А.Ф.Петров, А.С.Артеменко

ПРОГНОЗИРОВАНИЕ СВОЙСТВ ЖИДКИХ БИНАРНЫХ СПЛАВОВ С УЧАСТИЕМ 3-D ПЕРЕХОДНЫХ И НОРМАЛЬНЫХ МЕТАЛЛОВ, ПО ПАРАМЕТРАМ МЕЖАТОМНОГО ВЗАИМОДЕЙСТВИЯ

Предложена методика позволяющая с достаточно высокой точностью прогнозировать структурно-чувствительные характеристики бинарных металлических систем с участием 3-d переходных и нормальных металлов, используя физикохимическую модель их электронной структуры.

Анализ состояния проблемы.

Проблема изучения свойств металлических расплавов издавна составляет главную задачу научной металлургии. Трудность экспериментирования при высоких температурах с металлическими расплавами является основной причиной, объясняющей существовавший длительное время дефицит экспериментальной информации о свойствах жидкометаллической среды.

В настоящее время благодаря работам А.М.Самарина, А.А.Вертмана, П.В.Гельда, Н.А.Ватолина, Б.А.Баума, Д.К.Белащенко, В.А.Григоряна, П.П.Арсентьева в широком диапазоне температур исследованы вязкость, плотность, поверхностное натяжение, электросопротивление и диффузионные характеристики большой гаммы важнейших по составу металлических расплавов. В результате этого установлено, что жидкие металлы и сплавы микронеоднородны по структуре и составу. Они отличаются высокой термической устойчивостью, наследственной от твердого состояния структурой ближнего порядка. В связи с этим металлические расплавы можно рассматривать как совокупность динамических микрогруппировок – кластеров, состав и размеры которых определяются характером межчастичного взаимодействия и температурой расплава.

Авторы работы [1] предполагают, что металлические расплавы обладают не только структурной и химической, но и электронной микронеоднородностью. Подразумевается, что в жидких металлах заряды кластеров положительны, а разупорядоченная зона заряжена отрицательно. Неоднократно предпринимались попытки с позиций разных подходов рассчитать размер r_k микрогруппировок (кластеров) и число n_k входящих в их состав атомов [2-5]. Несмотря на определенные достижения в изучении ряда относящихся к этой проблеме вопросов, большинство из них являются дискуссионными и ждут своего решения. Ввод понятия «микронеоднородности» при фактическом отсутствии количественных критериев для оценки и учета ее роли в формировании структуры и свойств расплавов имел для теории жидкого состояния не только положительные последствия. Так, например, появилась возможность объяснять расхождение теоретических и экспериментальных результатов в рамках разных моделей бездоказательными ссылками на влияние этого фактора.

В значительной мере отмеченные и ряд других затруднений в развитии теории связанные с отсутствием количественной информации о параметрах межатомного взаимодействия в расплавах. При трактовке электронной структуры и расшифровке результатов дифракционных и других экспериментальных измерений господствующими (несмотря на данные полученные методом электропереноса) представления о сферической симметрии электронных облаков атомов и ионов, кратности их зарядов целым числам и стабильности этих характеристик при изменении состава расплавов. Во многих случаях при проведении количественных расчетов оперируют характеристиками физико-химических свойств атомов без учета их ионизированного состояния и анизотропии электронного распределения в многокомпонентных системах. Получаемые таким путем результаты характеризуют не столько структурную микронеоднородность моноатомных расплавов как таковую, сколько косвенно оценивают комплекс химических свойств атомов в расплаве [6].

В соответствии с принятой системой классификации по типу кривых состав-свойство можно выделить три основных типа расплавов: системы с неограниченной растворимостью компонентов в твердом состоянии, сплавы эвтектического типа и сплавы с химическим взаимодействием компонентов. Анализ имеющихся в литературе термодинамических данных свидетельствует о том, что системам с полным взаимным растворением компонентов в твердом состоянии свойственны небольшие отклонения от идеальности. Характерная особенность этих расплавов – монотонное изменение изотерм вязкости (ν), электропроводности (ρ), поверхностного натяжения (σ).

