УДК: 669.187.56:669.162.144:669.788:541.8

Э.В.Приходько, В.Ф.Мороз, О.В.Кукса, Н.Е.Ходотова

О РАСТВОРИМОСТИ ВОДОРОДА В ШЛАКОВЫХ РАСПЛАВАХ

С использованием физико-химических моделей оксидных (шлаковых) и металлических расплавов изучена растворимость водорода в шлаковых расплавах и их водородопроницаемость. Установлены связи с интегральными параметрами межатомного взаимодействия в расплавах в виде полуэмпирических моделей.

Современное состояние вопроса. Известно, что как исходное содержание водорода во флюсах, так и способность последних растворять в своем составе водород или воду, оказывает существенное влияние на концентрацию водорода в сварочных швах и переплавляемых металлах, в частности, способом электрошлакового переплава (ЭШП).

Переход водорода и водородсодержащих газов из газовой фазы в жидкий металл может осуществляться через шлаковые расплавы, т.е. в системе газ–шлак–металл транспорт водорода будет определяться водородопроницаемостью шлакового расплава, которая зависит от растворимости в нем водорода и диффузионных параметров последнего в шлаке.

Методика исследования. Анализ растворимости водорода в шлаках различного состава и назначения выполнен с использованием физикохимической модели шлаковых расплавов, которая рассматривает шлаковый расплав как единую химическую систему [1]. В качестве параметров межатомного взаимодействия в этой модели используются интегральные величины – d, Δe , tg α и ρ_0 , где:

d – среднее межатомное расстояние катион–анион в расплаве, нм;

 Δe – химический эквивалент состава оксидного расплава, е;

tgα – характеризует химическую индивидуальность атомов;

ρ₀ – отношение числа катионов к числу анионов.

Расчет этих параметров реализован на ПЭВМ в программе «Шлак».

Для анализа растворимости водорода в сталях использованы интегральные параметры (d, Z^Y , tg α)физико–химические модели металлических расплавов с ОЦК–подобной структурой [1], где Z^Y – химический эквивалент металлического расплава.

Растворимость воды в оксидных шлаковых расплавах должна при прочих неизменных параметрах определяется активностью кислорода и длиной водородной связи, пропорциональной среднему межатомному расстоянию между анионами кислорода в зоне одноатомных ионов [2].

Изложение основных материалов исследования. Анализ наводороживания оксидных шлаков на основе CaO, Al₂O₃ и SiO₂ [2] (табл.1) показал, что содержание в них H₂O связано с интегральными параметрами межатомного взаимодействия регрессионным уравнением:

 $(H_2O) = 1011,04 - 184,97d + 37,18\Delta e + 2898,54tg\alpha$ (r=0,98) (1)

IIIIX II	20 (1000	-, - H20	100 111	u).				
CaO,	Al_2O_3 ,	SiO ₂ ,	$d \cdot 10^{-1}$,	$-\Delta e$,	tgα	ρ_{o}	(H ₂ O),	(H ₂ O) _{расч.}
%	%	%	HM	e			см ³ /100г	см ³ /100г
10,8	26,8	62,4	2,821	3,201	0,117	0,575	33,1	31,1
20,3	26,3	53,4	2,767	2,788	0,122	0,606	41	42
22	21	57	2,79	2,907	0,12	0,603	43,6	39,1
27	16	57	2,79	2,866	0,119	0,612	44,8	43,5
30,2	13,6	56,2	2,785	2,808	0,12	0,62	45,5	43,7
30	5	65	2,835	3,137	0,113	0,603	38,8	42,5
30	30	40	2,668	2,173	0,13	0,651	57,6	59,9
40	4	56	2,784	2,715	0,119	0,64	50	50,2
38	12,2	49,8	2,743	2,494	0,123	0,648	54,7	54,4
32,6	31,8	35,6	2,628	1,961	0,133	0,665	64	66,5
34	27	39	2,657	2,094	0,131	0,662	62,3	62
45	4	50	2,747	2,454	0,122	0,663	56,2	58,1
43	28	29	2,557	1,557	0,136	0,704	69,8	86
49,2	22,6	28,2	2,545	1,458	0,137	0,722	96	89
47,3	30,6	22,1	2,467	1,161	0,14	0,731	113,6	105,8
54,1	15,4	30,5	2,57	1,52	0,135	0,729	92,5	87,9
45,3	41,5	13,2	2,315	0,628	0,146	0,746	134,5	136,3

Таблица 1. Интегральные параметры оксидных шлаков и растворимость в них H_2O (1600⁰C, $P_{H_2O}=100$ кПа).

