В.И.Большаков, А.М.Башмаков, А.Ф.Шевченко, Ю.И.Черевик

ОСОБЕННОСТИ СИЛОВОГО НАГРУЖЕНИЯ ФУРМ С ИСПАРИТЕЛЬНЫМИ КАМЕРАМИ, ИСПОЛЬЗУЕМЫХ ДЛЯ ДЕСУЛЬФУРАЦИИ ЧУГУНА

Исследован механизм формирования сил, действующих на фурму для десульфурации чугуна как в статике, так и при продувке. Получены аналитические зависимости, позволяющие определять характер изменения этих сил и их абсолютные значения при любой глубине погружения фурмы.

Анализ состояния проблемы.

Одной из важных задач, стоящих перед исследователями и разработчиками нового современного оборудования, предназначенного для десульфурации чугуна, является обоснование и правильный выбор оптимальных конструктивных и технологических параметров основного рабочего инструмента – фурмы. В результате её решения технологи смогут с максимальным коэффициентом полезного действия использовать дорогостоящий реагент – магний, обеспечив при этом устойчивое во времени протекание процесса десульфурации, а механики получат наиболее полное представление о характере протекания силовых процессов, происходящих во время работы оборудования. Для выбора мощности электродвигателей привода фурменного устройства, определения нагрузок, действующих в основных деталях и узлах приводных механизмов, необходимо знать величины и характер изменения сил, действующих на фурму при её погружении в расплав, подъеме и во время выполнения технологической операции.

Постановка задачи.

Для определения этих сил рассмотрим конструкции фурм, выполненных в нижней части в виде колокола с испарительными камерами (ИК) конической и цилиндрической формы (рис.1, а и б). Конструктивные параметры которых, наиболее часто используемые на практике, представлены в табл.1 [1,2].

Согласно закону Архимеда, тело, погруженное в жидкость, выталкивается из неё с силой равной весу жидкости, вытесненной этим телом. В соответствии с этим законом силу, с которой фурма, погруженная в расплав на глубину H_i , выталкивается с жидкого чугуна, можно представить в виде:

$$F_1 = V_1 \cdot \rho \,, \tag{1}$$

где V₁ – часть объема фурмы, вытеснившая жидкий чугун при погружении на

глубину H_i ; ρ – плотность жидкого чугуна.

Таблица 1 Конструктивные параметры фурм с испарительной камерой, используемых для десульфурации чугуна

Конструк- тивный параметр	D	D_1	D_2	d	d _ĸ	L	Н	H_1	h	h_1	
Тип фур-	Фурма с коническим колоколом										
МЫ											
Величина	700	180	450	350	20	3100	750	650	950	400	
В ММ											
Тип фур-		Фурма с цилиндрическим колоколом									
мы											
Величина	550	_	260	400	20	2850	650	500	_	_	
B MM											

При погружении фурмы в жидкий чугун в ИК колокола находится воздух под атмосферным давлением, который в этой камере запирается, а затем сжимается ферростатическим давлением жидкого металла. По мере сжатия воздуха в ИК, она начинает постепенно заполняться жидким чугуном, её объем уменьшается, а давление воздуха в нем увеличивается. Разделительную поверхность в ИК, находящуюся на границе между сжатым воздухом и жидким чугуном, в дальнейшем будем называть пограничным слоем, который будет изменять своё положение по мере погружения фурмы в расплав (рис.1).

Рис.1. Расчетные схемы:

 а – фурмы с коническим колоколом;б – фурмы с цилиндрическим колоколом.

Таким образом, характерной особенностью фурм с ИК является наличие в этих камерах сжатого воздуха

под избыточным давлением, который, с одной стороны, давит на поверхность жидкого чугуна, а с другой – на свод ИК, создавая дополнительную выталкивающую силу, действующую на фурму. Величина этой силы для конического колокола определяется выражением:

$$F_2^* = \frac{\pi}{4} \quad D_i^2 \quad p_i \tag{2}$$

Давление сжатого воздуха на поверхность жидкого чугуна в ИК уравновешивается ферростатическим давлением жидкого чугуна на сжатый воздух. Это состояние равновесия пограничного слоя описывается уравнением:

$$F_2^* + F_2^1 = 0, (3)$$

где F_2^1 – сила ферростатического давления поверхности жидкого чугуна ИК на сжатый воздух.

