УДК 669.18.046.54:621.746.32.001.18

Э.В.Приходько, В.П.Пиптюк, А.Ф.Хамхотько, Д.Н.Тогобицкая, Ю.М.Лихачёв

ПРОГНОЗИРОВАНИЕ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЁРДЫХ ШЛАКООБРАЗУЮЩИХ СМЕСЕЙ И ИХ КОМПОНЕНТОВ ДЛЯ РАФИНИРОВАНИЯ СТАЛИ

Представлена разработанная методика прогнозирования теплофизических свойств твёрдых шлакообразующих смесей для рафинирования стали. Методика основана на использовании модельных параметров структуры компонентов смесей с учётом их состава. Полученные прогнозные уравнения позволяют оценивать отсутствующие в литературе теплофизические свойства разных смесей указанного назначения и их компонентов.

Значительный практический интерес представляет изучение теплофизических свойств разных твёрдых шлакообразующих смесей (ТШС), используемых для рафинирования и доводки металла по содержанию вредных примесей при внеагрегатной обработке стали. Многообразие исходных материалов и наличие современного оборудования, в частности установок ковш-печь (УКП), на металлургических предприятиях определяет целесообразность поиска оптимальных технических решений для повышения эффективности технологических приёмов с обеспечением их ресурсоэнергосбережения за счёт применения разных методов исследования. Моделирование процессов шлакообразования и рафинирования стали на УКП из ТШС разного состава невозможно без знания их физикохимических и теплофизических свойств.

Ранее выполнена работа [1], которая посвящена разработке методов прогнозирования основных физико–химических свойств рафинировочных шлаков системы $CaO-SiO_2-Al_2O_3-MgO-CaF_2$: вязкости, температуры кристаллизации, поверхностного натяжения, плотности, летучести фторсодержащих шлаков, газопроницаемости шлаков. Однако, как сказано выше, важное значение имеют также теплофизические характеристики шлаков (теплота плавления, теплоемкость, теплопроводность и температуропроводность).

Сведения о теплоте плавления ТШС в литературе отсутствуют. В связи с этим, для разработки методики прогнозирования этой характеристики, за основу приняты данные о теплоте плавления ряда двойных и тройных оксидов, представленные (табл.1) в справочных изданиях [2–4].

Предыдущими исследованиями установлена перспективность использования для задач прогнозирования термодинамических характеристик сложных оксидных систем модели их разупорядоченной структуры, которая учитывает параметры межатомного взаимодействия: Z^{Y} – химический эквивалент состава, d – структурный фактор [5].

		P			
Формула	Тп,⁰С	ΔH_{Π} ,	Формула	T_{Π} , ^{0}C	ΔH_{Π} ,
		кДж/кг			кДж/кг
$2FeO\cdot SiO_2$	1220	452,4	CaO·MgO·2SiO ₂	1392	352,3
$FeO \cdot Cr_2O_3$	2180	411,6	$K_2 O \cdot TiO_2$	810	254,9
$FeO \cdot TiO_2$	1370	598,9	$MgO \cdot SiO_2$	1524	613,6
$CaO \cdot 2B_2O_3$	990	581,3	$MnO \cdot SiO_2$	1274	278,0
$CaO \cdot B_2O_3$	1160	590,0	$MnO \cdot TiO_2$	1404	222,0
$2CaO \cdot B_2O_3$	1310	555,6	Na_2O ·Si O_2	1088	429,0
$3CaO \cdot B_2O_3$	1490	625,5	$Na_2O \cdot 2SiO_2$	874	195,5
$CaO\cdot SiO_2$	1540	483,6	$Na_2O \cdot TiO_2$	1030	495,7
$CaO \cdot TiO_2 \cdot SiO_2$	1400	632,6	$Na_2O \cdot 2TiO_2$	985	494,6
$CaO \cdot Al_2O_3 \cdot 2SiO_2$	1550	442,8	$Na_2O\cdot 3TiO_2$	1128	514,9

Таблица 1. Температура и теплота плавления сложных оксидов

На основе структурных характеристик Z^{Y} и d простых и сложных оксидов, представленных в табл.2, были рассчитаны избыточные величины ΔZ^{Y} и Δd сложных оксидов, как разница между величинами Z^{Y} и d, описывающими сложные оксиды как химически единые системы, и такими же параметрами, если рассматривать сложный оксид как смесь исходных простых оксидов, например:

$$\Delta Z^{Y} = Z_{co}^{Y} - \Sigma \left(\frac{K \cdot Z_{no}^{Y} \cdot M_{no}}{M_{co}} \right), \tag{1}$$

где Z_{co}^{Y} – химический эквивалент сложного оксида, Z_{no}^{Y} – химические эквиваленты простых оксидов, К – коэффициенты стехиометрии, определяющие соотношение простых оксидов в сложных, M_{no} и M_{co} – молекулярные массы соответственно простых и сложных оксидов. Величина $K \cdot M_{no}$

 $\frac{K \cdot M_{no}}{M_{co}}$ фактически является массовой долей простого оксида в слож-

ном.

