В.Ю.Полуэктов, А.М.Нестеренко, О.П.Юшкевич*

ИССЛЕДОВАНИЕ ВЛИЯНИЯ МЕХАНО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА ПАРАМЕТРЫ СТРУКТУРЫ И МЕХАНИЧЕСКИЕ СВОЙСТВА ПОДКАТА ИЗ СТАЛИ 35.

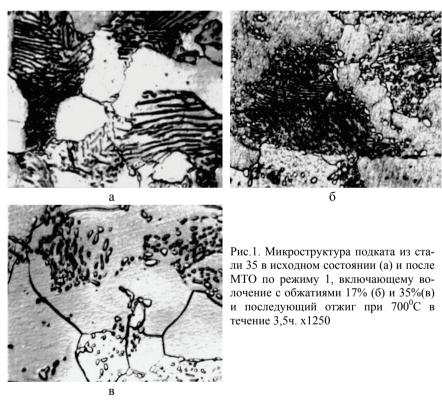
Институт черной металлургии НАН Украины, г. Днепропетровск *Днепропетровская национальная металлургическая академия Украины

Установлено, что для гарантированного обеспечения требуемого по ГОСТ 10702 уровня механических свойств проката из среднеуглеродистой стали с пластинчатой морфологией цементита в перлите может варьироваться в широком интервале — от ~ 17 до 40%, однако обжатие при калибровке после рекристаллизационно—сфероидизирующего отжига при субкритической температуре должно находиться на уровне, не превышающем $\epsilon = 5-7\%$.

Современное состояние вопроса. Высокая производительность современных линий по массовому производству крепежных (болты, винты, гайки, шпильки и т.д.) и машиностроительных деталей методами холодной объемной штамповки (ХОШ) может быть обеспечена только при соответствующем комплексе структурных параметров и уровне механических свойств используемого для ХОШ подката и калиброванной стали [1,2]. При производстве высококачественной калиброванной стали указанного назначения на метизных предприятиях применяют механикотермическую обработку (МТО), включающую операции волочения и рекристаллизационно-сфероидизирующего отжига. Несмотря на значительное количество работ по данной проблематике, многие вопросы, касающиеся, в частности, особенностей взаимосвязи параметров зеренной и тонкой кристаллической структуры феррита, его текстуры с механическими и потребительскими свойствами калиброванной стали, которые сформировались при разных режимах МТО, практически не рассматривались. Учитывая, что эти факторы во многом определяют способность стали к ХОШ, проведенное в составе настоящей работе исследование представляется актуальным.

Изложение основных материалов исследования. Исследовали подкат и калиброванную сталь из стали марки 35 по ГОСТ 10702. Металлографические исследования проводили на оптическом микроскопе «Аксиоверт – 200 М МАТ». Параметры тонкой структуры феррита в центральных зонах поперечных сечений образцов подката и калиброванной стали изучали на рентгеновском дифрактометре ДРОН – УМ1 в $FeK\alpha$ – излучении с использованием метода аппроксимации [3]. Текстуру анализировали на тех же образцах методом Шульца [4] на рентгеновском дифрактометре ДРОН – 1,0 ($FeK\alpha$ – излучение).

После травления и подготовки поверхности подкат из стали обрабатывали по следующим режимам: 1 – волочение \rightarrow отжиг; 2 – волочение \rightarrow отжиг \rightarrow калибровка. В исходном состоянии структура подката феррито–перлитная (рис.1а). Размер зерна феррита – N0 по Γ 0 от Γ 0 бология цементита в перлите – пластинчатая.


В случае режима 1 подкат диаметром 15мм волочили с обжатиями 17% (за один проход) и 35% (за два прохода – в одном и во взаимно противоположном направлениях). Отжиг деформированной стали производили при субкритической температуре 700°C в течение 3,5 и 12 часов.

