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In this paper the numerical approach to the solution of optimization problems of processes which
are modelled by nonlinear delay differential equations (DDEs) with constant delays is presented.
Based on DDEs solution the different characteristics of the modelled process are calculated. One
of them is selected as the objective functional. Other characteristics can play a role of constraints.
The control is made by the functions, which define the coefficients of DDEs. As a result of piece-
wise-linear approximation of control function the non-linear mathematical programming prob-
lems are obtained. The efficiency of the software developed for solution of nonlinear DDEs and
optimization of DDE systems is illustrated on the infectious disease process model.
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Introduction. Delay differential equations (DDEs) are used to model a variety of phe-
nomena in the physical and natural sciences. Also time delays which occur in the mo-
delling of biological systems can be modelled using DDEs. Successful application of
mathematical models of real-life processes is closely connected with development of the
appropriate algorithms and software.

The mathematical models, developed by Marchuk [1] for modelling of the pro-
cesses in the immune system of an organism infected with infectious diseases are con-
sidered in the paper. Mathematical model of a disease, data bases of the clinical and
laboratory observation of the disease process dynamics for another patient with the sa-
me disease and data base of the patient (which permanently is filled up during the treat-
ment process) are the basis for prediction of the disease process dynamics. In addition
to the prediction of disease process dynamics the problems connected with optimal cont-
rol of these processes and with substantiating the recommendations for optimal therapy
of the patient remain actual. The aim of this paper is formulation of optimal control
problems of the treatment process of an infectious disease, creating appropriate algo-
rithm and software.

1. Mathematical models of an infectious disease

In general the process of a disease is described by the system of nonlinear differential
equations with delay [1-3]
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y'(t)=f(t,y(t),)7(t—r),g,u(t)), Z‘O Stﬁte, (1)

where y(1) = (1 (t), ... v (t))T is state function; y(f—1)= (y[] (t=1)s0y; (£, ))T ’

1<i,..,i, <k; Vi 1< j<r is component of the state function defined in the interval
of delay [to -1 j,to]; 1=(1),0.0T, )T is vector of the delay interval; » is number of
intervals of delay; g(¢) = ( glsn g )T vector of given parameters of the model; u(¢) =

= (ul(t),...,us (t))T is control function; f =( Sioees Ji )T is given function of the system.
System of equations (1) is added by initial conditions

¥(to)=ve: ¥, O=p;0), te[ty-t.t], j=Lr, @)

where p;(7) is a given function in the interval of delay.

Note, that the state function y depends on both independent variable ¢ (usually
time) and parameters of model g and control parameters u.

System of nonlinear differential equation with delay (1), (2) is solved by Dor-
mand and Prince variable step method [4].

Let us consider the so-called simple mathematical model [1, 2]. Model of the di-
sease in this case in dimensionless form can be presented as a system of four differen-
tial equations with delay

V'(t) :[gl/(1+g9u)]V—g2FV ,

F'(t)=g4(C—F)—g8FV,

C'(1)=E(m)gs (1+ gu)V (1 —1)F(1-1)-gs(C-1), t€[ty.t,],
m'(t)=g¢V — gsm . 3)

Here W(¢), F(¢), C(¢) are concentrations of viruses (antigens), antibodies and plasma
cells; m(¢) is relative characteristic of the damaged organ; g, ..., gjo are parameters of
the model; u(f) is control function which has an effect on the rate of virus multi-
plication (parameter g;) and on the coefficient of the immune system stimulation (para-
meter g;); T is interval of delay, te R, r=1. Function u(f) can be treated as the
temperature of the patient body. The increase of temperature leads to reduction of the
rate of virus multiplication. At the same time the temperature increase stimulates
generation of plasma cells.

Multiplier £(m) is the continuous non-increasing function which is chosen in the
following form

1, m<g,,

gm (l—m), gmSm<l,

&(m) = { 4)
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where g1, 2> are parameters of the model. Function (m) describes the dysfunction of
the immune system due to the substantial organ damage.
System of equations (3) is supplemented with initial conditions

Clto)=Co,  m(tg)=mq,
Vy=e(0), FO)=9y(1), tefty—1,1]. ®)

2. Formulation of optimization problem

To construct the optimization model along with constructing the disease model it is ne-
cessary to select the control parameters among the model input parameters , to determine
functional which explains the characteristics of the disease, to select the objective of
the therapy and constraints which can not be disturbed during the treatment.