Для колокола с конической ИК она определяется выражением:

$$F_2^1 = \frac{\pi}{4} \cdot \rho D_i^2 \cdot H_i \quad , \tag{4}$$

Подставив выражения (2) и (4) в уравнение (3), получим: $p_i = \rho H_i$. (5)

Изложение основных материалов исследования.

Полученная зависимость (5) позволяет определять давление сжатого воздуха в ИК колокола в зависимости от уровня погружения фурмы в расплав и плотности чугуна. Учитывая данные, приведенные в табл.1, позволяющие определить часть объема фурмы (V_i), вытеснившего жидкий чугун при погружении на глубину H_i , уравнение (1) для фурмы с коническим колоколом можно представить в следующем виде:

$$F_{1} = \frac{\pi}{4}d^{2}\rho(H_{i} - H) + \frac{\pi}{12}\rho[D^{2}(H + h) - D_{2}^{2}(H_{1} - h_{1}) + D_{i}^{2}(H_{1} + h_{1} - h_{i}) - d^{2}h]$$
(6)

При погружении фурмы в расплав на внешние горизонтальные и конические поверхности колокола действует ферростатическое давление жидкого чугуна, способствуя ускорению её погружения. Величина формируемой при этом силы пропорциональна глубине погружения и контактной площади, воспринимающей ферростатическое давление, и может быть представлена для конического колокола в виде выражения:

$$F_3 = \frac{\pi}{4} \rho \left(D^2 - D_{i(1)}^2 \right) H_i \,. \tag{7}$$

где $D_{i_{(I)}}$ – текущее значение диаметра конической части колокола на участке его изменения от D до d.

Аналитические зависимости, позволяющие определять силы, действующие на фурму с цилиндрическим колоколом при её погружении в расплав, имеют следующий вид:

$$F_1 = \frac{\pi}{4} \rho \left[d^2 \left(H_i - H \right) + D^2 H - D_2^2 h_i \right]; \tag{8}$$

$$F_2 = \frac{\pi}{4_i} \cdot D_2^2 \cdot p_i; \qquad (9)$$

$$F_{3} = \frac{\pi}{4} \rho \left(D^{2} - d^{2} \right) \cdot \left(H_{i} - H \right) \,. \tag{10}$$

В выражениях (1) – (10) приняты следующие обозначения: d – наружный диаметр ствола фурмы; D – наружный диаметр колокола; H – высота колокола; H_i – высота испарительной камеры; H_i – глубина погружения фурмы; h_o – расстояние между дном емкости и нижним срезом фурмы; h_i – высота заполнения ИК (уровень расположения пограничного слоя); D_i – текущий диаметр пограничного слоя; D_1 и D_2 – соответственно, верхний и нижний диаметры ИК; p_i – текущее значение давления сжатого воздуха в ИК; h_i и h – конструктивные параметры колокола.

Анализ полученных зависимостей показывает, что фурма с ИК, погруженная в жидкий чугун, при отключенной системе пневмотранспорта, испытывает на себе действие трех сил, две из которых (F_1 и F_2) стараются вытолкнуть фурму из жидкого металла на поверхность, а одна (F_3) – препятствует выталкиванию. В зависимости от конструктивного исполнения испарительных камер эти силы имеют различные абсолютные значения (табл.2).

