В.Ф.Мороз, Э.В.Приходько, Е.Н.Ворона, В.Н.Шевченко

ВОДОРОДОПРОНИЦАЕМОСТЬ МЕТАЛЛУРГИЧЕСКИХ ШЛАКОВ.

Изучена растворимость водяных паров в доменных и сталеплавильных шлаках и водородопроницаемость последних. Установлена связь параметров модели (d, Δe , tg α , ρ) с растворимостью водяных паров и водородопроницаемостью шлаков в виде полуэмпирических моделей, которые можно использовать для прогнозной оценки системы газ – шлак – металл.

Современное состояние вопроса.

Водородное охрупчивание сталей связано с повышенным содержанием в них водорода и появлением флокенов и других дефектов, которые резко ухудшают пластические свойства стали, увеличивают ее хрупкость и понижают предел усталости.

Известно, что одним из основных поставщиков водорода в металлические расплавы является печная атмосфера. Переход водорода и водородсодержащих газов (H_2O) из газовой фазы в жидкий металл осуществляется в основном через шлаковые расплавы, т.е. в системе газ – шлак – металл транспорт водорода будет определяться водородопроницаемостью шлакового расплава, которая зависит от растворимости водорода и диффузионных параметров последнего в шлаке. Растворимость водорода в шлаках зависит от его состава и парциального давления водорода в газовой смеси. Диффузионные характеристики водорода в шлаке определяются формами его существования в нем – гидроксильной в виде OH^- или гидридной в виде H^- .

Изложение основных материалов исследования.

В настоящей работе выполнен анализ растворимости водорода в металлургических шлаках доменного и сталеплавильного производств с использованием физико-химической модели шлаковых (оксидных) расплавов [1]. В работах [2, 3] изучена растворимость паров воды в конечных доменных, а также синтетических шлаках при температуре 1450^{9} С и давлении водяных паров 100 кПа (табл.1), а также содержание водяных паров в шлаках, отобранных на различных горизонтах доменной печи (табл.2) и сделан вывод, что растворимость водяных паров определяется в основном их парциальным давлением и основностью шлака.

Анализ рассчитанных параметров межатомного взаимодействия модели шлаковых расплавов (d, Δe , tg α и ρ) (табл. 3) для составов шлаков, приведенных в табл. 1 и 2, позволил установить их связь с растворимостью водяных паров (H₂O) в виде регрессионных уравнений.

Так, растворимость водяных паров в конечных доменных шлаках при $P_{\rm H2O}$ =100 кПа и *t*=1450⁰C описывается уравнением: (H₂O) = -1068.05 + 52.09 Δe + 491.50tg α + 1718.11 ρ *r*=0.892 (1), а содержание водяных паров в шлаках, отобранных на различных горизонтах доменной печи (табл. 2) уранением:

 $(H_2O) = -371,59 + 8,97\Delta e - 683,25 \text{tg}\alpha + 717,96\rho \qquad r=0,799 \qquad (2)$

N⁰	Содержание компонентов, масс. %									(H ₂ O),
шла	CaO	SiO ₂	Al_2O_3	MgO	K_2O+	FeO	MnO	S	SiO_2	см ³ /100г
ка				_	Na ₂ O					
1	41,9	39,2	11,9	5,8	1,43	0,57	0,23	0,78	1,07	81,5
2	42,3	37,9	12,9	5,6	1,27	0,57	0,20	0,73	1,12	85,2
3	41,8	38,3	12,4	6,7	1,22	—	_	0,87	1,12	98,0
4	41,0	38,9	11,4	5,6	1,25	—	_	0,79	1,05	85,0
5	43,4	37,6	11,5	3,7	1,25	0,89	0,15	0,84	1,15	88,5
6	42,7	37,3	11,4	5,7	1,21	0,49	0,22	0,84	1,15	86,0
7	42,6	37,4	11,0	5,8	2,03	0,73	0,27	1,04	1,14	99,7
8	42,6	38,2	10,6	4,9	_	0,48	0,20	1,10	1,12	102,0
9	42,2	37,6	11,7	6,2	1,69	0,97	0,27	0,86	1,12	89,0
10	40,8	39,6	11,2	5,6	1,67	0,65	0,25	0,91	1,03	79,5
11	40,7	38,9	11,0	6,0	1,55	0,97	0,43	0,80	1,05	94,5
12	42,2	37,3	11,2	3,9	1,27	_	-	1,05	1,13	84,5
13	45,5	45,5	5,0	4,0	_	_	-	_	1,00	40,6
14	43,0	43,0	10,0	4,0	_	_	-	_	1,00	48,3
15	40,5	40,5	15,0	4,0	_	_	-	_	1,00	56,9
16	35,5	35,5	25,0	4,0	_	_	_	_	1,00	60,0