Корреляционно-регрессионный анализ связи теплоты плавления сложных оксидов с различными структурными характеристиками и их сочетаниями позволил установить, что наиболее адекватно теплоту плавления сложных оксидных и оксифторидных систем описывает уравнение с учетом только химического эквивалента:

$$\Delta H_{n\pi} = 675,4 - 2797,2 \cdot \Delta Z^{Y}$$
, кДж/кг, R=0,6 (2)

Это уравнение может быть использовано при прогнозировании теплоты плавления реальных рафинировочных шлаков любого состава или их компонентов для расчётно–аналитической оценки различных технологических вариантов внеагрегатной обработки стали, в том числе на УКП.

		Δd ,	10^{-1} HM	-0,028	-0,033	-0.04	-0,082	-0,108	-0,123	-0,111	-0,096	-0,035	-0,032	-0.053	0,227	-0,02	-0,03	0,04	-0,102	-0.077	-0,007	-0,005
		$_{X}\!Z\!V$		0,086	0,114	0,097	0,021	0,033	0,042	0,044	0,091	0,101	0,084	0,089	0,133	0,068	0,08	0,097	0,101	0,092	0,062	0,053
	кные	\dot{d}_{i}	10^{-1} HM	2,092	2,257	2,299	1,925	2,042	2,187	2,275	2,124	2,205	2,08	2,058	2,445	1,965	2,055	2,328	2,003	1,934	2,294	2,287
	Сло	Z^{X}		1,446	1,638	1,449	0,992	1,021	1,049	1,06	1,25	1,321	1,217	1,235	1,134	1,198	1,451	1,478	1,082	1,166	1,202	1,238
		M		203,6	223,8	151,7	195,2	125,6	181,6	237,6	116	195,9	278	216,3	174,1	100,3	131	150,9	122	182	221,8	301,7
оксидов		Формула		$2FeO \cdot SiO_2$	$FeO \cdot Cr_2O_3$	$FeO \cdot TiO_2$	$CaO.2B_2O_3$	$CaO \cdot B_2O_3$	$2CaO \cdot B_2O_3$	$3CaO \cdot B_2O_3$	$CaO \cdot SiO_2$	CaO TiO2 SiO2	CaO·Al ₂ O ₃ ·2SiO ₂	CaO·MgO·2SiO ₂	K_20 ·Ti 0_2	$MgO\cdot SiO_2$	$MnO\cdot SiO_2$	$MnO \cdot TiO_2$	$Na_2O \cdot SiO_2$	$Na_2O \cdot 2SiO_2$	Na ₂ O·2TiO ₂	Na ₂ 0·3TiO ₂
стеристики (d_{i}	10^{-1} HM	1,748	2,162	2,247	2,167	2,173	2,651	1,818	2,383	2,269	2,214	2,247	2,235	2,311						
рные харан	Простые	Z^{X}		0,940	1,028	1,401	1,344	0,74	1,048	1,263	0,708	1,308	1,583	1,107	0,933	1,462						
. Структу		M		69,6	102	71,8	159,6	94,2	26	09	62	6'62	152	81,4	40,3	11						
Таблица 2		-doΦ	мула	B_2O_3	Al_2O_3	FeO	Fe_2O_3	K_2O	CaO	SiO_2	Na_2O	TiO_2	Cr_2O_3	ZnO	MgO	MnO						

	оксидо
	ристики
	характе
	ктурные
ζ	CTPY
Ċ	ища 2.

Сведения о теплоёмкости и теплопроводности рафинировочных шлаков в зависимости от их состава в литературе также практически отсутствуют. Так, в справочнике [6] приведен лишь один состав синтетического шлака (мас. %): CaO - 39,6; $SiO_2 - 47,2$; $Al_2O_3 - 10,6$; MgO - 1,7; FeO - 0,9, а также его теплоёмкость и теплопроводность в интервале температур 100 $- 1100^{0}$ С.

Для оценки теплоёмкости и теплопроводности металлургических шлаков в широком температурном диапазоне в зависимости от химического состава нами были проанализированы исходные данные об этих свойствах для простых и двойных оксидов из справочника [7] и представления о структуре оксидных систем на основе параметров межатомного взаимодействия Z^{Y} и *d*, изложенные выше [5].