В простейших металлических эвтектических сплавах обычно наблюдаются положительные отклонения от идеальности, что соответствует представлению о том, что в этих системах энергия взаимодействия одноименных частиц заметно превышает таковую для разноименных частиц. По В.И. Данилову и Я.И. Дутчаку [7], жидкие эвтектические сплавы отличаются химической неоднородностью в пределах одной или двух координационных сфер. Позднее была предложена модель эвтектической жидкости, согласно которой области микронеоднородности содержат в себе несколько тысяч атомов. Вместе с тем М.И. Шахпоронов считает, что структура затвердевшей эвтектики обусловлена не наличием в жидкости заранее подготовленной эвтектической структуры, как это утверждает Ю.Н.Таран, а особыми условиями кристаллизации при наличии перенасыщения, вызывающего задержку кристаллизации то одного, то другого компонента расплава.

Сильное химическое взаимодействие между компонентами в твердом состоянии, сопровождающееся образованием устойчивого химического соединения, проявляется и в жидкости. В связи с этим для систем с ин-

терметаллическими соединениями в твердой фазе чаще всего наблюдается соответствие диаграмм состояния диаграммам состав-свойство. В большинстве случаев координате химического соединения отвечает минимум на изотерме электропроводности (ρ), максимум на кривой вязкости (ν), изгибы на изотермах магнитной восприимчивости (μ), электродвижущих сил (*E*), максимальная величина отклонения от аддитивной прямой изменения молярных объемов (*V*) и активностей (*a*).

Постановка задачи. В настоящей работе был произведен анализ зависимостей структурно-чувствительных характеристик (вязкости, поверхностного натяжения, электропроводности) для различных групп бинарных расплавов с участием как простых (нормальных), так и 3 d – переходных металлов. Для этого использовалась методика физикохимического моделирования [8,9].

К простым относят такие металлы, валентные электроны которых в первом приближении можно рассматривать как свободные. Простыми металлами являются щелочные (Li, Na, K, Rb, Cs) щелочноземельные (Ca, Mg Sr, Ba), а также Al, Sn, Pb, In, Cd, Ga, Bi, Tl, Hg и др. Например, у атома натрия электронная конфигурация выглядит следующим образом: $1s^2 2s^2 2p^6 3s^1$. Первые 10 электронов - $1s^2 2s^2 2p^6$ сильно связаны с ядром и вместе с ним образуют ион натрия Na⁺. Одиннадцатый – валентный электрон, наиболее удаленный от ядра, связан с ним слабо. При образовании металла валентные электроны коллективизируются и ведут себя подобно газу, при этом внутренние атомные электронные состояния не претерпевают существенных изменений.

Переходные металлы отличаются сложной электронной структурой (в частности, наличием узких *d*-зон) и сильным межчастичным взаимодействием. Узкая *d*-зона в этих металлах простирается в зону валентных электронов вплоть до энергии Ферми и оказывает существенное воздействие на систему коллективизированных электронов. Приближение свободных электронов становиться очень грубым.

В качестве общей квазихимической модели, для неорганических материалов включая многокомпонентные, нами предлагается использовать модель ОЦК – подобной упаковки атомов (ионов). В этом случае соотношение между эффективными зарядами (Z) для первой (Z^x) и второй (Z^y) координационных сфер описываются уравнением:

$4Z^{x} = -Z^{y}$

По физическому смыслу оно выражает в терминах Z интегральное условие равновесия сил притяжения и отталкивания, действующих на любой атом в многокомпонентной системе со стороны партнеров его связей с соседями в первых двух координационных сферах. Использование этой модели открыло новые возможности для полуэмпирического обобщения опытных данных о свойствах расплавов и продуктов их кристаллизации. Эти возможности связаны с разработкой единой формы кодировки информации о составе расплавов, соединений и растворов в виде сочетания интегральных и парциальных модельных параметров межатомного взаимодействия.

Основными парциальными параметрами модели являются эффективные заряды (Zi), определяемые для каждой пары реагентов (Zi(i-j)), и их среднестатистические значения (Zi ср.), характеризующие зарядовое соотношение каждого из компонентов в расплаве или растворе заданного состава. Интегральными характеристиками структуры расплава до и после затвердевания являются химический эквивалент его состава (Z'), суммирующий данные о зарядах компонентов с учетом вероятностей образования связей разного типа, и структурный параметр (d), пропорциональный среднестатистическому расстоянию между атомами. В такой же мере аналогом электрохимического фактора (обычно в качестве его используется электроотрицательность) можно считать параметр (tg α), определяемый по его парциальным значениям для каждого из компонентов.