Таблица 1. Химический состав конечных доменных и синтетических шлаков и растворимость в них водяных паров при 1450°С и Р=100 кПа [2, 3]

Таблица 2. Химический состав шлаков, отобранных на различных горизонтах доменной печи, и фактическое содержание в них воды [2, 3]

N⁰	Содержание компонентов, масс. %							(H ₂ O),
шлака	CaO	SiO ₂	Al_2O_3	MgO	FeO	S	SiO_2	см ³ /100г
17	15,7	26,4	16,2	3,9	30,8	0,17	0,60	34
18	35,5	33,9	18,1	8,8	0,6	0,64	1,05	33
19	27,6	31,7	15,9	7,1	10,9	0,20	0,87	32
20	37,9	32,6	19,5	10,4	0,2	_	1,16	11
21	29,7	37,2	18,5	9,4	1,6	0,36	0,80	3
22	28,0	31,5	9,5	4,2	10,2	0,90	0,89	7
23	45,0	30,1	15,2	4,2	11,3	1,40	1,49	48
24	45,4	32,1	15,0	4,6	0,4	1,50	1,38	37
25	40,8	39,1	12,1	6,0	0,8	0,90	1,04	20
26	42,2	37,6	11,7	6,2	1,0	1,00	1,12	24
27	40,8	39,6	11,2	5,6	0,7	1,10	1,03	14

Таблица 3. Интегральные параметры межатомного взаимодействия доменных и синтетических шлаков и рассчитанные значения растворимости воды в них^{*}

Шлак	$d \cdot 10^{-1}$,	$-\Delta e$,	tgα	ρ	<i>P</i> ,	(H ₂ O) рассчит. по ур		по ур-
	HM	e	C		кПа	НИЯМ		
						(1)	(2)	(3)
1	2,890	2,550	0,136	0,709	100	84,1		85,9
2	2,874	2,485	0,136	0,711	100	90,9		87,2
3	2,877	2,496	0,137	0,711	100	90,8		88,2
4	2,868	2,508	0,136	0,705	100	79,4		81,8
5	2,845	2,418	0,134	0,709	100	90,0		84,1
6	2,874	2,475	0,136	0,714	100	96,6		90,4
7	2,931	2,597	0,138	0,720	100	101,5		97,9
8	2,791	2,314	0,132	0,701	100	80,7		74,8
9	2,919	2,579	0,137	0,718	100	98,5		95,3
10	2,912	2,621	0,136	0,707	100	77,0		84,2
11	2,919	2,628	0,136	0,710	100	81,8		87,1
12	2,843	2,415	0,135	0,707	100	87,2		82,8
13	2,786	2,431	0,128	0,687	100	48,6		59,2
14	2,769	2,359	0,130	0,686	100	51,6		59,2
15	2,751	2,285	0,132	0,686	100	56,4		60,1
16	2,713	2,135	0,135	0,685	100	64,0		60,4
17	3,195	3,544	0,121	0,723	6,60		33,0	33,6
18	2,835	2,385	0,138	0,706	6,60		19,6	22,9
19	2,984	2,864	0,132	0,708	6,60		20,8	23,1
20	2,823	2,300	0,141	0,717	6,60		26,2	35,1
21	2,880	2,624	0,136	0,688	6,60		5,9	5,2
22	2,963	2,870	0,127	0,702	6,60		19,9	14,2
23	2,894	2,408	0,133	0,741	6,60		47,9	53,9
24	2,749	2,049	0,136	0,721	6,60		34,8	34,9
25	2,809	2,385	0,133	0,698	6,60		17,3	12,1
26	2,811	2,344	0,134	0,706	6,60		22,7	20,3
27	2,810	2,408	0,132	0,694	6,60		14,9	7,7