Волочение подката с обжатием 17% приводит к существенному повышению его прочностных свойств и к уменьшению пластичности (вариант 2 – табл.). Отжиг при 700^{0} С в течение 3,5ч в результате развитие процессов рекристаллизации феррита и частичной (без рассредоточения по объему ферритной матрицы) сфероидизации цементита перлита (рис.1б) способствует повышению пластичности, получению благоприятного для ХОШ уровня σ_T / σ_B (вариант 3 — табл.). Однако значение σ_B в этом случае остается по-прежнему высоким (табл.), что осложняет проведение процесса калибровки стали. При более длительном отжиге достигается приемлемый комплекс механических свойств (вариант 4 – табл.). Увеличение обжатия при волочении до 35% еще в большей мере снижает показатели пластичности (варианты 5,6 – табл.). Следует отметить, что прочностные свойства стали, деформированной реверсивно, заметно выше, чем в стали, деформированной однонаправленно. Соответственно выше и уровень «запасенной энергии», определяющей развитие релаксационных процессов, в том числе и рекристаллизации [5], о чем свидетельствует высокое значение микронапряжений второго рода решетки феррита $\Delta a/a$ в реверсивно деформированой стали (вариант 6 – табл.). Поэтому в реверсивно деформированной стали при отжиге в течение 3,5ч в результате более интенсивного развития процессов рекристаллизации феррита и сфероидизации цементита перлита формируется мелкозернистая ферритная структура (№11 вместо №10 для стали, деформированной однонаправленно) с наиболее совершенной внутризеренной субструктурой (наиболее низким уровнем $\Delta a/a$), осуществляется полная сфероидизация цементита (рис.1,в) и достигается наиболее благоприятный в плане ХОШ комплекс механических свойств и уровень значения σ_T / σ_B (вариант 8 – табл.).

Отжиг при 700^{0} С в течение 12ч деформированной с обжатием 35% стали приводит к рассредоточению частиц цементита в ферритной матрице и к укрупнению зерен феррита в 1,5 раза. Это обусловливает уменьшение значений σ_{B} и повышение показателей пластичности стали (варианты 9,10 – табл.). Однако значения отношения σ_{T}/σ_{B} при этом увеличиваются, что не соответствует требованиям ХОШ ($\sigma_{T}/\sigma_{B} \le 0,65$) для деталей сложной конфигурации [6].

В случае режима 2 образцы подката диаметром 8мм подвергали волочению с обжатиями 17 и 35% за один проход, отжигу при 700^{0} C в течение

3,5 ч и последующей калибровке с обжатиями от 3 до 40%. Структура стали после волочения с обжатиями 17 и 35% и последующего отжига аналогична таковой для подката диаметром 15мм, обработанного аналогичным образом (рис.16,в). В стали с частично сфероидизированным цементитом (обжатие 17%) размер зерна феррита составляет 9–10мкм (№10), а в полностью сфероидизированной стали (обжатие 35%) зерно феррита мельче 6–7мкм (№11). Такое различие структуры определяет особенности ее упрочнения при калибровке. Сталь с более мелким зерном (обжатие 35%) при калибровке упрочняется более интенсивно, о чем свидетельствует более высокий уровень прироста значений уширения рентгеновской интерференции $\beta_{(220)}$ (рис.2,а) и предела текучести, а также более выраженное снижение δ_5 (рис.3).

На кривой зависимости уширения $\beta_{(220)}$ от степени обжатия ϵ при калибровке в стали с более крупным зерном феррита перегиб, вызванный формированием внутризеренной ячеистой субструктуры наблюдается при обжатиях 10% (начало) – 22% (окончание) (рис.2,а).

Таблица. Механические свойства и значения уровня микронапряжений $\Delta a/a$ в феррите подката из стали 35 после обпаботки по разным вариантам режима 1

