УДК 621.926.538.1

Г. П. Богатырева¹, А. Л. Майстренко¹, О. Н. Сизоненко², доктора технических наук, Н. А. Олейник¹, Г. Д. Ильницкая¹, Г. А. Петасюк¹ кандидаты технических наук, Э. И Тафтай²

¹ Институт сверхтвердых материалов им. В. Н. Бакуля НАН Украины, г. Киев ² Институт импульсных процессов и технологий НАН Украины, г. Николаев

ДЕЗИНТЕГРАЦИЯ ПРОДУКТА СИНТЕЗА АЛМАЗА УДАРНЫМИ ВОЛНАМИ, ГЕНЕРИРУЕМЫМИ В ЖИДКОСТИ ЭЛЕКТРОРАЗРЯДНЫМИ ИМПУЛЬСАМИ БОЛЬШОЙ МОЩНОСТИ

The research results of destruction of product of diamond synthesis and diamond-graphite material as well as hydrodynamic waves generated by electric pulse of high power, technical properties and quality characteristics of diamond raw material are presented.

Введение

Изготовление высококачественных порошков алмаза, применяемых во многих областях современной техники, представляет собой последовательность процессов, направленных на создание и последующее избирательное разрушение продукта синтеза – ПС (композиционного материала технологического назначения), извлечение синтезированного сырья алмаза, его сортировку и классификацию. Предназначенные для изготовления серийных порошков алмаза различных марок продукты синтеза в виде спеков, в Украине изготавливают в ростовой системе Ni–Mn–C. Спеки различаются размером, структурой, содержанием массовых долей составляющих)алмаз, графит, металлическая составляющая, примеси), а также размерами и качеством синтезированных алмазов.

Особенности структуры продуктов синтеза привели к разнообразию технологий его переработки [1]. Разработанная в ИСМ НАН Украины технология переработки ПС, предназначенного для изготовления порошков марок АС15-АС100, включает постадийное механическое дробление с промежуточным растворением металлической составляющей и гравитационным разделением частиц алмаза и графита. В результате кардинально изменился процесс изготовления порошков алмаза за счет сокращения технологических операций и повышения эколого-экономических показателей переработки [2]. Трудности применения разработанной технологии для переработки ПС, предназначенного для изготовления порошков марок АС4-АС10 и микропорошков, были связаны с особенностями структуры спеков, которая представляет собой гомогенную металлографитовую матрицу с большим количеством вкрапленных в нее мелких частиц алмаза. Постадийное механическое дробление (в известных типах дробилок) с промежуточным растворением металлической составляющей такого материала не позволяло полностью его раскрыть, и без дополнительной химической дезинтеграции не удается получить свободные частицы и однородные по размеру дисперсные частицы алмаза и графита. Как следствие, невозможно применить гравитационное разделение частиц и достичь высоких эколого-экономических показателей переработки.

Как известно, избирательное разрушение (механическое и ультразвуковое), обеспечивающее разрушение друз, сростков, зерен алмазов с включениями, применяют при изготовлении шлиф- и микропорошков алмаза [3].

Экспериментально установлено, что дезинтеграция ПС, предназначенного для производства порошков марок AC15–AC100, после растворения металлической составляющей электрогидравлическим ударом или ультразвуковой обработкой может быть альтернативным методом применяемой в производстве механической дезинтеграции [4]. Ударные волны, генерируемые в жидкости электроразрядными импульсами высокой мощности, в частности, формируемые разрядом плазмы, распространяются в форме цилиндрической осесиметричной волны сжатия. Волна в момент взаимодействия с поверхностью материала (спека) формирует в объеме материала напряженное состояние, главными напряжениями которого являются – сжимающие σ_r , и растягивающие σ_θ напряжения. Растягивающие напряжения вызывают развитие микротрещин на поверхности, которых абсорбируются молекулы жидкости, не позволяющие краям трещин смыкаться (выполняют расклинивающее действие). Напряжения возникающие в спеке, регулируются, изменением мощности генерируемого импульса. Когда формируемые напряжения не превышают прочность материала, происходит накопление усталостных напряжений, которые в конечном счете приводят к разрушению спека [5].

Цель настоящей работы – определить возможность дезинтеграции ПС ударными волнами, генерируемыми в жидкости электроразрядными импульсами большой мощности, оценить влияние этой обработки на технологические характеристики ПС: ситовые; морфометрические; степень раскрытия материала; распределение сырья алмаза по размерам, содержание в нем примесей.

Методика исследования

Исследования проводили с ПС одной партии, полученным в ростовой системе Ni– Mn–C и предназначенным для производства порошков марок AC4–AC10 и микропорошков (рис.1).