При объединении данных табл.1 и 2 и введении дополнительного параметра $P_{\rm H2O}$ ($P_{\rm H2O}$ согласно [2] в доменной печи равно 6,6 кПа и изменяется незначительно), растворимость H₂O в шлаках описывается уравнением:

$$(H_2O) = -758,38 - 3,9\Delta e + 607,68tg\alpha + 968,62\rho + 0,65 \qquad r = 0,954 \qquad (3)$$

$$P_{H2O}$$

Сопоставление экспериментальных и рассчитанных по уравнению (3) значений растворимости водяных паров в доменных шлаках приведено на рис.1.

Водородопроницаемость шлаков (транспорт водорода в виде паров воды из газовой фазы через шлак в металл) характеризуется средней скоростью насыщения металла водородом $\Delta[H]$, см³/(100 г·мин).

В работе [4] в лабораторных условиях изучена водородопроницаемость кислых мартеновских шлаков (синтетических и производственных) при 1650⁰С и различных давлениях паров H_2O в газовой фазе. Химический состав шлаков, их водородопроницаемость и параметры межатомного взаимодействия приведены в табл. 4 и 5. Корреляционным анализом установлена тесная связь водородопроницаемости шлаков с параметрами модели шлаковых расплавов и давлением водяных паров $P_{\rm H2O}$ в газовой фазе в виде уравнения:

$$\Delta[H] = -3,823 + 0,296\Delta e + 8,352 \text{tg}\alpha + 0,0174 P_{\text{H2O}} \qquad r = 0,961 \qquad (4)$$

Сравнение экспериментальных и рассчитанных значений водородопроницаемости кислых шлаков приведено на рис.2.

Аналогичным образом были проанализированы данные [5] водородопроницаемости основных мартеновских шлаков $t=1650^{\circ}$ С и получено уравнение:

$$\Delta[H] = 10,034 + 0.825\Delta e - 53,201 \text{tg}\alpha + 0.0248 P_{\text{H2O}} \qquad r = 0.727 \qquad (5)$$

Ввод дополнительных параметров *d* и р увеличивает коэффициент корреляции до 0,855.

N⁰	Содержание элементов, масс. %							
шлака	SiO ₂	FeO	MnO	CaO	Al_2O_3	Fe ₂ O ₃	Cr ₂ O ₃	
5C	44,00	36,80	9,20	0,00	12,00	0,00	0,00	
5C	44,00	36,80	9,20	0,00	12,00	0,00	0,00	
1C	62,12	7,64	18,73	1,32	10,60	0,00	0,00	
2C	57,20	7,40	21,30	0,00	13,40	0,00	0,00	
3C	50,60	22,10	15,25	0,00	12,70	0,00	0,00	
4C	45,60	11,90	29,10	0,00	13,50	0,00	0,00	
5C	44,00	36,80	9,20	0,00	12,00	0,00	0,00	
6C	46,40	27,75	14,02	0,00	13,60	0,00	0,00	
7C	46,00	19,82	21,56	0,00	13,35	0,00	0,00	
5C	44,00	36,80	9,20	0,00	12,00	0,00	0,00	
1M	41,76	34,82	14,29	4,65	0,81	1,67	1,82	
2M	49,07	22,20	15,60	4,90	4,38	0,60	1,73	
3M	54,23	16,70	17,60	4,60	4,19	0,30	1,38	
4M	56,70	13,10	19,40	4,40	4,18	0,00	0,84	
5M	59,40	11,20	19,60	4,29	4,00	0,00	0,74	
6M	52,20	11,60	16,80	14,60	2,10	1,26	0,82	
7M	54,00	12,10	17,40	9,70	2,16	1,51	0,96	