2.1. Characteristics of the disease. Denote by k|, k», k3 numbers of components of
vector y which defines a concentration of viruses, antibodies and relative characteristic
of the damaged organ, respectively. The following functionals [5-8] are calculated in

this paper
()=, (), ()= it (tli){li b (=)

tets.t6]

[(.’
¢ (u)= ka] ()dt [ | (fmax —to)'[yk2 (t)dt+Sy |, ®4(u)= max Vi, »
)

b
s (u)=t7, B (u)=ty—t5, ¢’7(“)=ka] (¢)dt, (6)
ho
where @, defines the total damage of the organ in the interval [#,, #,]; @, is average rate
of functional recovery in the interval [#;, #4]; @5 is index of status of the immune sys-

tem of the organism, which characterizes the rate of synchronization of several links of
the immune system (S is given parameter, ¢, is time of achieving the maximum value
of antibody concentration); ¢, is maximum value of the damaged organ in the interval

[#5, s]. §5 is moment of recovery time, y; (;)<e, e~107" (complete elimination of

viruses from the body); @, is interval of remission between regular stresses in case of
chronic disease (%, f3 are moments of the time when viruses achieve the maximum va-
lue; £ > t5); @, is total amount of viruses in the interval [#, #11].

2.2. Optimization problem. One of the functional @,,...,$; is selected as the objecti-
ve of the therapy

Qo) =), iefl..T}.
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Other functionals can play the role of constraints
0, =4, )9}, ke{l...7}, k=i, j=LM,

where ¢; is feasible value of functional ¢, , M is quantity of constrains. Denote by
(76 = {u uel, ¢;(u)<0,; =1,_M} a set of feasible value of control function, U is a

set of control function.

Optimal control of the problems of the immunotherapy consists of finding such a
control function u«(¢) of the treatment process which is the best (in sense of choosing
the objective of the therapy) among feasible variants of the therapy

Po(ux) = ulgg Qo () - (7

2.3. Optimization problem as non-linear programming problem. In this paper the
optimal control problem (7) using approximation of control function by piecewise
polynomial function is transformed to the mathematical programming problem. Each

of the components u,(¢), i =1,s of control function in the result of approximation can
N . \T
be presented as function u,(¢) =y, (t,b(’) ), b = (bl’ ses by ) . Denote by b =(by,...,b, )T

the vector of optimization parameters consisting of the components of vectors 5,

i=1s,n=n +..+n,. Let us assume that U ={b:b_ <b<b*,b,b”,b" eR”} is a fea-

sible region. The value b, b* can be found from region U . Due to the approximation
of control function the functionals (6) are functionals of optimization vector . Then
the optimal control problem (7) is formulated as a non-linear mathematical program-
ming problem: find the vector of optimization parameters b, € U, such that

@ (by) = %n 0y (b), 3

where U, = {b €U0, (b)<0, )= I,M} is a feasible region.
Optimization problem (8) is solved by the combined method of penalty function and
different direct search methods, gradient methods and conjugate gradient methods [9, 10].
Based on an algorithms elaborated for the solution of the direct problem (1)-(2)
and the optimization problem (8), proper software for optimization of DDEs systems
has been created in Delphi environment.

3. Results of optimization

Choosing different values of parameters g;, i =1,10 model (3)-(5) simulate four pos-

sible forms of infectious disease: acute form with recovery, chronic form, subclinical
form and lethal outcome [1, 5]. In this paper the results of some optimization problems
for acute form with recovery and chronic form of disease are presented.
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3.1. Acute form of disease. The problems were solved for the following values of input
parameters of the model (3)-(5) [1, 5]: T=0,5; %, = 0; .= 100; g, = 2; g, = 0,8; g3 = 10000;
g4=0,17; g5=0,5; g6=10; g7=0,12; g5 =8; go=1; g10=25; g =0,1; g2 =10/9;
C(0)=1; m(0)=0; pi(¥) = max(0, t + 107(’),p2(t) =1, telty —1,t4].

Variation of V, C, F, m with time in case u(¢) = 0 (without control of the disease
process) is presented in Fig. 1. Since high concentration of viruses is located in some
interval [¢,, ] it is advisable to search nonzero control function in this interval. In the
examples of optimization problems presented in this paper, the interval [0; 20] is divided into
n =4 equal parts. In each part control function u is approximated by constant function.

The following optimal control problems are considered:

a) minimization of characteristic of the damaged organ @, in interval [#, Z.]

©o (1) = ¢y (1) - min,,

Uy ={u:0<u(t)<1}; )
b) minimization of time recovery Qs

©o () = s (u) — min,,,

Uy ={u:0<u(t)<1}; (10)
¢) minimization of the characteristic of the damaged organ ¢, in interval

t €[ty,1,] with constraint on time of recovery s
©o (1) = ¢y (1) - min,,,
Uy ={u:0<u() <1, () =§s) - g%}, 0% =10. (11)

In Table 1 the initial values of functionals ¢;,i=1,4,5,7 (in this case u(f) = 0)

and values of these functionals obtained as the result of the solution of optimization
problems (9)-(11) are given. A sign (*) is placed next to the optimal value of functional
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Fig. 1. Variation of V, C, F, m with time (acute form, u(7) = 0)
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@; if it is the objective functional. If functional @; is included in the feasible region U,
the value of this functional is marked as (+). As a result of the problem (9) solution the
value of the total damage of the organ (functional @, ) is considerably decreased. At the
same time the moment of time recovery (functional @) is increasing.