Сравнение рассчитанных по (1) и экспериментальных значений (H₂O), растворенный в шлаках при температуре 1600^{0} С и P_{H2O}=100 кПа приведен на рис. 1.

Рис. 1. Соотношение экспериментальных и рассчитанных по уравнению (1) значений (H₂O), растворенной в шлаках

Наиболее тесная парная связь содержания (H_2O) в шлаке наблюдается с параметром Δe :

$$(H_2O) = 145,42 + 36,46\Delta e$$
 (r=0,96) (2)

Содержание водорода в оксифторидных шлаках (табл. 2) [3] при продувке их водяными парами при температуре 1600° С в течение 20мин, описывается уравнением:

 $(H) = -205,08 + 60,87d + 45,88\Delta e - 2081,07 \text{ tg}\alpha + 708,27\rho_0 \qquad (r=0,91) \quad (3)$

В работе [4] предложен безразмерный количественный параметр водородопроницаемости флюсовых расплавов для заданных и неизменных параметров процесса ЭШП) в виде:

$$Q_{H}^{o} = Q_{H} \sqrt{P_{H_{2}O}^{o} / P_{H_{2}O}},$$
 где $Q_{H} = \frac{[H]_{ucx} + (\Delta[H])_{\phi^{\pi}}}{[H]_{ucx}}$

[H] – исходное содержание водорода в переплавлямом электроде; $(\Delta[H])_{\phi\pi} = [H]_{\text{исх}} - [H]_{\text{мет}}$, т.е. разница между содержанием водорода в исходном и переплавленном металле; P_{H_2O} – парциальное давление паров воды в рабочей атмосфере, а $P_{H_2O}^o$ – тоже в стандартных условиях – 25°С и 50% относительной влажности.

Анализ водородопроницаемости стандартных флюсов ЭШП (АНФ14, AH–291, АНФ13, АНФ6, АНФ28, АНФ29, УД5 и АНФ7) [4, 5], содержащих в своем составе CaF_2 и являющихся оксидносолевыми расплавами, при переплаве стали 08Х18Н10Т при 1700⁰С показал наличие тесной корреляционной связи Q_H^o с параметрами межатомного взаимодействия в шлаках (табл,3) в виде уравнения:

$$Q_{H}^{o} = \frac{[H]_{ucx} + \Delta[H]_{dy_{1}}}{[H]_{ucx}} \cdot \sqrt{\frac{P_{H_{2}O}^{o}}{P_{H_{2}O}}} = 1,49 + 0,49d + 0,3\Delta e$$

$$-24,66tg\alpha + 3,59\rho_{o}$$
(4)

Сопоставительное сравнение экспериментальных и рассчитанных по уравнению (4) значений относительной водородопроницаемости стандартных флюсов ЭШП приведено на рис.2.

Следует отметить, что относительная водородопроницаемость одного и того шлака может быть разной и зависеть от состава переплавляемого металла. Приведенные в литературе данные по ЭШП сталей 08Х18Н10Т, 12Х18Н10Т, 40Х и 15Х2НМА [6] под флюсом АНФ6 показывает, что значение Q_H^o изменяются в широких пределах – от 1,32 до 4,37.

заимодей-	
межатомного в	
ие параметры	
к интегральнь	
(N)	
Х	
шлаках	
оксифторидных	
водорода в	
Растворимость	$^{0}C = 70$ MMH)
Таблица 2.	ствия (1600

$(H)_{pacu.}$ ${ m cm}^3/100{ m r}$		100,8	64,1	64,1	67,6	53,9	46,3	30,7	53,7	39,8
ρ°		0,5	0,555	0,555	0,697	0,69	0,683	0,635	0,694	0,694
<i>d</i> .10 ⁻¹ , нм Δe ,е tgα		0,151	0,153	0,153	0,158	0,155	0,153	0,137	0,161	0,164
		3,905	1,85	1,85	-1,409	-2,495	-3,154	-4,41	-1,538	-1,754
		1,426	1,8	1,8	2,833	3,405	3,791	4,493	2,84	2,877
(H),	$cm^3/100r$	106,13	49,33	69,83	64,45	58,74	31,18	36,55	58,07	46,64
	B_2O_3	Ι	Ι	Ι	Ι	Ι	Ι	Ι	5	10
	CeO ₂	-	Ι	Ι	-	10	20	50	-	Ι
%	MgO	Ι	Ι	Ι	14	13	13	7	13	13
жание,	SiO ₂	—	—	—	9	2	4	3	5	5
Codep	CaO	—	-	-	22	20	17	11	21	20
	Al_2O_3		30	30	26	23	20	13	25	23
	CaF_2	100	70	70	32	29	26	16	31	29
номер Номер		1	2	3	4	5	6	7	8	9
		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	В (H), $d \cdot 10^{-1}$, HM Δe ,e $tg\alpha$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	В (H), $d \cdot 10^{-1}$, HM $\Delta e, e$ $tg\alpha$ p_0 $(H)_{pucu,}$ H T D	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Рис.2. Сравнение экспериментальных и рассчитанных значений относительной водородопроницаемости Q_H^o стандартных шлаков ЭШП