В результате информация о составе сводится к переводу на язык сочетания параметров Z'd, tgc. Результаты последующего обобщения информации о свойствах с промощу этого сочетания можно трактовать как примеры реализации известных правил Юм-Розери, согласно которым результаты межатомного взаимодействия в виде макросвойств представляют собой следствие комплексного влияния химического, структурного и электрохимического факторов. Для теории моделирования каждый из этих факторов является формальной «сверткой», учитывающей индивидуальность взаимодействия в расплавах различного состава.

Эта методика прошла широкую апробацию при исследовании влияния состава на интегральные термодинамические функции (энтальпию, энергию Гиббса, энтропию), как для бинарных, так и для многокомпонентных систем, самых разнообразных по характеру химической связи и степени микронеоднородности структуры [10-14].

Расчет параметров Z' и d в квазихимическом приближении позволил установить, что для большого числа бинарных расплавов ввод этих параметров в качестве промежуточного звена в связь между составом и свойствами позволяет линеаризировать сложные концентрационные зависимости свойств и представить опытные данные в виде, удобном для оценки их достоверности и прогнозирования свойств неизученных систем. Предполагается, что в тех случаях, когда такая линеаризация не наблюдается, необходимо учесть микронеоднородность системы варьированием вероятностей образования связей разного типа и изменением в расчетных формулах соотношения между радиусами первой и второй координационных сфер.

Результаты исследования. Проведенный анализ систематизированного в табличном виде в работах [15,16] представительного фактического материала о вязкости (ν), электропроводности (ρ), поверхностном натяжении (σ) бинарных систем, среди которых присутствовали (системы с прочными и неустойчивыми интерметаллическими соединениями, с твердыми растворами, с эвтектикой, с ограниченной растворимостью в жидком состоянии) показал: ввод модельных параметров Z^{y} и *d* в связь состав - свойство дает хорошие результаты для расплавов Ni-Cr, Co-Ni, Co-Cu, Co-Ge, Co-Sn, Cu-Al, Cu-Ni, Cu-Bi, Cu-In, Al-Cr, Al-Fe, Mg-Ni, Bi-Sn, Bi-Sb, Bi-Tl, Sn-Ga, In-Hg, Tl-Sn, Ga-Ni, Ge-Fe, Fe-Sn, Ga-Ni.

В результате получены зависимости вязкости, электропроводности, поверхностного натяжения в виде уравнений ρ , ν , $\sigma = f(Z^{\nu}, d)$ с коэффициентами корреляции между экспериментальными и расчетными данными на уровне 0,97-0,99.

В качестве примера ниже приведены уравнения для электропроводности (10⁸ Ом·м) ряда систем анализированных нами.

$\rho_{1873 \text{ K Co-Ni}} = 77,3 Z^{y} + 5961,6 d - 17107,5$ $r = 0,99$	(1)
$\rho_{1773 \text{ K Co-Cu}} = 107,2 Z^{\text{y}} - 1362,5 d + 3923$ $r = 0,98$	(2)
$\rho_{1723 \text{ K Co-Ge}} = 595 Z^{\nu} + 267 d - 1882,2$ $r = 0,99$	(3)
$\rho_{1823 \text{ K Ni-Ga}} = 79,6 Z' - 38,9 d + 129$ $r = 0,97$	(4)
$\rho_{1273 \text{ K Mg-Sn}} = 2406 - 238 Z^{\vee} - 665 d$ $r = 0.97$	(5)
$\rho_{1523 \text{ K Mg-Ni}} = 185,3 Z^{v} - 100,6 d + 181$ $r = 0,97$	(6)
$\rho_{1373 \text{ K Cu-Al}} = 368 Z^{v} + 55,9 d - 518,2$ $r = 0,98$	(7)
$\rho_{1373 \text{ K Cu-In}} = 59,4 Z' + 33 d - 126,9$ $r = 0,98$	(8)
$\rho_{573 \text{ K Bi-Tl}} = -14,7-0,13 \ Z^{y} + 4,3 \ d$ $r = 0,98$	(9)
$\rho_{573 \text{ K Bi-Sn}} = -391,5 - 8,4 Z' + 147,9 d$ $r = 0,98$	(10)

Аналогичные результаты получены для кинематической вязкости и поверхностного натяжения бинарных расплавов.