Таблица 4. Химический состав кислых мартеновских шлаков

Таблица 5. Параметры межатомного взаимодействия кислых мартеновских шлаков

N⁰	P,	d	tgα	Δe	ρ	$\Delta H_{3\kappa c \pi}, c M^3/$	$\Delta H_{pacy}, cm^3/$
шлака	кПа				-	(100г.мин)	(100г·мин)
5C	7,50	3,354	0,654	-4,641	0,099	0,36	0,40
5C	13,6	3,354	0,654	-4,641	0,099	0,55	0,50
1C	23,2	3,270	0,590	-4,674	0,098	0,18	0,12
2C	23,2	3,317	0,605	-4,672	0,100	0,30	0,25
3C	23,2	3,328	0,625	-4,659	0,099	0,43	0,42
4C	23,2	3,425	0,642	-4,795	0,099	0,54	0,52
5C	23,2	3,354	0,654	-4,641	0,099	0,74	0,67
6C	23,2	3,348	0,642	-4,632	0,100	0,42	0,57
7C	23,2	3,387	0,642	-4,715	0,100	0,45	0,55
5C	36,5	3,354	0,654	-4,641	0,099	0,90	0,90
1M	20,4	3,472	0,678	-4,964	0,092	0,80	0,73
2M	20,4	3,394	0,639	-4,825	0,096	0,40	0,44
3M	20,4	3,368	0,622	-4,839	0,095	0,28	0,30
4M	20,4	3,351	0,613	-4,836	0,095	0,21	0,22
5M	20,4	3,336	0,606	-4,838	0,095	0,15	0,16
6M	20,4	3,305	0,639	-4,452	0,101	0,60	0,55
7M	20,4	3,332	0,625	-4,665	0,097	0,36	0,37

184

Рис.2. Сопоставление экспериментальных и рассчитанных по уравнению (4) значений водородопроницаемости кислых мартеновских шлаков.

Объединение в один массив (выборка 43 состава) данных работ [3–5] дало возможность связать водородопроницаемость кислых и основных шлаков с параметрами

межатомного взаимодействия общим уравнением:

 $\Delta[H] = -1,46+0,023P_{\rm H2O}+8,0642d-3,11tg\alpha+3,365\Delta e - r = 0,713 \quad (6)$ 15,28p

Как видно из рис.3, разброс значений водородопроницаемости для основных шлаков больше, чем для кислых.

Рис.3. Сопоставление экспериментальных и рассчитанных по уравнению (6) значений водородопроницаемости кислых и основных сталеплавильных шлаков при 1650^{0} С (\Diamond – кислые шлаки синтетические; Δ – кислые шлаки производственные; – основные шлаки синтетические; × – основные шлаки производственные).

В работах [6, 7] относительная водородопроницаемость стандартных флюсов электрошлаковой плавки определяется из выражения:

$$Q_{H}^{0} = Q_{H} \cdot \sqrt{\frac{P_{H_{2}0}^{0}}{P_{H_{2}0}}}, rge$$

$$Q_{H} = \frac{[H]_{HCX} + \Delta[H]_{\phi\pi}}{[H]_{HCX}}$$
(8)

185

 $P^{o}_{H_{2}0}$ – парциальное давление паров воды при 25⁰C и 50% влажности атмосферного воздуха;

 P_{H_20} – тоже для цеховой атмосферы. При $Q_H^0 > 1$ процесс ЭШП сопровождается наводороживанием переплавляемого металла, а при $Q_H^0 < 1$ – его дегазацией.