се погружения в жидкий чугун													
<i>Н</i> _i , м	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	1,8	2,0	2,0	2,4	2,6
<i>р</i> _{<i>i</i>} ,ати	0,16	0,31	0,47	0,62	0,78	0,94	1,09	1,25	1,40	1,56	1,72	1,87	2,03
Фурма с конической испарительной камерой													
F_1 ,кг	510	920	1230	1460	1630	1780	1930	2082	2230	2380	2530	2680	2890
<i>F</i> 2*,кг	240	470	690	910	1110	1300	1480	1650	1800	1960	2110	2230	2360
F_2 ,кг	600	120	1800	2400	3000	3600	4200	4800	5400	6000	6600	7200	7800
		0											
F_{3} ,кг	100	300	590	960	1390	1850	2300	2750	3200	3650	4100	4550	5000
	Фурма с цилиндрической испарительной камерой												
$F_1,$ кг	370	740	1110	1350	1550	1850	1950	2150	2350	2550	2750	2950	3150
<i>F</i> 2 *, кг	85	170	250	330	420	500	580	660	750	830	910	990	1080
F_2 ,кг	370	740	1110	1480	1850	2220	2590	2960	3330	3700	4070	4440	4810
F_{3} ,кг	_	_	_	130	310	480	660	830	1010	1180	1360	1530	1710

Таблица 2. Значение сил, действующих на фурму, при различной глубине ее погружения в жидкий чугун

Архимедова сила (F_1) для фурм с конической и цилиндрической ИК достаточно близко совпадает между собой по величине. Сила же от давления сжатого воздуха в ИК (F_2^*) и особенно сила ферростатического давления (F_3) у фурмы с коническим колоколом значительно в 2,0÷3,0 раза превышает аналогичные силы фурмы с цилиндрическим колоколом. Значение сил F_1 и F_3 мало отличаются между собой как в статическом положении фурмы, так и при включенной системе пневмотранспорта. Сила F_2^* является переменной и её в статическом состоянии фурмы можно условно назвать «спящей» технологической нагрузкой, так как при таком состоянии фурмы она имеет свое минимальное значение.

Фурма, погруженная в жидкий металл, в статическом положении бывает достаточно редко. Как правило, пневмотрасса находится под давлением либо одного транспортирующего газа, либо газа в смеси с магнием. В качестве транспортирующего газа могут быть использованы сжатый воздух, азот, аргон или природный газ [3]. Чистым газом фурма продувается при опускании и подъеме, а газомагниевой смесью – при обработке жидкого чугуна.

Ферростатическое давление расплава действует на фурму с момента начала её погружения и на глубине 2,0 метра достигает 1,5–1,6 ати. Режим продувки чистым газом должен быть таким, при котором жидкий чугун не будет попадать в подколокольное пространство и заплескивать подводящий трубопровод. Соблюдение этого условия будет обеспечиваться при давлении газа 1,7–1,8 ати, а расход газа при продувке погружаемой фурмы составляет 160–180 м³/час. В этом случае газ, выходя из испарительной камеры, охватывает её нижний срез по всему периметру с максимальным наружным диаметром *D*, а также имеем $h_i = 0$ и $D_i = D_2$.

Для этого варианта зависимости, позволяющие определять силы, действующие на фурму, имеют следующий вид:

– для фурмы с коническим колоколом

$$F_{1} = \frac{\pi}{4}d^{2}\rho(H_{i} - H) + \frac{\pi}{12}\rho[D^{2}(H + h) - 2D_{2}^{2} \cdot h_{1} - d^{2}h], \quad (11)$$

$$F_2 = \frac{\pi}{4} \cdot D^2 \cdot p_i, \tag{12}$$

$$F_{3} = \frac{\pi}{4} \rho \left(D^{2} - d^{2} \right) \cdot \left(H_{i} - H \right) .$$
 (13)

- для фурмы с цилиндрическим колоколом

$$F_{1} = \frac{\pi}{4} \rho \left[d^{2} (H_{i} - H) + D^{2} H \right]$$
(14)

$$F_2 = \frac{\pi}{4} \cdot D^2 \cdot p_i, \tag{15}$$

$$F_{3} = \frac{\pi}{4} \rho \left(D^{2} - d^{2} \right) \cdot \left(H_{i} - H \right) \,. \tag{16}$$

При продувке фурм чистым газом с коническим колоколом величина силы F_2 увеличивается в 3,0–3,5 раза, а у фурмы с цилиндрическим колоколом – в 4,0–4,5 раза по сравнению с теми значениями, которые она имела в статическом положении.