Рис. 1 Общий вид ПС алмаза, предназначенного для производства порошков алмаза марок AC4–AC10 и микропорошков

Схема эксперимента показана на рис. 2.

Рис. 2. Схема эксперимента: — места отбора проб для исследования распределения материала по крупности и степени раскрытия; — места отбора проб для исследования распределения частиц материала по раз мерам и определения морфометрических характеристик алмазного сырья

Дезинтеграцию спеков ПС, а также ПС после растворения металлической составляющей проводилась в Институте импульсных процессов и технологий НАН Украины на специально разработанном стенде, структурная схема которого показана на рис. 3.

Рис.3. Структурная схема экспериментального стенда: С – конденсатор накопителя; R_3 – балластный резистор; R – резистор; PV – киловольтметр; F – воздушный разрядник; Ш – коаксиальный шунт; L_k – катушка компенсации; ДН – делитель напряжения; 1 – разрядная камера; 2 – осциллограф

Экспериментальный стенд (см. рис. 3) состоит из энергетической и технологической частей. Энергетическая часть стенда включает в себя регулируемый автотрансформатор, повышающий трансформатор-выпрямитель блокировки (на схеме не показаны), балластный резистор R₃, емкостный накопитель C, пульт управления, воздушный разрядник F, киловольтметр PV. В стенд входят средства измерения разрядной силы тока с помощью шунта Ш и напряжения на разрядном промежутке с помощью делителя напряжения ДН, подключенных к осциллографу 2. На стенде возможно варьирование частоты следования разрядов, напряжения заряда накопителя, энергии единичного разряда, скорости ввода энергии в разрядный промежуток и количества разрядов. Технологическая часть стенда состоит из разрядной камеры 1, которая представляет собой диэлектрический толстостенный цилиндр со стальными крышками. В нижней крышке выполнено коническое углубление для наполнения цилиндра обрабатываемым материалом. В верхнюю крышку с дренажным отверстием для сброса газа вмонтирована электродная система, сменное острие которой образует разрядный промежуток с днищем. К днищу камеры подводится отрицательный потенциал накопителя, а через воздушный разрядник F к острию – положительный. Объем камеры позволяет варьировать концентрацию обрабатываемого материала и количество удельной энергии на единицу его объема.

Электроразрядную обработку материала проводили при напряжении зарядки емкостного накопителя $U_0 = 40$ кВ, количество импульсов для обработки спеков ПС составляло – 170, для обработки ПС после растворения металлической составляющей (алмазно-графитовый материал) в одном опыте – 42, в другом – 200.

В процессе исследования использовали химический и ситовой анализы, рассчитали ситовые характеристики, степень раскрытия ПС определили по результатам гравитационного разделения на концентрационном столе [12], содержание примесей металла–растворителя определили по результатам определения магнитной восприимчивости [13; 14], содержание несгораемых примесей – по несгораемому остатку [15]. Диагностику алмазного сырья проводили с помощью прибора DiaInspect.OSM фирмы VOLLSTADT DIMANT GmbH. Исследовали морфометрические характеристики алмазного сырья и его однородность [6–12].

Результаты

Результаты исследований распределения дробленого ПС по крупности представлены суммарными характеристиками крупности (рис. 4).

Как следует из данных рис. 4 разрушение спеков ПС приводит к концентрации продуктов дробления (50-63 % по массе) в классе крупности -630+100 мкм, т. е. происходит усреднение по крупности. Наиболее крупными частицами представлены продукты дробления ПС в щековой дробилке (кривая 1), дезинтеграция спеков ударными волнами, генерируемыми в жидкости электроразрядными импульсами, приводит к уменьшению крупности материала. Распределение частиц по размерам (кривая 2) совпадает с распределением частиц ПС после дробления и растворения металлической составляющей (кривая 3), а распределение после растворения металлической составляющей изменяется, смещаясь в сторону мелких частиц под влиянием механической (кривая 4) и последующей химической (кривая 5) дезинтеграций. Дезинтеграция ПС после растворения металлической составляющей ударными волнами, генерируемыми в жидкости электроразрядными импульсами, также существенно изменяет распределение, уменьшая размеры частиц (кривые 6, 7). Результаты химического анализа показали, что после всех обработок зерна алмаза содержатся в частицах ПС любой крупности.