	Значение $\Delta a/a \cdot 10^{-3}$				0,61	ı	I	Í	0,81	1,37	0,47	0,21	0,63	0,58	
		111	÷,%		45,7	46,8	64,3	0,89	34,8	33,8	71,0	72,0	70,9	71,5	
	cTBa	e	%,%		27,5	15,2	28,8	34,4	8,6	8,4	36,2	35,9	38,3	39,5	
	Механические свойства		$\sigma_{ m T}\!/\sigma_{ m B}$		0,65	0,87	0,63	99,0	0,86	0,80	0,65	0,63	0,70	0,73	
	Механич		$\sigma_{ m B}, \ { m H/MM}^2$		009	229	545	476	780	880	496	494	458	460	
			$\sigma_{\mathrm{T,,}}$ $\mathrm{H/Mm}^2$		390	590	343	314	673	708	323	311	319	336	
раоотки по разным вариантам режима 1.		Вид обработки			Исходное состояние	Обжатие при волочении 17%	Обжатие 17% + отжиг $(3,54)$	Обжатие 17% + отжиг (12ч)	Обжатие $35\% (\rightarrow)^*$	Обжатие $35\% (\leftrightarrow)^*$	Обжатие $35\%(\to)+$ отжиг $(3,54)$	Обжатие $35\%(\leftrightarrow)+$ отжиг $(3,54)$	Обжатие $35\%(\rightarrow)+$ отжиг (12ч)	Обжатие 35%(↔)+отжиг (12ч)	
DaoUTK	Š	Ba-	-ид	анта		2	α	4	5	9	7	~	6	10	

* <u>Примечание.</u> Волочение за 2 прохода (\to) – однонаправленное, (\leftrightarrow) – реверсивное

Аналогичный перегиб на аналогичной кривой стали с мелким зерном феррита наблюдается при значительно меньших обжатиях и в более узком их интервале ε =3–5% (рис.2,а). Поскольку распространение дислокаций от зерна к зерну в поликристаллах облегчается при уменьшении размера зерен [7], формирование ячеистой субструктуры в стали с более мелким зерном феррита и полностью сфероидизированным цементитом происходит при гораздо меньших обжатиях (ε =3–5%), а интенсивность упрочнения при повышении обжатия до ε =30% становится более высокой, чем в стали с укрупненным ферритным зерном. При обжатии, близком к ε =40%, картина упрочнения меняется: более интенсивно упрочняется сталь с укрупненным ферритным зерном (рис.2,а) вследствие начала деформации феррита в участках с частично сфероидизированным цементитом.

Исходная (после отжига) степень текстурованности $\Phi_{<110>}$ стали, определяемая объемной долей зерен феррита, ориентированных направлениями <110> его ОЦК-решетки параллельно оси проката, невелика: ~20% (рис.2,б). По мере увеличения обжатия при калибровке значение $\Phi_{<110>}$ возрастает (рис.2,б). В интервалах обжатий ϵ =3–10% для мелкозернистой стали и $\varepsilon = 20-40\%$ для стали с укрупненным ферритным зерном на кривых зависимости $\Phi_{<110>}$ от обжатия наблюдаются перегибы, появление которых вызвано отклонением оси сформировавшейся при рекристаллизации аксиальной текстуры <110> от оси проката. Действительно, из прямой полюсной фигуры (110) образца проката с мелкозернистой ферритной структурой, обработанного по режиму 2с обжатием при калибровке 10%, следует, что центры концентрических окружностей, характеризующие области повышенной плотности аксиальной текстуры <110>, смещены относительно центра стереографической проекции на угол 3,6°. Такого рода отклонение оси аксиальной текстуры <110> от центральной оси образца характерно и для стали с укрупненным ферритным зерном в случае обжатий при калибровке, составляющих $\varepsilon = 20-40\%$.

Геометрическая несоосность сформировавшейся текстуры и калиброванного проката приводит к неравномерному развитию пластического течения металла в симметричных относительно оси проката позициях в процессе ХОШ, что по аналогии с приведенными в [7] примерами может приводить к образованию различного рода дефектов при осадке проката и в изготавливаемых методом ХОШ изделиях. Поэтому для операций осадки с высокими степенями деформации и для ХОШ изделий сложной конфигурации наиболее предпочтительным является использование металла с низкой текстурованностью, в котором ось аксиальной текстуры <110> расположена параллельно оси проката, что наряду с равномерностью структуры вдоль различных направлений обеспечивает благоприятную для ХОШ изотропность свойств исследованного проката из стали 35.