В результате корреляционно–регрессионного анализа установлена чёткая связь свойств с модельными параметрами структуры, которая показана на примере Z^{Y} для теплоёмкости и теплопроводности при температуре 100⁰С (рис. 1 и 2). Аналогичные зависимости с использованием сочетания параметров d и Z^{Y} получены для теплоёмкости при различных температурах (табл.3) и в виде квадратичной функции Z^{Y} – для теплопроводности (табл.4).

Очевидно, что точность расчёта свойств для каждой из указанных температур довольно высокая и все эти уравнения могут быть использованы при практических расчетах. Однако целесообразнее выполнять расчеты по обобщенным уравнениям, выведенным с учётом температуры:

$$C = 4,325 - 0,869 \cdot d - 1,337 \cdot Z^{Y} + 0,206 \cdot \frac{T}{1000} - 0,4 \cdot 10^{-4} \cdot \left(\frac{1000}{T}\right)^{2}, \quad (3)$$

кДж/кг-град, *R*=0,867; *µ*=44,6; *S*_{кв}=20,4 %. (3)

Уравнение (3) корректно для значений температуры до 1600°С.

Рис.1. Зависимость истинной теплоемкости оксидов при 100⁰С от их химического эквивалента.

Таблица 3. Характеристика уравнений для расчёта истинной теплоёмкости оксидов при различных температурах (кДж/кг-град)

	Коэффиц	иенты уравн	ения			
Темпера-	$C_T = A_0 + A$	$_{1}\cdot d+A_{2}\cdot Z^{Y}$	R	μ	$S_{\kappa 6}$,	
тура, °С	A_o	A_{1}	A_2		-	%
100	2,473	-0,328	-0,808	0,828	6,97	17,4
200	2,973	-0,473	-0,909	0,85	8,07	17,9
400	3,811	-0,690	-1,147	0,878	10,1	19,2
600	4,257	-0,801	-1,283	0,885	10,84	20,0
800	4,572	-0,881	-1,363	0,879	10,25	21,3
1000	5,023	-0,998	-1,507	0,891	11,42	21,8
1200	5,32	-1,080	-1,580	0,889	11,26	22,7
1400	5,619	-1,164	-1,656	0,89	11,33	23,4
1600	5,802	-1,212	-1,707	0,89	11,31	23,9

Таблица 4. Характеристика уравнений для расчёта теплопроводности оксидов с нулевой пористостью при различных температурах (вт/м град)

Темпера-	Коэфф $lg\lambda_T$ =	оициенты у $=A_0+A_1\cdot Z^Y+$	равнения $A_2 \cdot (Z^Y)^2$	R	μ	$S_{\kappa 6}, \%$
тура, °С	A_o	A_1	A_2			
100	5,011	-3,866	0,453	0,938	20,76	19,1
200	5,945	-5,862	1,38	0,934	19,4	21,1
400	5,581	-5,87	1,548	0,915	14,9	24,5
600	4,275	-4,136	0,952	0,889	11,3	27,3
800	3,728	-3,593	0,834	0,863	8,97	29,8
1000	3,043	-2,659	0,514	0,849	8,03	29,5

200

Примечание: прогнозные уравнения теплопроводности для температуры выше 1000⁰С не получены из-за отсутствия данных для большинства оксидов.

lg
$$\lambda = 4,4264 - 3,5889Z^{Y} + 0,6763(Z^{Y})^{2} - 0,8023 \cdot \frac{T}{1000} + 0,247 \cdot \left(\frac{T}{1000}\right)^{2},$$
 4)
вт/м-град., *R*=0,878; μ =33,6; *S*_{кв}=25,1 % (4)

Уравнение (4) корректно для значений температуры до 1000° C.

Следует отметить, что расчётные величины теплопроводности характеризуют оксиды и их системы с нулевой пористостью. В то же время известно, что с увеличением пористости теплопроводность оксидных материалов существенно уменьшается [7].

Для учёта влияния пористости нами предложен показатель, учитывающий уменьшение величины коэффициента теплопроводности в процентах на каждый процент пористости – градиент теплопроводности:

$$\Delta\lambda, \frac{\%\lambda}{\%\Pi} = \frac{(\lambda_0 - \lambda_\Pi) \cdot 100}{\lambda_0 \cdot \Pi},$$
⁽⁵⁾

где П – пористость материала, %; λ_0 и λ_{Π} – теплопроводность материала с нулевой пористостью и пористостью П соответственно.