Рис. 4. Суммарные характеристики крупности ПС после дробления спеков в щековой дробилке (1), дезинтеграции спеков ударными волнами, генерируемыми в жидкости электроимпульсом большой мощности (2) растворения металлической составляющей (3) и последующих обработок: дробления в роторной дробилке (4), химической дезинтеграции (5), дезинтеграции спеков ударными волнами, генерируемыми в жидкости электроимпульами большой мощности – 42 (6) и 200 (7)

Оценка степени раскрытия материала выявила, что критерий Фоменко для ПС после дробления спеков в щековой дробилке составляет 0,12–0,15, после дезинтеграции спеков ударными волнами, генерируемыми в жидкости электроимпульсным разрядом высокой мощности, 0,27–0,3. Растворение металлической составляющей приводит к увеличению степени раскрытия. При этом критерий Фоменко составляет 0,37–0,4. Последующие последовательные обработки также приводят к увеличению степени раскрытия: механическая дезинтеграция – до 0,55–0,6, химическая до 0,93–0,95.

Дезинтеграция ПС после растворения металлической составляющей ударными волнами, генерируемыми в жидкости электроразрядными импульсами, позволяет увеличить степень раскрытия материала от 0,37–0,4 до 0,93–0,98.

Таким образом, в процессе гравитационного разделения алмаза и графита, присутствующих в материале после дезинтеграции ударными волнами, можно выделить до 40 % массы материала в виде графитового продукта.

Влияние способов обработки на характеристики крупности алмазного сырья показано на (рис. 5).

Применение дезинтеграции ПС после растворения металлической составляющей ударными волнами, генерируемыми в жидкости электроразрядными импульсами (кривые 3, 4) в большей степени, чем дезинтеграция спеков этим же методом (кривая 2) или последовательность стадийного дробления с промежуточным растворение металлической составляющей (кривая 1) изменяют распределение извлеченного алмазного сырья, сдвигая его в область более мелких размеров. Следует отметить, что все применённые обработки не повлияли на содержание примесей в алмазном сырье. Несгораемый остаток во всех случаях составил 1,15–1,6 %, удельная магнитная восприимчивость – $(6,3-6,9)\cdot 10^{-8} \text{ м}^3/\text{кг}$.

Рис. 5. Суммарные ситовые характеристики алмазного сырья, извлеченного из ПС после п стадийного дробления с промежуточным растворением и химической дезинтеграцией (1), дезинтеграции спеков ударными волнами, генерируемыми в жидкости электроразрядными импульсами (2), растворения металлической составляющей и последующей дезинтеграции ударными волнами, генерируемыми в жидкости 42 импульсами (3) и 200 (4)

Результаты диагностики алмазного сырья и определения его морфометрических характеристик (табл. 1) показали, что дезинтеграция ПС ударными волнами, генерируемыми в жидкости электроразрядными импульсами, приводит к уменьшению значений средних, характеризующих размер зерен (F_{max} , F_{min} , d_c , d_3). При этом в 1,7–2,6 раза увеличивается площадь внешней удельной поверхности (F_{yg}). Характеристики формы зерна (C_r , F_e , El) и топографии поверхности (P_{vg} , Rg) не изменяются

	Средние значения				
	Вид обработки				
Характеристика	Постадийное дробление с про- межуточным растворением ме- таллической составляющей и химической дезинтеграцией	Дезинтеграция ПС ударными волнами, генерируемыми в жидкости электриче- ским импульсным разрядом высокой мощности			
		спеки ПС	ПС после растворения металлической состав- ляющей		
		Количество импульсов			
		170	42	200	
Максимальный диаметр <i>F</i> _{max}	132,866	91,8996	88,3082	80,5829	
Минимальный диаметр F_{\min}	92,8554	64,5540	61,3297	56,1393	
Компактность (форм-фактор) C _r	1,4642	1,4163	1,4286	1,381	
Удельный периметр <i>Р</i> уд, 1/м	1,4516	1,4341	1,4607	1,4484	

Таблица 1. Средние значения морфометрических характеристик алмазного сырья, извлеченного из ПС после различных видов обработки

Выпуск 12. ПОРОДОРАЗРУШАЮЩИЙ И МЕТАЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ – ТЕХНИКА И ТЕХНОЛОГИЯ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЯ

Эллиптичность <i>El</i>	1,2777	1,281	1,307	1,3062
K_{Φ}	1,4558	1,459	1,4689	1,4628
Feret-удлинение (аналог коэффици- ента формы по ДСТУ 3292–95) <i>F</i> _e	1,0829	1,0784	1,0772	1,0689
Шероховатость Rg	112,8607	78,2268	74,8190	68,3611
Средний размер зерна <i>d</i> _c , мкм	102,6964	71,9467	68,6063	63,2238
Эквивалентный диаметр зерна d_{3} , мкм	10232	5873	4517	3848
Общая площадь <i>А</i> _t , мкм	394,9615	272,7802	258,4709	234,3391
Периметр истинного изображения <i>p</i> _r , мкм	0,0677	0,1594	0,108	0,1171
Внешния удельная поверхность, $F_{yg.}$, m^2/Γ	73,69	193,65	124,91	136,69