Так, например, использование сочетания предлагаемых нами модельных параметров Z' и *d* позволило выразить значения кинематический вязкости v (10⁶ м²/c) как линейную функцию. Коэффициенты корреляции между расчетными и экспериментальными значениями в уравнениях (11-22) как правило, были не ниже 0,97.

	$v_{1923 \text{ K Al-Cr}} = -0,77 + 0,32 Z^{\nu} + 0,26 d$	r = 0,99	(11)
	$v_{1373 \text{ K Al-Fe}} = 5,3 - 0,1 \ Z^{\vee} - 1,6 \ d$	r = 0,98	(12)
	$v_{1373 \text{ K Cu-Al}} = -11,9 - 0,91 Z^{\nu} + 4,5 d$	r = 0,97	(13)
	$v_{1723 \text{ K Cu-Ni}} = -16,2 + 0,08 Z' + 5,76 d$	r = 0,99	(14)
	$v_{1973 \text{ K Ni-Cr}} = 8,0 + 0,29 Z' + 2,88 d$	r = 0,99	(15)
	$v_{1373 \text{ K Cu-Bi}} = 0.94 + 0.14 Z' - 0.18 d$	r = 0,98	(16)
$ v_{723 \text{ K Cd-Sn}} = -0.54 - 0.13 \ Z^{y} + 0.32 \ d \qquad r = 0.99 \qquad (18) \\ v_{723 \text{ K Cd-Sn}} = -0.54 - 0.13 \ Z^{y} + 0.32 \ d \qquad r = 0.99 \qquad (19) \\ v_{673 \text{ K Pb-Tl}} = 0.66 + 0.05 \ Z^{y} - 0.11 \ d \qquad r = 0.98 \qquad (20) \\ v_{773 \text{ K Tl-Sn}} = 0.24 + 0.006 \ Z^{y} - 0.026 \ d \qquad r = 0.99 \qquad (21) \\ v_{1373 \text{ K Ag-Cu}} = 2.74 - 0.64 \ Z^{y} - 0.49 \ d \qquad r = 0.97 \qquad (22) $	$v_{723 \text{ K Cd-Sn}} = -0,54 - 0,13 Z^{\nu} + 0,32 d$	r = 0,99	(17)
$ v_{723 \text{ K } Cd-\text{Sn}} = -0,54 - 0,13 \ Z^{y} + 0,32 \ d \qquad r = 0,99 \qquad (19) \\ v_{673 \text{ K } Pb-T1} = 0,66 + 0,05 \ Z^{y} - 0,11 \ d \qquad r = 0,98 \qquad (20) \\ v_{773 \text{ K } T1-\text{Sn}} = 0,24 + 0,006 \ Z^{y} - 0,026 \ d \qquad r = 0,99 \qquad (21) \\ v_{1373 \text{ K } Ag-Cu} = 2,74 - 0,64 \ Z^{y} - 0,49 \ d \qquad r = 0,97 \qquad (22) $	$v_{723 \text{ K Cd-Sn}} = -0,54 - 0,13 Z^{\nu} + 0,32 d$	r = 0,99	(18)
$ v_{673 \text{ K Pb-T1}} = 0,66 + 0,05 \ Z^{y} - 0,11 \ d \qquad r = 0,98 \qquad (20) v_{773 \text{ K Tl-Sn}} = 0,24 + 0,006 \ Z^{y} - 0,026 \ d \qquad r = 0,99 \qquad (21) v_{1373 \text{ K Ag-Cu}} = 2,74 - 0,64 \ Z^{y} - 0,49 \ d \qquad r = 0,97 \qquad (22) $	$v_{723 \text{ K Cd-Sn}} = -0,54 - 0,13 Z^{\nu} + 0,32 d$	r = 0,99	(19)
$ v_{773 \text{ K TI-Sn}} = 0,24 + 0,006 \ Z^{y} - 0,026 \ d \qquad r = 0,99 \qquad (21) v_{1373 \text{ K Ag-Cu}} = 2,74 - 0,64 \ Z^{y} - 0,49 \ d \qquad r = 0,97 \qquad (22) $	$v_{673 \text{ K Pb-Tl}} = 0.66 + 0.05 Z^{\vee} - 0.11 d$	r = 0,98	(20)
$v_{1373 \text{ K Ag-Cu}} = 2,74 - 0,64 Z^{y} - 0,49 d$ $r = 0,97$ (22)	$v_{773 \text{ K Tl-Sn}} = 0,24 + 0,006 Z^{\nu} - 0,026 d$	r = 0,99	(21)
	$v_{1373 \text{ K Ag-Cu}} = 2,74 - 0,64 Z^{v} - 0,49 d$	r = 0,97	(22)

