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In the paper the basic relations for description of elastic deformation of nanoporous solids are
proposed. They include a classical equilibrium equation and a constitutive relation between stress
and strain tensors. While formulating the latter it is assumed that elastic moduli can be presented
as a product of two functions. The first one depends on characteristic size of the nanoscale ele-
ments forming material, the second depends on the porosity coefficient. For description of the elastic
moduli dependence on characteristic size the local gradient approach in thermomechanics is used.
On the base of the model problems solutions for a layer and a cylinder there are investigated the
nanoscale element geometry and size influences on elastic moduli, including Young modulus and
Poisson coefficient.

Keywords: nanomaterials, local gradient approach, scale effect of elasticity moduli.

Introduction. Recently the scientific literature pays a considerable attention to the mo-
deling, description and study of the properties of solids , distinguished by various size
effects. Such solids feature comparable contributions of surface and volume factors to
internal energy and one of their geometrical sizes (further — characteristic size) is com-
parable to the size of the region of nearsurface nonhomogeneity. The properties of the
solids essentially differ from properties of solids without such effects. Structures of the
nano-sized elements is a tool to create radically new devices and construction materi-
als, also enabling to design and produce materials with the improved parameters [3, 4,
10, 14]. At present nano-elements and nanomaterials are widely used in electronics and
nanobiotechnology.

Combining the nano-sized elements in an aggregate structure we get the material
with a high degree of porosity [1, 4, 5] which further is called «nanomaterial». Porosity
coefficient a is the fraction of the volume of an apparent solid that is actually an empty
space (or filled with a foreign compound) and reaches 80 % or more in many cases.
As a characteristic size of nanomaterial we understand the characteristic size » of nano-
sized elements (see Fig. 1). It is obvious that mechanical properties of nano-porous
solids depend not only on the porosity coefficient but also on the characteristic size of
the nano-structure (parameter r). Porous materials, such as polymeric foams, metallic
nano-sponge or fiber materials are widely used in practice. Lately, the composite
reinforced by carbon nanotubes and nanofibres has been also widely used [4, 10].
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Fig. 1. Characteristic size of the nanostructures

For describing the mechanical behavior of nano-sized elements characterized by
size effects, the various nonlocal models of mechanics are used. Usually the nonlocal
dependence between tensors of strain and stress are postulated in such models [11, 12].
Such a dependence is often associated with characteristic size of a lattice, and also with
the presence of defects in the solid [14]. Another approach allowing the description of
various size effects in deformable solids is so called local gradient approach in thermo-
mechanics [7, 8, 13]. This approach is based on basic relations of nonequilibrium ther-
modynamics and nonlinear mechanics. Within the framework of the approach the space
of local state parameters is extended with chemical potential and its gradient. Thus, for
local gradient elastic solid the state space consists of strain tensor ¢, disturbance of chemi-

cal potential n and its gradient Vn, and also coupled parameters: stress tensor &, den-
sity of mass p and elastic displacement of mass vector 7, [8]. It has been shown that

chemical potential disturbance can be interpreted as disturbance of interaction energy.
This opens a way to description of different conditions of particles interaction in the
nearsurface and internal regions of the body.

The experimental study of nanomaterials is usually concentrated on investigation
of physical-mechanical properties of a single nano-element, including dependence of
elastic moduli on its characteristic size. Note that for determining the elastic moduli of
thin porous layers the methods of surface acoustic wave spectroscopy, Brillouin light
scattering, ellipsometric porosimetry, nanoindentation and others are used [2]. While
investigating bionanomaterials an attention is concentrated on the study of corrosive,
mutagen and carcinogen properties and also on methods of producing materials with
physical and chemical properties similar to ones of bio tissues.

In this paper the basic relations of local gradient approach in thermomechanics
are used for describing elastic deformation of nanoporous solids. The elastic moduli in
constitutive relation between tensors of stress and strain are taken as a product of func-
tions depending on the characteristic size of the nano-sized elements of material and
porosity coefficient. The detailed study of Young modulus and Poisson coefficient is
presented and the influence of geometry on the size effect is indicated.
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1. Modeling of elastic properties of porous materials

The analysis of many theoretical and experimental researches allows us to assume that
elastic deformable porous material can be described by the classic equations of motion
(equilibrium) and the following governing relation

=L o VE (1)
I+v (1+v)(1—2v)
in which for Young modulus £ and Poisson coefficient v, is held
E=Eypg(a), v=vep,(a). 2)

Here e=¢:1, [ is identity tensor, o is porosity coefficient, ¢, @, are functions such
that ¢ (0) =¢,(0)=1,E,,v, are Young modulus and Poisson coefficient of a solid.

The exact presentation of functions ¢,,, is well described in scientific litera-
ture on the base of a wide experimental study. Usually in the literature there is a speci-
fied linear or near linear decrease of the Young modulus and nonlinear dependence of
the shear modulus and Poisson coefficient for the growth of material porosity. In Fig. 2
the dependences of the Young modulus and Poisson coefficient on porosity o are
presented in the region 0,4>a>0.