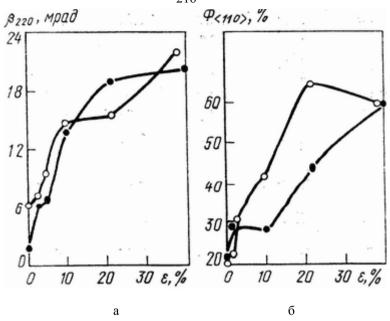


Рис.2. Характер изменения уширения рентгеновской интерференции (220) $\beta_{(220)}$ (а) и объемной доли аксиальной ориентировки $\Phi_{(110)}$ текстуры (б) в зависимости от степени обжатия ϵ при калибровке (МТО по режиму 2 с обжатием при волочении перед отжигом 17% (\circ) и 35% (\bullet)).

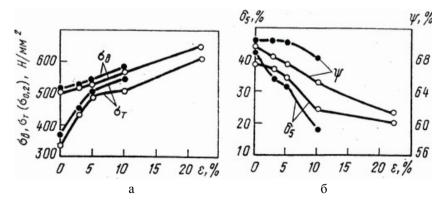


Рис.3. Изменение механических свойств проката из стали 35 в зависимости от степени обжатия є при калибровке в цикле МТО по режиму 2 (обозначения те же, что и на рис. 2).

Обобщение полученных данных позволяет заключить, что для достижения в калиброванной стали 35 при МТО оптимальных в плане сложной ХОШ механических свойств, параметров структуры и их изотропности обжатие при калибровке должно составлять $\varepsilon = 5-7\%$.

Результаты проведенных исследований использованы для разработки технологии производства нагартованной калиброванной стали для сложной XOIII, обеспечивающей гарантированное выполнение требований ГОСТ 10702 ($\sigma_B \leq 590~\text{H/mm}^2$; $\delta_5 \geq 5\%$; $\Psi \geq 40\%$), которая предусматривает применение в составе МТО волочения ускоренно охлажденного подката из среднеуглеродистой стали 35 с обжатием 20–40%, рекристаллизационно—сфероидизирующего отжига при субкритической температуре в течение 2–5ч и калибровки с обжатием $\epsilon = 5-7\%$. Применение разработанной технологии на метизных предприятиях позволило обеспечить требуемые показатели качества калиброванной стали и сократить расходы по ее переделу в цикле МТО в результате исключения такой технологической операции, как сфероидизирующий отжиг перед волочением.

Выводы. Установлено, что для гарантированного обеспечения требуемого по ГОСТ 10702 уровня механических свойств, благоприятных для сложной ХОШ параметров структуры и их изотропности в калиброванной стали обжатие при волочении в цикле МТО проката из среднеуглеродистой ста—ли с пластинчатой морфологией цементита в перлите может варьироваться в широких пределах — от \sim 17 до 40%, однако обжатие при калибровке после рекристаллизационно—сфероидизирующего отжига при субкритической температуре должно находиться на уровне, не превыша—ющем ϵ =5–7%.

- 1. Смольянинов Н.А., Шушанов И.Г. Технология изготовления металла для холодной высадки. //— Сталь 1959. № 12. C. 1136—140.
- 2. *Металловедение* и термическая обработка стали. Справ. изд. Т.Ш. Термическая обработка металлопродукции. / Под ред Бернштейна М.Л., Рахштадта А.Г. М.: Металлургия, 1983. 216с.
- 3. Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Ренгенографический и электроннооптический анализ. – М.: МИСиС, 1994. – 328с.
- 4. *Бородкина М.М., Спектор Э.Н.* Рентгенографический анализ текстуры металлов и сплавов. М.: Металлургия, 1982. 272с.
- Горелик С.С. Рекристаллизация металлов и сплавов М.: Металлургия, 1978. – 568с.
- 6. *Билигман И*. Высадка и штамповка. М.: Машгиз, 1960. 467с.
- 7. *Полухин П.И., Горелик С.С., Воронцов В.К.* Физические основы пластической деформации. М.: Металлургия, 1982. 583с.

Статья рекомендована к печати докт.техн.наук, проф. Г.В.Левченко