Подобные уравнения получены при обобщении экспериментальной информации о поверхностном натяжении о (мН/м). Для некоторых систем ниже приведены следующие уравнения.

$\sigma_{1873 \text{ K Ni-Cr}} = 3997 - 229,3 Z^{\nu} - 716 d$	r = 0,98	(23)
$\sigma_{1823 \text{ K Cu-Ni}} = 24219 - 231 Z^{v} - 7778,4 d$	r = 0,98	(24)
$\sigma_{1873 \text{ K Ga-Ni}} = 8642 - 562 Z^{v} - 2194 d$	r = 0,98	(25)
$\sigma_{1823 \text{ K Fe-Sn}} = 6678 - 434 Z^{\vee} - 1834,2 d$	r = 0,97	(26)
$\sigma_{1823 \text{ K Co-Cu}} = 19950 - 1172,5 \ Z^{\vee} - 5894 \ d$	r = 0,97	(27)
$\sigma_{1823 \text{ K Co-Sn}} = 23965 - 610,1 \ Z^{v} - 7535,7 \ d$	r = 0,99	(28)
$\sigma_{573 \text{ K In-Hg}} = -3604 + 199,2 Z^{\nu} + 1071 d$	r = 0,98	(29)
$\sigma_{573 \text{ K Bi-Sn}} = -212,4 - 60,8 Z^{\vee} + 222,2 d$	r = 0,98	(30)
$\sigma_{523 \text{ K Sn-Ga}} = -320 + 40,1 \ Z^{y} + 263,6 \ d$	r = 0,99	(31)
$\sigma_{1873 \text{ K Ge-Fe}} = -7282,5 - 579,3 Z^{v} + 3472,5 d$	r = 0,99	(32)

То обстоятельство, что рассмотренные выше результаты получены при использовании квазихимического приближения, без ввода представлений о наличии в расплавах (с предполагаемо разным строением спецификой химических связей) каких-либо группировок, имеет принципиальное значение для их осмысления. Наиболее логичное объяснение такой ситуации заключается, на наш взгляд, в том, что любые ликвационные процессы, приводящие к микронеоднородному строению, являются производной от параметров межатомного взаимодействия. Микронеоднородность – такая же функция этих параметров, как и любое свойство, и для вычисления этих свойств наличие количественных ее характеристик совершенно необязательно. Если же для каких-либо составов наблюдается значимая разница между расчетными и экспериментальными значениями определенного свойства, то такая информация может трактоваться как индикатор появления микронеоднородности в структуре расплава. Предложенная физико-химическая модель в таком случае оказывается вполне работоспособной благодаря вводу избыточных значений (ΔZ^{\vee} и Δd) модельных параметров. Соответствующие значения определяются как разница между Z^{y} и d, рассчитанными для расплава как химически единой системы, и значениями Z_{cp}^{v} и d_{cp} , найденными как средневзвешенные по Z^{v} и *d* чистых компонентов. Иначе говоря, по этим параметрам оценивается степень отличия процессов взаимодействия в расплавах как химически единых системах от свойственных механическим смесям. Дополнительный учет параметров $\Delta Z'$ и Δd оказался чрезвычайно важным. Наблюдаемые в ряде случаев колебания физико-химических свойств у большого класса систем с полупроводниковыми соединениями полностью устраняются при дополнительном учете ΔZ^{y} и Δd .