Анализ водородопроницаемости стандартных флюсов ЭШП (АНФ14, AH–291, АНФ13, АНФ6, АНФ28, АНФ29, УД5 и АНФ7), содержащих в своем составе CaF₂ и являющихся оксидносолевыми расплавами, при переплаве стали 08Х18Н10Т при 1700^оС показал наличие тесной корреляционной связи $Q_{\rm H}^{\rm o}$ с параметрами межатомного взаимодействия в виде уравнения:

 $Q_{\mu}^{o} = 2,439 + 0,159\Delta e - 21,746 tg\alpha + 3,594 \rho$ r=0,922 (9)

Следует отметить, что относительная водородопроницаемость одного и того шлака может быть разной и зависеть от состава переплавляемого металла. Приведенные в работе [7] данные по ЭШП сталей 08X18H10T, 12X18H10T, 40X и 15X2HMA под флюсом АНФ–6 показывают, что значения $Q_{\rm H}^{0}$ изменяются в широких пределах от 1,32 до 4,37. Сами же значения $Q_{\rm H}^{0}$ тесно связаны с рассчитанными по модели металлических расплавов с ОЦК подобной структурой [1] интегральными параметрами межатомного взаимодействия (*d*, *Z^V* и tgα)следующим соотношением:

$$Q_{\rm H}^{0} = -206,272 + 6,767Z^{\rm V} + 2282,62 \text{tg}\alpha - 0,0,0089 P_{\rm H_20} \qquad r = 0,998 \qquad (10)$$

Таким образом, в системе газ – шлак – металл в зависимости от содержания водородсодержащих газов в атмосфере (H₂ и H₂O), состава шлака и металла и содержания в последнем водорода шлаковой расплав может способствовать как наводороживанию, так и дегазации металла.

Полученные выше полуэмпирические модели растворимости водорода в металлургических шлаках и их водородопроницаемости могут быть использованы для прогнозной оценки поведения водорода в системе газ – шлак – металл.

Отсутствие в литературе достаточного по количеству для всестороннего анализа данных по составу газовой атмосферы, шлака и выплавляемого металла пока не дает возможности более точно описать с единых позиций с учетом параметров межатомного взаимодействия в шлаке и металле переход водорода из газовой атмосферы через шлак в металл.

1. *Приходько Э.В.* Металлохимия многокомпонентных систем – М.: Металлургия, 1995. – 320с.

- 2. *Новохатский И.А., Борц Ю.М., Копырин И.А.* Растворимость водяных паров в расплавленных доменных шлаках // Изв. АНСССР. Металлы. –1968. –№5. С.27–33.
- 3. Новохатский И.А. Газы в окисных расплавах. М.: Металлургия, 1975. –216с.
- 4. *Ершов Г.С., Умрихин П.В., Курочкин К.Т.* Водородопроницаемость кислых мартеновских шлаков // Изв. вузов. Черная металлургия. –1961. –№1. –С.65–72.
- 5. Богатенков В.Ф., Курочкин К.Т., Умрихин П.В. Водородопроницаемость основных шлаков // Изв. вузов. Черная металлургия. –1961. –№1. –С.65–72.
- 6. Водородопроницаемость стандартных флюсов ЭШП / О.Н.Романов, И.А.Новохатский, В.Я.Кожухарь и др. // Изв. вузов. Черная металлургия. 1989. –№7. –С.47–51.
- Новохатский И.А., Кожухарь В.Я., Романов О.Н. О механизме межфазного распределения водорода в процессах ЭШП // Изв. вузов. Черная металлургия. –1994. –№5. –С.23–28.

Статья рекомендована к печати д.т.н., проф. Д.Н.Тогобицкой