y) to the boundary
condition W (0) =M, . In the issue we obtain

0 L

w(E)=W, exp{—f(%v%‘ (&)+ i%@i" (E)Jdil :

So, a longitudinally polarized ultrasonic beam propagating in a direction n crossing
the strained body produces in its volume a longitudinal wave

w(&,t)=W, expﬁq?‘( dqjexp[z(mt——é’;—xﬂ I J], (20)

0 0
. . 3 21 T ¢
which amplitude W, exp(JO 1/2v53 ((;)d(;) and phase ¢}" (&)= Zé + ZJ‘O o7 (£)d¢
change along n due to the initial strain distribution on this direction.
Let /™ be the dimensionless body’s diameter in the direction n. Then, in comp-

liance with solution (20), the increment of the wave phase on the segment [O,I_“]

equals 27/ ™ / L, +A¢S". The first term in this expression determines the phase incre-
ment in the absence of strain, whereas the second one

i = o (©ae= 2 (M- @20t @) -wo(@e @1
0 Lo

is responsible for additional phase increment caused by initial strain field.
Due to (12) the functions W, (&),0=1,2 should be subordinated to the boundary

conditions W, (0)=W,', where W, are the complex amplitudes of the transmitted

transversally polarized wave. Their modules and the difference of arguments determine
the polarization state of sounding wave at the input in the body.
Solution of the matrix equation (19) for these conditions looks like

(&)= exp{—?An (€)dc +iKmt —X—éJl +X—&(1§" (C)-oh (c;)i)dc;}wo 22)

T

where ’Li)(é’;,t):(wl(z’;,t),w2 (a’;,t))T, Wz(WlO,WZO)T, [ is unity 2x2 matrix.
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As we can see from the solution (22), both components w, (&,¢) and w, (&,7)
have been traveled through the body, acquire absolute phase increment 27/™ / ?_»T +

+A¢5" on the path [O,I_“] , where

m "
27 = [0 (e =5 [((1=)(ef7 (¢)+ 5. (9)) e (€)) e 23
0 0

determines the additional phase increment caused by initial strain field.
Besides that the additional phase difference between the components w, (c‘,,t)

and w, (&,7) arises. It is determined by two ray integrals

" "
en

I ==—vr [ (et (€) -3 (0))dC, 155 ==, [ &3 (C)dc. @9

T
2y Ar

(=]

Conclusion. Mathematical models for interaction of longitudinally and transversally
polarized ultrasonic beams with 3-D strain field in solids have been developed. Taking
into account the weakness of strain-induced acoustical inhomogeneity and anisotropy it
has been shown that the amplitude of longitudinally polarized wave changes along the
direction of the wave propagation due to strain component distributions on this direc-
tion and it satisfies the ordinary differential equation (17). Cartesian components of the
amplitude of transversally polarized wave, crossing the body in some direction, satisfy,
in the approximation of weak acoustical inhomogeneity and anisotropy, the system
(18) of equations with the coefficients dependent on initial strain’s distribution.

Integral relationships (21) and (23), (24) connect line integrals of strain compo-
nent distributions along any direction to measured phase and polarization parameters
of longitudinally and transversally polarized waves crossing the body in this direction.
So, if to sound a strained body by longitudinally polarized ultrasonic beam and mea-
sure the phase increment, has been acquired by the wave on its path, one can determine
a value of the ray integral (21). Similarly, sounding the body by transversally polarized
ultrasonic beam and measuring the changes of the absolute phase and polarization
state, have been acquired by the wave, one can determine values of the ray integrals
(23) and (24). Such measurements, carried out for a set of directions, form a posteriori
data set that can be used commonly with the line integrals (21) and (23), (24) to formu-
late inverse problems for computing tomography of the initial strain field.
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Teopis iHTerpanbHOI aKyCTONPY>XHOCTI
Ans TPMBUMIPHOIro HanpyxeHo-AeOpPMOBaHOro CTaHy

Bacunb YekypiH

Buxoosuu 3 modeni manozo npysicno2o 30ypents 6 He0OOHOPIOHO deghopmosaromy mini ma bepyuu
00 ygaeu ciabKicmv aKyCmudHux HeoOHOPIOHOCMI Ul aHI30mponii, IHOYKoBaHux Oepopmayicro,
PO3pobNIeHo meopito inmeepanvhoi akycmonpyosichocmi. Chopmynvosari mooeni 83aemooii 8y3vb-
KUX NONAPU30BAHUX YIbMPA3BYKOBUX NYUKIE 13 mMpusumipnum nonem oOepopmayii y meepoomy
mini. ¥ pamkax mooenei ompumani inmeepanvhi CRi6GIOHOWEHHS AKYCMONPYICHOCH, WO NO8 5i-
3Y10Mb 3MiHU PA3 KOIUBAHb | CIAHY ROAAPU3AYIT NO3006ICHLO MA NONEPEHHO NONAPUZOBAHUX
VIbMPA38YKOBUX XU, AKI NPOUWIU Yepe3 deghopmosane cepedosuuye, 3 iHmezpanramu 8io po3no-
0ini@ KoMNnoHeHm meH30pa NOYamKogoi Oegpopmayii 630082iC HANPAMKY NOUWIUPEHHS XGUTD.
Ix modicna suxopucmamu Ons popmyniosanns 3a0au 0GUUCTIOBATLHOT MOMOPADIT HANPYICeHO-
deghopmosanozo cmary meepoux mii.

Teopusa UHTerpanbHON aKyCTOyNnpyrocTu
ANA TPeXMepHOro HanpsXXeHHo-AehOPMUPOBAHHOIO COCTOSIHUA

Bacunb YekypuH

188

Hcxo0s uz modenu manoeo ynpy2020 03myujeHusi 8 HeOOHOPOOHO 0eqhOPMUPOBAHHOM mee U Npu-
HUMAsL 80 GHUMAHUE, MO UHOYYUPOBAHHbIE Oeghopmayueli aKycmuyeckue HeoOHOPOOHOCHb U
AHU3OMPONUsL AGNAIOMCS CAAObIMU, PA3PAOOMAHA MEOPUsi UHMESPALbHOU AKYCHOYRPY2OCMU.
Cohopmynuposanvl mamemamuueckue MOOenU 83aUMOOECMEUs Y3KUX NOAPUIOGAHHBIX YIbMpPd-
38VKOBbIX NYUKOB C MPEXMEPHBIM NoAeM dedhopmayuu 6 meepoom mene. B pamxax modeneti noiy-
YeHbl JIyyegble UHMeSPabl AKYCIMOYRPY20Cmu — COOMHOWEHUS, YCMAHABIUBAIOWUE AHATUMUYeC-
KYI0 C8313b MeNHCOY UBMEHEHUAMU (a3 KONeOAHULl U COCMOsHUS NONAPU3AYUU NPOOOILHO U NONe-
DEUHO NONAPUZOBAHHBIX GOJIH, NPOULEOUUX Yepe3 0eOPMUPOSAHHYIO CPedY, C IUHEUHbIMU UHMe2-
panamu om pacnpedeienuil KOMROHEHN HAYATbHLIX OehOpMAayull HA HANPAGLEHUSX PACNPOCH-
paHerust 60aH. FIX MOJNCHO UCNONb308amb Ok ROCHMAHOBKU 3A0aY 8bIYUCTUMETbHOU MoMOcpagduu
HANPSIHICEHHO-0epOPMUPOBAHHOLO COCMOSHUSL MBEPObIX MEIL.
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