Let us use formulas (1), (2) to describe a porous nanomaterial. Thus it is neces-
sary to accept that moduli £,,v, depend on a characteristic size of nanoelements on
the basis of which the nanomaterial is constructed. For consideration of such depen-
dences we will use local gradient approach in thermomechanics.
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Fig. 2. Porosity o effect on Young modulus £ (GN/m?)
and Poisson coefficient v for iron [6]
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2. Local gradient approach in thermomechanics and size effects of elasticity moduli

For local gradient approach in thermomechanics the state equations in the model of
isotropic one-component elastic solid for linear approximation are the following [7]

G =2a,e+ (ake + aehn)f ,
P= P« =g~ dyMN,
T, =—ag VM. 3)

Here p is density of the solid material in the initial state, which is assumed to be the
state of free of external loading homogeneous media with the material identical to
material of the solid; a,, ay, den, aqg, an, are constants.

Note that taking as solving functions displacement vector i and chemical poten-
tial disturbance n the key equation set of the model for elastic solid state is

aHV2ﬁ+(arH +ak)V(V -ﬁ)+athn =0,
aggvzn - ahhT] - aeh§ ﬁ = 0 .

If instead of displacement vector i the stress tensor is chosen as solving func-
tion the key equation set is

V-6=0,
?x[(&zk +2au)6—(akc+2auaehn)i]x§=0,
Vin - K%T‘l ~-x26=0, “4)
2
where K% _ L ay, oS , KzzL, c=6:1
Agq 3a, +2a, Agq (3ak+ 2au)

For correct formulation of the problem these sets are to be supplemented with
proper boundary condition.

In paper [9] on the base of solution of the model one-dimensional problem for
layer |x|</ it is shown that local gradient approach allows describing the size effects

(dependence on the layer thickness) of the elasticity moduli. For Young modulus £ and
Poisson coefficient v it was

-1
E =(3ak +2au){ak+a“+‘f’(§1)} )
ay
-1
| @ ak+au
V_(2au (QZ)J|: a +‘P(§l)} . 5)

116



ISSN 1816-1545 ®izuko-maTemaTUyHe MoAeNOBaHHA Ta iHcdopMmauiiHi TexHonorii
2010, Bun. 11, 113-120

12 2, Aauay, _a+2a, 1-G,(8) . th(&)
Here & =K +b k-.,b ——ak +2au ,‘I’(c‘,l)— 4% C[(FJ) ,G;=1-D| 1 —al ,
2

K . TR
D=b,,—. Let us note that parameter ¢! is characteristic size of the nearsurface non-

homogeneity region.
For Lame constants A, p, shear G and bulk K moduli using formulas

vE E E
A= u=G= , K=—" |
v)(i-2v)” "7 T 21y 3(1-2v)
we write
n=G=aq,,
_ak—Zau‘P(il)

E

1+3¥(&1)

Kz[ak +§auj/[l+3‘l’(§l)]. ©)

For layers of thickness satisfying relation exp(&/) >>1 from (5), (6) maintaining
moduli dependence on the layer thickness we get

E(&l)=E, (1+b_EJ, v(El)=v, (Hb_v}

&l gl
K
e =, [ 1422 ] k(en=k,[1+50 |, 7
gl gl
where
1 -1
a, +a a, +a
Ew=(3ak+2au) 1 u+\POO , Vg = a—k—\Pw * H+\POO 5
a, 2a, a,
:ak—2au‘l’oO X _ak+2au/3 ” :ak+2au D
7 1+3Y, 143, * 4a, 1-D’
-1 -1
a, +a ¥ a,+a
bg' =(1-D)| 1+ LR p=— D | R |,
a, ¥, 1-D|| 2a, a,
(3% + ZaH)‘I’OO 3y,

bkz

(1-D)(a, —2a,¥,.)(1+3¥,,) P = (1-D)(1+3¥,)

From (7) it is easy to see that in the case of the characteristic size of the structure
being far greater than the characteristic size of the nearsurface nonhomogeneity region
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(&l >> 1) we acquire £ = E,, v =V,. In this case values of E., v,, can be interpreted as
the elastic moduli specified for massive solids.

With the purpose of study of the surface curvature influence on the size effect of
the elasticity moduli similar research was conducted for the solid cylinder of radius R.
It was found, that dependence of the moduli on the radius R is described by formulas
(5), (6), taking for function ¥ the expression

:ak +2aH I—QC(F:,R)

b4 , 8
(£R) 4a,  C.(&R) ®
where chl—D{l—MJ, 1,,1, are modified Bessel functions.
&R 1, (ER)

For accepted above approximation exp(&R)>>1 maintaining moduli dependen-
ce on the cylinder radius we obtain

E(&R)zEw(HaJ, V(F,R)sz(nz;;}

x(gze):xw(n%} K(&R)zKOO(H%J, 9)

Comparing expressions of elasticity moduli obtained on the basis of solutions of
model problems for a layer and a cylinder with same characteristic size / = R we notice
their dependence on the curvature. Such conclusion significantly differs from the basic
position of classic mechanics of solids, when it is accepted, that the moduli are proper-
ties of material and do not depend on geometrical sizes and form of the body.