Из анализа однородности сырья по морфометрическим характеристикам (табл. 2) следует, что дезинтеграция способствует увеличению однородности сырья по размерам зерна, форм-фактору (C_r) и шероховатости (Rg). Увеличение количества импульсов при дезинтеграции ПС после растворения металлической составляющей также способствует увеличению однородности сырья по перечисленным характеристикам.

Таблица 2.	Однородность	алмазного с	ырья, рассч	итанная по	морфометриче	ским харак-
теристика	Μ					

	Значение однородности				
	Вид обработки				
	тение с створе- ой со- тческой ей	Дезинтеграция ПС ударными волнами, генери- руемыми в жидкости электрическим импульс- ным разрядом высокой мощности			
Характеристика	дроб. ым ра ическ 1 химі	Спеки ПС	ПС после раст лической со	ворения метал- ставляющей	
	ное пла алл ей 1 нте	Кол	личество импуль	сов	
	Постадийн промежутс нием мет ставляюще дезин	170	42	200	
Максимальный диаметр <i>F</i> _{max}	0,3817	0,2927	0,3857	0,4036	
Минимальный диаметр <i>F</i> _{min}	0,3529	0,3196	0,4143	0,4267	
Компактность (форм- фактор) <i>C</i> _r	0,4220	0,5006	0,4196	0,5038	
Эллиптичность <i>El</i>	0,2752	0,3073	0,2752	0,2886	
Kφ	0,4159	0,4487	0,4090	0,3949	
Feret-удлинение (аналог коэффици-ента формы по ДСТУ 3292-95) <i>F</i> _e	0,3658	0,3695	0,3387	0,3571	
Шероховатость Rg	0,5621	0,5711	0,6111	0,6610	

РАЗДЕЛ 2. ИНСТРУМЕНТАЛЬНЫЕ, КОНСТРУКЦИОННЫЕ И ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ АЛМАЗА И КУБИЧЕСКОГО НИТРИДА БОРА

Средний размер зерна <i>d</i> _c ,	0,3634	0,3081	0,4067	0,4137
МКМ				
Эквивалентный диаметр	0,3602	0,3264	0,4184	0,4338
зерна <i>d</i> _э , мкм				
Общая площадь A _t , мкм	0,1890	0,1116	0,2051	0,1973
Периметр истинного изо-	0,3512	0,3101	0,4008	0,4356
бражения <i>p</i> _r , мкм				
Удельный периметр <i>Р</i> уд,	0,3514	0,3058	0,3142	0,3291
1/м				

Выводы

Результаты исследований показали, что дезинтеграция ПС ударными волнами, генерируемыми в жидкости электроразрядными импульсами большой мощности, влияет на технологические характеристики ПС и качество алмазного сырья. На примере ПС для производства порошков АС4–АС10 и микропорошков установлено, что применение рассматриваемого способа дезинтеграции приводит к тому, что распределение частиц дезинтегрированного исходного ПС сдвигается в сторону мелких размеров, материал (до 50 % по массе) концентрируется в классе крупности –630+100 мкм. После растворения металлической составляющей ПС применение рассматриваемого способа дезинтеграции приводит к тому, что материал концентрируется (до 60–63 % по массе) в классе крупности –630+100 мкм, т. е. его крупность усредняется. Степень раскрытия материала составляет 0,93–0,98.

Алмазное сырье, извлеченное из ПС с применением дезинтеграции ударными волнами, генерируемыми в жидкости электроразрядными импульсами большой мощности, характеризуется повышенной в 1,7-2,6 раза площадью внешней удельной поверхности и однородностью сырья по характеристикам формы и шероховатости.

Таким образом, применение метода дезинтеграции ПС ударными волнами, генерируемыми в жидкости электроразрядными импульсами большой мощности, перспективно для переработки ПС алмаза и изготовления высококачественных порошков алмаза.