дородопроницаемость шлаков Эши (1700 С).								
Флюс	$d \cdot 10^{-1}$, нм	$\Delta e, e$	tgα	ρ _o	Q_H^o			
ΑΗΦ6	1,934	1,318	0,152	0,576	1,19			
ΑΗΦ7	1,510	3,437	0,151	0,574	1,58			
АНФ13	2,266	0,282	0,148	0,600	1,13			
АНФ14	2,613	-0,713	0,141	0,533	0,95			
АНФ28	2,687	-1,139	0,136	0,601	1,26			
АНФ29	2,614	-0,864	0,146	0,641	1,39			
АНФ291	2,892	-1,695	0,164	0,758	1,05			
УД5	2,716	-1,855	0,140	0,736	1,43			

Таблица 3. Параметры межатомного взаимодействия и относительная водородопроницаемость шлаков ЭШП (1700⁰С).

Анализ приведенных в работе [6] данных по изменению Q_H^o от интегральных параметров межатомного взаимодействия в расплавах этих сталей (табл. 4) описывается уравнением:

$$Q_{H}^{o} = -202,63 - 0,45d + 6,68Z^{Y} + 2256,62tg\alpha - 0,009P_{H_{2}O} \qquad (r=0,998)$$
(5)

Выводы. Полученные выше полуэмпирические модели растворимости водорода в шлаках различного состава и их водородопроиницаемости могут быть использованы для прогнозной оценки поведения водорода в системе газ-шлак-металл.

Сталь	$d \cdot 10^{-1}$,	Z^{Y} , e	tgα	P_{H_2O} ,	$Q^{o}_{H_{over}}$	$Q^{0}_{H pacu}$
	HM			кПа	Shen.	- II pucs.
08X18H10T	2,8213	1,7834	0,0857	15	1,32	1,28
	2,8213	1,7834	0,0857	5,5	1,33	1,37
12X18H10T	2,8168	1,7844	0,0857	17,7	1,26	1,27
	2,8168	1,7844	0,0857	15,8	1,29	1,28
40XH	2,7563	1,2306	0,0886	8,4	4,09	4,22
	2,7563	1,2306	0,0886	6,3	4,37	4,24
15X2HMA	2,7995	1,2690	0,0877	19,2	2,32	2,33
	2,7995	1,2690	0,0877	11,3	2,41	2,40

Таблица 4. Зависимость относительной водородопроницаемости флюса НФС от интегральных параметров расплавов сталей и P_{H_2O}

- 1. Приходько Э.В. Металлохимия многокомпонентных систем. М.: Металлургия. –1998. –320 с.
- Сварочные материалы для дуговой сварки. Справочное пособие в 2-х томах. Т.1. Защитные газы и сварочные флюсы // Б.П.Конищев, С.А.Курланов, Н.Н.Потапов и др. Под общей редакцией Потапова Н.Н. – М.: Машиностроение, 1989. –544 с.
- Содержание водорода в оксифторидных расплавах / А.А. Медведев, В.Е. Рощин, В.И. Антоненко и др. // Изв. ВУЗов. Черная металлургия. –1990. –№8. – С.15–17.
- Водородопроницаемость стандартных флюсов ЭШП / А.Н.Романов, И.А.Новохатский, В.Я.Кожухарь и др. // Известия ВУЗов. Черная металлургия. –1989. –№7. –С.47–51.
- Содержание водорода во флюсах ЭШП на различных стадиях их производства / И.А.Новохатский, Б.И.Бережко, В.Я. Кожухарь и др. // Изв. ВУЗов. Черная металлргия. –1989. –№5. –С.48–54.
- Новохатский И.А., Кожухарь В.Я., Романов А.Н. О механизме межфазного распределения водорода в процессах ЭШП //Изв. ВУЗов. Черная металлургия. -1994. –№5. –С.23–28.

Статья рекомендована к печати докт.техн.наук, проф. Д.Н.Тогобицкой