In the issue of solution of optimal problem (10) the moment of the time of reco-
very (functional ¢5) decreases from 11,2 to value 7,5. At the same time (as expected)
the value of @, is greater than the optimal value of this functional when the problem
(9) is solved.

We put the result of the solution of the optimization problem (11) in the last co-
lumn of Table 1. Consequently the value of @, is substantially lower to compare with
the initial value of this functional (this value, as expected, is greater than the optimal
value of this functional in problem (9)). At the same time the moment of the time of
recovery is lower than its initial value.

Also in Table 1 the values of functionals ¢,,p, are given. As expected, the
values of these functionals are lower to compare with their initial values.

Table 1
Initial and optimal values of functionals @;,i=1, 4, 6, 7 (acute form )
Number Initial value Optimal value | Optimal value Optimal value
of fun(?tional, of functional §, of functional @; ,/of functional @, ,| of functional @, ,

! problem (9) problem (10) problem (11)

1 2,57-107" 5,66:10 7 (*) 5,11-10 2 1,26:107 7 (*)

4 2,49-10°° 4,93-10 -4 5,19-10°° 1,19-10°

5 11,2 16,4 7,15 (*) 10,0 (+)

7 3,08:10°° 6,79:10°° 6,13-10"* 1,52:10*

In Table 2 the optimal values of optimization parameters b,, i = 1,4 are presen-

ted. The values of b,, b; are close to its upper bound. So it is necessary to increase the
value of control function u(¢) (temperature) during the time of the acute condition of
the disease (close to the peak of the disease).

Table 2

Optimal values of optimization parameters b;, i =1,4 (acute form )

optimization | Optimal value | Optimal value | Optimal value
parameter of b;, of b;, of b;,
problem (9) problem (10) | problem (11)
b 0,365 0,000 0,189
b, 1,000 0,939 1,000
b; 0,983 0,900 0,921
by 0,400 0,200 0,000
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3.2. Chronic form of disease. In this case the values of all the parameters of the model
(3)-(5) were the same as in the case of the acute form except the parameter g:
g6 = 300. Variation of V, C, F, m with time and without control of the disease process
is presented in Fig. 2. In case of chronic disease the periodic process is obtained.

It becomes obvious that the treatment of the chronic form should widen the inter-
val between the disease peaks. So, the optimization problem consists of maximization
of the interval of remission between regular stresses of chronic disease

Po () = g () > min,

U, :{u:OSu(t)Sl}.

At the beginning interval [f, ¢.] is divided into » = 10 equal parts. On each part
control function u is approximated by constant function. Choosing different initial va-

lues of optimization parameters b;,, i = L10we usually obtain such values optimization
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Fig. 2. Variation of V, C, F, m with time
(chronic form, u(?) = 0)
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Fig. 3. Variation of V, C, F, m with time
(optimal solution of problem (11))
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parameters which lead to the acute form of the disease. As in the previous case of the
acute form of the disease we can choose nonzero control function only in interval
(%4, t»] Which includes the first peak of the disease. Therefore the optimization problems
(9)-(11) can be formulated.

The results of problems (9)-(11) solution are presented in Table 3, Table 4. Interval
[0; 20] is divided into n =4 equal parts. In each part the control function u is approximated
by the constant function. In interval [20; 100] the control function u(?) is equal to zero.

Table 3

Initial and optimal values of functionals @;, i =1,4,6,7 (chronic form)

Number | Initial value | Optimal value | Optimal value | Optimal value
of of functional [ of functional of functional of functional
functi‘onal, P, ?; , ?; , ?; ,
! problem (9) | problem (10) | problem (11)
1 2,42:10°1 | 1,77:107 " (%) 9,58-10 " 3,79-107 " (*)
4 8,77-10"" 1,55-10° 9,58:10"° 3,57:10°
5 — 15,8 8,09 (*) 10,0 (+)
6 40,9 — — —
7 1,09-10 7,10:10° 3,84:10"* 1,51-10*
Table 4
Optimal values of optimization parameters b;, i = 1,_4 (chronic form)
optimization Optimal value | Optimal value | Optimal value
of b;, of b;, of b;,
parameter | blem (9) | problem (10) | problem (11)
b 0,354 0,051 0,189
by 1,000 0,978 1,000
b; 0,843 0,900 0,883
by 0,208 0,001 0,010

Variation of V, C, F, m with time of the disease process using optimal values of
the optimization parameters is presented in Fig. 3. Therefore the chronic form of the
disease can be treated by changing temperature.