В качестве примера можно привести результаты, полученные для системы Sb-Te: для которой изотерма вязкости характеризуется резким максимумом – пиком при 60% ат.Te, что соответствует соединению Sb₂Te. Ввод параметров Z^{v} и *d* в связь между составом и свойствами не дал высоких результатов. Так коэффициент корреляции между экспериментальными и расчетными значениями находится не на достаточно высоком уровне (*r*=0,63). Дополнительный учет параметров ΔZ^{v} , Δd позволил получить более высокие результаты. Зависимость $v = f(Z^{v}, d, \Delta Z^{v}, \Delta d)$ превратилась в искомую линейную - уравнение (33).

 $v_{1023 \text{ K Sb-Te}} = 4993,7 Z' + 668,8 d - 4991,6 \Delta Z' - 652,7 \Delta d - 8924 r = 0,96 33)$ Похожая картина при анализе кинематической вязкости наблюдалась и для бинарных расплавов (Pb-Ge, Sn-Sb, Bi-Sb, Cu-In, Al-Ni).

Для всех перечисленных систем дополнительный учет ΔZ^{ν} и Δd позволил значительно повысить точность регрессионных уравнений. Коэффициенты корреляции между расчетными и экспериментальными значениями возросли до уровня 0,98- 0,99 (34-38).

Экстремальный характер изменения электропроводности от концентрации наблюдается для целого ряда бинарных систем с участием как простых, так и 3-d переходных металлов. Как видно из рис.1, зависимость электропроводности (ρ ·10⁸ Ом·м) расплава Mg-Ca, от состава имеет явный максимум при 40 ат.% Ca.

Рис.1. Изменение электропроводности расплава Mg-Ca, от состава

В табл.1 представлена экспериментальная [17] и расчетная информация для системы Mg-Ca.

1 1	0				
Са,%ат	р 10 ⁸ Ом*м	Z^Y	d	ΔZ^{Y}	Δd
10	31	0,6308	3,7507	0,1055	0,066
20	42	0,728	3,8583	0,1875	0,0795
30	56	0,8017	3,9403	0,246	0,0673
40	59	0,8518	4,0092	0,2809	0,0419
50	50	0,8786	4,0727	0,2926	0,0112
60	42	0,882	4,1362	0,2808	-0,0196
70	35	0,8619	4,2049	0,2455	-0,045
80	31	0,8186	4,2856	0,187	-0,059
90	29	0,7519	4,3884	0,1051	-0,05

Таблица 1. Состав, электропроводность и модельные параметры структуры расплавов Мд-Са

Ввод в связь состав-свойство модельных параметров Z^{y} и *d* при анализе электропроводности для системы Mg-Ca не дал достаточно высоких результатов. Дополнительный ввод в модель параметров ΔZ^{y} , Δd позволил повысить точность. Коэффициент корреляции возрос до уровня 0,97.

 $\rho_{1523 \text{ K Mg-Ca}} = 9011,6 Z^{\vee} - 1402,5d - 8901,6\Delta Z^{\vee} + 1727,7\Delta d - 429,8 r = 0.97 (39)$

На рис.2 сопоставлены экспериментальные и расчетные данные по приведенному уравнению (39).

Таким же образом описываются результаты исследований электропроводности расплавов бинарных систем Al-Sn, Cu-Ga. В результате для этих систем получаем уравнения:

 $\rho_{1173 \text{ K Al-Sn}} = 14477 - 31851 \ Z' + 1809 \ d + 46588 \ \Delta Z' + 3,1 \ \Delta d \quad r = 0,94 \ (40) \\ \rho_{1450 \text{ K Cu-Ga}} = 369,3 \ Z' + 158 \ d - 278,9 \ \Delta Z' + 165 \ \Delta d - 758 \qquad r = 0,97 \ (41)$

Рис.2 Соотношение между экспериментальными и расчетными значениями по уравнению (39) электропроводности в расплаве Mg-Ca

Выводы. Для оценки значимости достигнутого уровня точности отметим, что другими известными методами обработки экспериментальных данных о физико-химических свойствах для бинарных металлических расплавов невозможно без повышения параметричности описательных моделей приблизиться к тому уровню точности аналитического обобщения, который достигается путем кодирования состава параметрами Z^{y} и *d*.