Литература

- Извлечение алмазов из продуктов синтеза / Г. П. Богатырева, Н. А.Олейник, Г. А.Базалий и др.// Сверхтвердые материалы. Получение и применение: Моногр.: в 6 т. Т. 1: Синтез алмаза и подобных материалов / Под общ. ред. акад. Н.В. Новикова; Отв. ред. А.А. Шульженко. – К., 2003. – С. 298 – 309.
- 2. Богатырева Г.П., Майстренко А.Л., Олейник Н.А. Развитие технологии переработки продукта синтеза алмаза // Синтез, спекание и свойства сверхтвердых материалов: Сб. науч. тр./ Отв. ред. Н.В. Новиков. К., 2005. С. 79 85.
- 3. Никитин Ю.И. Технология изготовления и контроль качества алмазных порошков. К.: Наук. думка, 1984. 264 с.
- Практика и перспективы применения механо-физико-химических воздействий в технологии получения порошков алмаза материалов / Г. П. Богатырева, Н. А. Олейник, Г. Ф. Невструев и др. // Породоразрушающий и металлообрабатывающий инструмент техника и технология его изготовления и применения: Сб. науч. тр. К., 2008. Вып. 11. С. 222–226.
- 5. Сизоненко О. Н., Малюшевский П. П., Горовенко Г. Г. Разрядоимпульсная технология дробления и измельчения абразивных материалов // Основные проблемы разрядно-импульсной технологии: Сб. науч. тр. К.: Наук. думка, 1980. С.12–20.
- 6. List E., Frenzel J., Vollstadt H. A new system for single particle strength testing of grinding powders // Industrial diamond review. 2006. № 1. P. 42–47.

- 7. Сопротивление материалов / Под общ. ред. Г. С. Писаренко. К.: Выща шк. 1979. 696 с.
- Новиков Н. В., Богатырева Г. П., Петасюк Г. А. К вопросу повышения информативности морфологических характеристик порошков из сверхтвердых материалов, определяемых на видеокомпьютерных диагностических комплексах // Сверхтвердые матер. – 2005. – № 3. – С. 73–85.
- 9. Методика определения показателей однородности порошков синтетического алмаза на основе системно-критериального подхода / Н. В Новиков., Г. П. Богатырева, Ю. И. Никитин, Г. А. Петасюк // Інструмент. світ. 2006. № 3(31). С. 4–6.
- Петасюк Г. А. Обобщенная математическая модель процедуры ситовой классификации порошков сверхтвердых материалов // Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применения: Сб. науч. тр. К., 2007. — Вып. 10. — С. 212—216.
- 11. Петасюк Г. А., Богатырева Г. П. Экстраполяционно-аналитический метод определения удельной поверхности порошков сверхтвердых материалов // Сверхтвердые матер. — 2007. — № 6. — С. 65—76.
- 12. К вопросу однородности алмазных микропорошков по морфометрическим характеристикам / Г. П. Богатырева, Г. А. Петасюк, Г. А. Базалий, В. С. Шамраева // Сверхтвердые матер. — 2009. — № 2. — С. 71—81.
- 13. М88 УССР 90.224-91 Методика оценки степени раскрытия продукта синтеза алмаза по критерию Фоменко. / Г.П. Богатырева, Н.А. Олейник. К, 1991. 16 с.
- 14. О связи между содержанием включений в синтетических алмазах и их магнитными свойствами / Г. П. Богатырева, В. Б. Крук, Г. Ф. Невструев и др // Синтетические алмазы. – 1977. – Вып. 6. – С. 14–19.
- 15. М88 Украины 90.256-2004. Методика определения удельной магнитной восприимчивости порошков сверхтвердых материалов. К., 2004. 9 с.
- 16. ДСТУ 3292-95. Порошки алмазные синтетические. Общие технические условия. Введ. 01.01.96. К.: Госстандарт Украины, 1995. 72 с.

Поступила 27.05.09

УДК 621.926.538.1

Г. П. Богатырева, д-р техн. наук, Н. А. Олейник, Г. Д. Ильницкая, Г. А. Петасюк, Р. К. Богданов, А. М. Исонкин, А. П. Закора, кандидаты технических наук

Институт сверхтвердых материалов им. В.Н. Бакуля НАН Украины, г. Киев

СВОЙСТВА ВЫСОКОПРОЧНЫХ ПОРОШКОВ СИНТЕТИЧЕСКОГО АЛМАЗА, ИЗВЛЕЧЕННЫХ ИЗ ОТРАБОТАННОГО БУРОВОГО ИНСТРУМЕНТА

The results of the research of physical and mechanical properties of ultra strong diamonds, obtained in Fe-Ni-C system, after their recuperation from worked drilling instrument are presented.

Введение

Одним из путей повышения эффективности разведки новых месторождений твердых полезных ископаемых является совершенствование конструкций бурового инструмента, а также применение в них порошков более высокопрочных термостойких синтетических алмазов.