Conclusions. The obtained results of computer simulation demonstrate the capabilities
of the created software environment for solving urgent optimization problems for the
processes that are modelled by DDEs. It is necessary to note that usually functionals

¢;,1=0,M (in DDEs optimal control problem) are non-unimodal and have deeply

curved valley forms. They are very sensitive to small variation of a control function.
Therefore to obtain the optimal solution it is necessary to solve repeatedly the optimal
control problem choosing different initial values of the control function.

The results presented in this paper for infectious disease processes have in many
cases a theoretical character. Working out practical recommendations connected with
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the optimization of the individual therapy and their introduction into clinical practice
requires the joint efforts of mathematicians, immunologists and clinicians.

Availability of a set of parameters g in the mathematical model of the disease

leads to a necessity to determine their values (or some part of them) based on clinical
and laboratory observed data [1, 5, 7]. This simulation tool enables us to solve the opti-
mization problem (and correct therapy) taking into account the data of clinical and la-
boratory observation which is obtained during the treatment process [7].

(1]
(2]
(3]

(9]
(10]
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OnTtumisauis npoueciB iH(PeKUINHUX 3aXBOPIOBaHb, IKi MOAENIOIOTLCS
HeniHinHuMMK audepeHUuianbHUMKU PIBHAHHAMM i3 3aNi3HEHHAM

Apema Casyna, Muxavno LWep6atun, MNanuHa Lepbata

Y pobomi 3anpononosano wuucnoeuil nioxio 00 po3s’a3yeamHs 3a0aw onmumizayii npoyecis,
NOBEOIHKA AKUX MOOCIOEMbCS HETHIUHUMU OughepenyianvHumu PieHAHHAMU 13 3anizHenHsm ([[P3)
3 nocmitinum Kpoxom 3anizuenns. Ha ocnosi ompumanozo poss’asxy ona [P3 ob6uucniorombcs
8I0NOBIOHI XAPAKMEPUCMUKY npoyecy, wo posenadacmocs. OOHA 3 yux Xapakxmepucmux 6uou-
paemvca 34 Kpumepii onmumizayii, a iHwi 8UKOHYIOMb POoilb 00MedceHb. 3a Kepyloui ubpano
Gynryii, 6i0 axux 3anexcams xoepiyicnmu /[P3. V pezynomami anpoxcumayii (hyHKyiti KepysanHs
KYCKOBO-TTHIUHUMU  DYHKYIAMU OMPUMYEMO 3a0adi HENIHIIHO20 MAMeMAMuyHo20 Npocpamy-
eanns. Egpexmusnicmo cmeopenoco npocpammnoco 3abesneuennss 01 po36 a3V8aHHA HENIHIUHUX
JIP3 i 3a0ay onmumizayii cucmem, nogedinka sikux mooemoemocs /P3, npoiniocmposano na
npurnadi Mooeni iHpekyitiHo20 3aX80PIOGAHHSL.
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OnTMMM3auma npoueccoB MH(PEKLMOHHbIX 3aboneBaHun,
MoAeNnMpyoLWmMXcs HennHenHbIMu auddepeHUnanbHbIMU
ypaBHEHMSAAMM C 3ana3gbiBaHUEM

Apema Casyna, Muxaun Lep6atbiii, ManuHa Lepbata

178

B pabome npednosicer uucnenuvlii ROOX00 K peuieHuio 3a0ai OnmumMu3ayi npoyeccos, NogeoeHue
KOMOPbIX MOOETUPYemcs HenuHelHbIMU OughhepenyuanbHblMu YypasHeHUAMU C 3ana3obleaiouum
apaymenmonm ([Y3) ¢ nocmosinnvim wazom 3anazovieanus. Ha ocnoge nonyuennozo pewienus ons
JY3 ucuucnaromes coomsemcmsyiowue Xapakmepucmuku paccmampusaemozo npoyecca. Oona
U3 SMUX XAPAKMEPUCUK 8blOUpAemcsi Kpumepuem onmumusayui, a opyaue blNOIHAION pPOilb
ocpanuyenull. B kauecmse ynpagusiowux ebloOpano GyHKyuu, om Komopuix 3a8ucsim kodpguyuen-
mot J[V3. B pesynomame annpoxcumayuu QYHKYull ynpasieHus KyCcouHO-TUHEHbIMU DYHKYUIMU
noayyaem 3a0aui HeUHEUHO20 MAMeMAMUIecKo20 NPOSPaMMUposanus. dggexmusnocms co30an-
HO20 NPOSPAMMHO20 0becnevenus Ons pewenus Heaunenvix Y3 u 3a0ay onmumusayuu cucmem,
nosederue Komopvix mooenupyemcs /Y3, npounnrocmpuposano Ha npumepe mooenu uHpex-
YUOHHO20 3a001e8aHUSL.
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