Результаты исследования.

Полученные аналитические зависимости позволяют установить закономерности изменения этих сил и получить их численные значения при различной глубине погружения фурмы (рис.2). Справа на рис.2 приведены графики изменения вышеупомянутых сил для фурмы с коническим колоколом, а слева – с цилиндрическим. Сравнительный анализ этих сил показывает, что Архимедова выталкивающая сила (F_1) для фурм с коническим и цилиндрическим колоколом при глубине погружения 2,0 метра имеют практически одинаковые значения и составляют, соответственно, 2350 и 2550 кг. Силы же ферростатического давления (F_3) и силы (F_2), вызванные давлением сжатого воздуха в ИК, значительно отличаются друг относительно друга. Так, если на глубине 2,0 метра сила F_2 для фурмы с коническим колоколом составляет 6000 кг, то для фурмы с цилиндрическим – 3700 кг. Сила F_3 на этой же глубине равна, соответственно, 3650 и 1180 кг. Существенное отличие абсолютных значений этих сил обусловливается различием у них таких конструктивных параметров как наружные диаметры колоколов и центральных стволов, равных, соответственно 700 и 550 мм, а также 350 и 400 мм.

Учитывая, что вес новой фурмы составляет около 2500 кг, можно оценить какие силы доминируют при её погружении в расплав, например, на глубину 2,0 метра. Для этого необходимо проанализировать баланс сил, способствующих погружению и всплытию фурмы. Проведенный анализ показывает, что для фурм обеих конструкций справедливо условие

$$F_1 + F_2 \rangle F_3 + G_\phi, \tag{17}$$

которое свидетельствует о том, что силы, способствующие всплытию, превышают силы, обеспечивающие погружению фурм. Причем, разница между этими силами составляет 2230 и 2570 кг, соответственно.

Наличие этой информации позволяет разработчикам правильно определять вес и конструктивные параметры штанг и балластного груза фурменного устройства, обеспечивающего выполнение условия, описываемого уравнением

$$F_1 + F_2 = F_3 + G_{\phi} + G_{\rm III} + G_{\delta}, \qquad (18)$$

где G_{ϕ} – вес фурмы; $G_{\rm m}$ – вес штанги; $G_{\rm 5}$ – вес балластного груза, то есть того условия, которое обеспечивает фиксирование фурмы на заданном расстоянии от дна емкости при её свободном опускании с продувкой чистым газом.

Кроме указанных сил, на фурму, при погружении в жидкий металл, извлечении из него и при продувке, в зоне нижнего среза сопла действует реактивная сила, обусловленная наличием высокоскоростной струи газа или газомагниевой смеси (рис.3).

Величина этой силы определяется с помощью уравнения количества движения, которое для нашего случая имеет вид [4]:

$$P = \frac{G_{\rm r} + G_{\rm M}}{g} \cdot V_o,$$

где *G*_г и *G*_м – секундные весовые расходы газа и магния;

 $\frac{G_{\Gamma}}{g}$ и $\frac{G_{M}}{g}$ – секундные массы газа и магния; V_{0} -средняя скорость истечения.

га рис.4 приведено семейство кривых, представляющих зависимости

изменения реактивной силы при различных скоростях истечения газа (кривые 1–7) и газомагниевой смеси (кривые 1'–7') равной 50, 100, 150, 200, 250, 300 и 350 м/с. Эти кривые получены при различных секундных весовых расходах газа и магния (табл.3).