В результате проделанной работы получено большое число точных регрессионных уравнений, обобщающих с единых физико-химических позиций представительный фактический материал о структурночувствительных характеристиках различных групп расплавов бинарных систем с участием как 3d – переходных, так и нормальных (простых) металлов. Полученные результаты дают основание полагать, что предложенные физико-химические критерии (Z', d, $\Delta Z'$, Δd) успешно выполняют функции промежуточного связующего звена – параметров свертки информации между составом и физико-химическими свойствами расплавов, самых разнообразных по предлагаемому характеру химической связи и степени микронеоднородности структуры. При этом сочетание параметров $\Delta Z'$ и Δd можно рассматривать как количественную характеристику микронеоднородности структуры соответствующего расплава.

Учитывая высокую точность (*r*>0,95) полученных корреляционных моделей при описании различных структурно-чувствительных характеристик и их низкую параметричность, предложенную методику можно рекомендовать для анализа особенностей межатомного взаимодействия в металлических расплавах и оценки его роли в формировании комплекса их свойств в зависимости от состава.

- Новохацкий И.А., Кисунько В.З., Погорелов А.И. Термодинамические и структурные особенности переохлажденных жидких металлов // Изв. РАН. Металлы. – 1992. - №5. – С.65-72.
- 2. *Ершов Г.С., Позняк Л.А* Структурообразование и формирование свойств сталей и сплавов. Киев: Наукова думка, 1993.- 380 с.
- Ватолин Н.А., Пастухов Э.А. Дифракционные исследования строения высокотемпературных расплавов. – Москва: Наука, 1980. – 188 с.
- 4. Ладьянов В.И., Новохацкий И.А., Логунов С.В. Оценка времени жизни кластеров в жидких металлах // Изв. РАН. Металлы.– 1995. №2. -С.13-22.
- 5. *Филиппов Е.С.* Вывод уравнения состояния жидких металлов на основе модели кластер-статистическая упаковка атомов // Изв. вузов Черн. Металлургия. – 1994. №7. - С.1-5.
- Филиппов Е.С. Строение, физика и химия металлургических расплавов. М.: Металлургия, 1995. – 201с.
- 7. Дутчак Я.И. Рентгенография жидких металлов. Львов: Вища школа, 1977. 163с.
- Приходько Э.В. Металлохимия многокомпонентных систем. М.: Металлургия, 1995. – 320 с.
- 9. Приходько Э.В. Методика определения параметров направленного межатомного взаимодействия в молекулярных и кристаллических соединениях // Металлофизика и новейшие технологии. – 1995. – т.17. - №11. С. 54-62.

- Приходько Э.В., Петров А.Ф. Физико-химические критерии для оценки степени микронеоднородности металлических расплавов. //Металлофизика и новейшие технологии. – 1998. – Т.20.- №7. – С.64-74.
- Приходько Э.В., Петров А.Ф. Роль направленного межатомного взаимодействия в формировании микронеоднородного строения металлических расплавов. // Изв. Вузов. Черная металлургия. - 1995. - №12.- С.5-12.
- Приходько Э.В., Петров А.Ф. Влияние параметров направленного межатомного взаимодействия на термодинамические свойства металлических расплавов. // Процессы литья. – 1995. №1. С. 26-38.
- Приходько Э.В., Петров А.Ф. Физико-химические критерии для описания влияния состава на структуру и свойства солевых расплавов // Функциональные материалы. - 2000. - №1. – С.108-113.
- Петров А.Ф., Приходько Э.В., Ворона Е.Н. Физико-химические критерии для прогнозирования термодинамических свойств многокомпонентных металлических систем // Сб. «Фундаментальные и прикладные проблемы черной металлургии». – Днепропетровск. 2005. Вып.11. С. 170-179.
- Транспортные свойства металлических и шлаковых расплавов. Справочник под редакцией Н.А.Ватолина.– М.: Металлургия, 1995.–320 с.
- Ниженко В.И., Флока Л.И. Поверхностное натяжение жидких металлов и сплавов. – М.: Металлургия, 1981. – 270 с.
- Ватолин Н.А., Ухов В.Ф., Сафонов С.О. Свойства расплавленных металлов. М.: Наука, 1974. С.24-28.

Статья рекомендована к печати докт.техн.наук, проф. Э.В.Приходько