3. Constitutive relations for porous nanomaterials

Assume that the nanomaterial is porous and it is formed of the nanoelements with cha-
racteristic size  of elements forming nanomaterial. Therefore for its description we can
use relations (1), (2), taking Young modulus £y and Poisson coefficient vy depended on the
size r. Thus we can write such determining relation

Ey(r)op(a) o4 Vo (r) Ey(r) ¢y () () e
1+V0(I")(pv(OL) [1+V0(r)(|)v(a)][l_2V0(r)(Pv(a)]

While studying the behavior of concrete bodies it is necessary to take into ac-

count the type of nanoelements that are used for forming the nanomaterial. In this case

formula (8) must be specified using relations (5), (8) or (7), (9). The relation (10) toge-
ther with the equilibrium equation forms a complete set of equations.

(10)

6=

Conclusions. The approach to model description of the elastic deformation of defor-
mable body made of nanomaterial is proposed. The complete equation set of the model
includes classical equilibrium equation and stated constitutive equation relating tensors
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of strain and stress. The latter is generalization of Hooke's law for porous material with
account of the size effect of elastic moduli. The local gradient approach in thermo-
mechanics is used for establishing the moduli dependences on a characteristic size of
the nanostructure. The influence of geometry of elements forming nanomaterial on size
effect is noted. The analysis of Young modulus and Poisson coefficient dependence on
the characteristic size and geometry indicates that these moduli are the properties of
concrete nanoelements (thin films, fibers etc). They become the properties of material
for the solids with characteristic size far greater than the one of the region of nearsurfa-
ce nonhomogeneity.
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Mpo niaxia Ao no6yaoBM OCHOB MexaHikMm HaHoOMaTepianiB

Tapac HaripHuin, KoctaHTnH YepsiHka

V' pobomi 3anpononoeano ocHo6Hi cnigiOHOWIEHHS Ol ONUCY NPYHCHO2O 0ehOPMY8aAHHA HA-
Honopucmux min. Bowu eéxnrouaromv knacuune pisHAHHA PIBHOBASU MA BUZHAUAIbHE CNIGEIOHO-
WeHHs, Wo No8 a3y€ MeH30pu Hanpysicensb i depopmayii. I1i0 uac opmynrosanus ocmarub020
NPULIHATNO, WO NPYIHCHI MOOYIE MOICHA nodamu y eu2isndi 000ymxy 06ox yukyiu. Ilepwa i3 Hux
3a1eACUMB BI0 XAPAKMEPHO20 POIMIPY HAHOETEMEHMIE, WO YMBOPIOIOMb HAHOMamepial, mooi K
opyea — 610 Koeiyienma nopucmocmi. /{1 Onucy 3a1exicHOCmi NPYICHUX MOOYII8 610 Xxapaxkmep-
HO20 PO3MIPY BUKOPUCIAHO JIOKATbHO 2padieHmHuil nioxio y mepmomexaniyi. Ha ocnosi mooens-
HUX 3a0ay 015 wapy ma yuainopa 00CHIONCEHO BNIUS 2eOMempii ma po3mipy HAHOEIeMeHma Ha
BENUYUHY NPYICHUX MOOYII6 mamepiany, 8kaouayu mooyis FOnea ma xoegiyicum Ilyaccona.

O nogxope K NOCTPOEHNK OCHOB MeéXaHUKMN HaHOMaTepuanoB

Tapac HarunpHbiin, KoHcTaHTUH YepBuHka
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B pabome npednoogicenvl ochosHbie cOOmMHOWIeHUs. 0Nl ONUCAHUSL YRPYeol depopmayuu HAHO-
nopucmulx men. OHU KIIOUAIOM KIACCUHECKOE YPABGHEHUE PABHOBECUsL U ONPedeisoujee COOMHO-
werue Medcdy meH3opamu HanpsaxceHuti u depopmayuii. Ipu ghopmynuposre nocieoneeo npums-
Mo, Ymo ynpyeue MoOYIuU MONCHO NPeOCMAsUmsb 6 sude npouzsedenus: 08yx @yuxyuil. Ilepeas uz
HUX 3A8UCUM OM XAPAKMEPHO20 PA3MePA HAHOENEMEHMO8, 00PA3VIOWUX HAHOMAMEPUAT, M020d
Kak emopas — om kod(uyuenma nopucmocmu. /s ONUCAHUS 3A8UCUMOCTU YAPY2UX MOOYell
OM XAPAKMEPHO20 PA3MEPA UCNONb308AH TOKAILHO ZPAOUEHMHDBLI NOOX00 8 MepMOMEXAHUKE.
Ha ocrose moodenvruvix 3a0au Ons ciosi u YuiuHOpa UCCLE008AHO GNIUSHUE 2COMEMPUL U PA3MEDA
HAHOeNleMenma HA 8ENUYUHY YPYeUuX MOOyiell Mamepuanda, skiroyas Mooys FOnea u kosgguyuenm
Ilyaccona.
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