Таблица 3. Значение секундных весовых расходов транспортирующего газа магния и газомагниевой смеси

Расход транс-		м ³ /ч	200	180	160	140	120	100	80	60	40
портирующего газа		м ³ /с	0,055	0,050	0,044	0,039	0,033	0,028	0,022	0,017	0,011
Вес транс-	2,0	КГ	0,132	0,120	0,106	0,094	0,079	0,067	0,053	0,041	0,026
портирую-	ати										
щего газа,	3,0	KE	0.226	0 205	0.191	0.160	0.125	0 1 1 5	0.000	0.070	0.045
Gr	ати	KI'	0,220	0,203	0,181	0,100	0,133	0,115	0,090	0,070	0,043

Массовая	ско-	кг/	-	-	-	-	5,0	10,0	15,0	20,0	25,0
рость подачи		мин									
магния, G _м		КГ	-	-	-	-	0,083	0,167	0,250	0,333	0,417
Вес смеси	2,0	КГ	-	-	-	-	0,162	0,234	0,303	0,374	0,443
$(G_r + G_M)$	ати										
	3,0	КГ	-	-	-	-	0,220	0,282	0,340	0,403	0,462
	ати										

Рис. 4. Изменение реактивной силы при различных скоростях истечения газа и газомагниевой смеси. Кривые 1–7 – реактивная сила при скорости истечения чистого газа носителя 50, 100, 150, 200, 250, 300 и 350 м/с.. Кривые 1[′] – 7[′] – реактивная сила при скорости истечения газомагниевой смеси 50, 100, 150, 200, 250, 300 и 350 м/с.

Анализ полученных зависимостей показывает, что в зоне продувки фурмы чистым газом при ее опускании и

подъеме максимальные значения реактивной силы не превышают 80,0 кг. Во время продувки фурмы газомагниевой смесью эта сила увеличивается до 160 кг. В реальных условиях эти силы имеют еще меньшие значения. Сравнивая эту силу с другими, действующими на фурму, видим, что она значительно уступает им по величине и не превышает 5% меньшей из них, поэтому при дальнейших исследованиях влияние этой силы из–за ее малости можно не учитывать.

Выводы.

Исследование особенностей силового нагружения фурм с испарительными камерами позволило получить достаточно полную картину о силах, действующих на фурму, погружаемую в жидкий чугун как в статическом положении, так и при продувке испарительной камеры чистым транспортирующим газом или газомагниевой смесью. Получены аналитические зависимости, позволяющие определять характер изменения этих сил и их абсолютные значения при любой глубине погружения фурм. Установлено, что влияние реактивной силы, образующейся в зоне нижнего среза сопла в результате действия на фурму высокоскоростной струи и газомагниевой смеси, не оказывает существенного влияния на характер нагружения фурмы в целом, поэтому при дальнейших исследованиях ею можно пренебречь. Полученная информация о действующих нагрузках и законах их

261

изменения позволит грамотно выполнять расчеты деталей и узлов фурмы и их приводных механизмов на прочность и долговечность.

- 1. Воронова Н.А. Десульфурация чугуна магнием. М.: Металлургия, 1980. 239 с.
- Анализ конструкций фурм и устройств, используемых для десульфурации чугуна / В.М.Большаков, А.М.Башмаков, А.Ф.Шевченко, Ю.И.Черевик // Фундаментальные и прикладные проблемы металлургии. – Вып. 8. – 2004. – С.381–389.
- Шевченко А.Ф. Разработка и развитие теории и технологии процессов внепечной десульфурации чугуна в ковшах вдуванием диспергированных реагентов // Диссертация на соискание ученой степени докт.техн.наук. – Днепропетровск, 1997. – 425 с.
- 4. Абрамович Г.Н. Прикладная газовая динамика. Наука. 1969. 824 с.
- Расчетная оценка скорости газового потока при условии вдувания магния в жидкий чугун / А.Ф.Шевченко, С.А.Шевченко, А.П.Толстопят, В.И.Елисеев // Фундаментальные и прикладные проблемы черной металлургии. – Сб. тр. ИЧМ. – Киев. Наукова думка. – 2003. – Вып.6. – С.116–120.
- 6. Чайдлс У. Физические постоянные. Физматгиз. 1961. 67 с.

Статья рекомендована к печати д.т.н. А.С.Вергуном