Анализ влияния пористости на теплопроводность простых и сложных оксидов по данным [7] позволил установить, что величина градиента не зависит от температуры и состава оксидов, а лишь зависит от уровня пористости по уравнению: (ϵ)

$$\Delta \lambda = 2,92 - 0,0365 \cdot \Pi + 0,00018 \cdot \Pi^2$$
⁽⁰⁾

2

Для оценки теплопроводности реальных пористых оксидных систем вначале необходимо определить градиент по формуле (6), а затем скорректировать величину теплопроводности по формуле:

$$\lambda_{\Pi} = \lambda \cdot \left(1 - \frac{\Pi \cdot \Delta \lambda}{100} \right), \tag{7}$$

где λ – расчётная величина по формуле (4), $\Delta\lambda$ – градиент теплопроводности, П – пористость.

По известным величинам теплопроводности (λ), теплоёмкости (C) и плотности (d) может быть рассчитан коэффициент температуропроводности оксидных систем a, m^2/c :

$$a = \frac{\lambda}{C \cdot d} \tag{8}$$

Таким образом, разработана методика прогнозирования теплофизических свойств ТШС и компонентов по их составу с использованием модельных параметров структуры. Полученные прогнозные уравнения позволяют оценивать отсутствующие в справочной литературе свойства ТШС и их компонентов различного состава.

В частности, при расчётно–аналитической оценке тепловых потерь от ввода в металлическую ванну в ковш на УКП в условиях кислородно– конвертерного цеха ОАО «Енакиевский металлургический завод» ТШС на основе СаО и СаF₂, в состав которой введен дополнительный компонент – алюмофлюс АК–45, учтены теплофизические свойства указанного компонента ТШС, рассчитанные по приведенной методике.

Состав алюмофлюса принят по данным ТУ У–24,6 – 31071878–001– 2003 и пересчитан на оксиды с учетом окисления при температурах обработки металла на УКП (1520–1620⁰C) алюминия, кремния, железа, карбида кремния и карбонила алюминия (мас. %): Al₂O₃ – 55,04; SiO₂ – 43,44; FeO – 0,86; CaO – 0,66. Рассчитанные величины свойств алюмофлюса AK–45 по методикам, предложенной в данной работе и опубликованной в [1], представлены в табл.5.

Свойства	Значение			
		при 1600 ⁰ С		
Температура плавления, ⁰ С	1700	—		
Теплота плавления, кДж/кг	511,8	—		
Плотность, кг/м ³	-	3190		
Теплоёмкость, Дж/кг∙град	-	1316		
Теплопроводность, вт/м град	-	$2,88^{2}$		
Температуропроводность, м ² /с	-	$0,69 \cdot 10^{-6}$		

Таблица 5.	Свойства	алюмофлюса	AK-45 ¹
------------	----------	------------	--------------------

Примечания: ¹⁾Указанные значения, плотности, теплопроводности и температуропроводности соответствуют материалу с нулевой пористостью. ²⁾Значение получено по уравнению (4) экстраполяцией

 Прогнозирование свойств рафинировочных шлаков системы CaO–SiO₂–Al₂O₃– MgO–CaF₂ / А.Ф.Хамхотько, Э.В.Приходько, Д.Н.Тогобицкая и др. // Фундаментальные и прикладные проблемы черной металлургии. Сб.научн. трудов ИЧМ НАНУ. –Вып.9. –Днепропетровск. –2004. –С.168–175.

- Эллиот Д.Ф., Глейзер М., Рамакришна В. Термохимия сталеплавильных процессов. – М.: Металлургия. –1969. –252с.
- Доменное производство. / Банных А.М., Грузин П.Л., Гора А.П. и др. М.: Металлургиздат. –1963. –Т.2.–646с.
- 4. *Матвеев М.А., Матвеев Г.М., Френкель Б.Н.* Расчеты по химии и технологии стекла. –М.: Стройиздат. –1972. –240с.
- Хамхотько А.Ф., Тогобицкая Д.Н., Белькова А.И. Новый подход к оценке термодинамических свойств металлургических оксидных систем // Фундаментальные и прикладные проблемы черной металлургии. Сб. научн. трудов ИЧМ НАНУ. Вып.3. –К.: Наукова думка. –1999. –С.125–132.
- Теплофизические свойства промышленных материалов. Справочник. / К.Д.Ильченко, В.А.Чеченев, В.П.Иващенко и др. –Днепропетровск.: Січ. – 1999. –152с.
- 7. *Кржижановский Р.Е., Штерн З.Ю*. Теплофизические свойства неметаллических материалов. –Л.: Энергия. –1973. –336с.

Статья рекомендована к печати д.т.н., проф. В.Ф.Поляковім