А.Ю.Гринько, Д.Н.Тогобицкая

ПРОГНОЗИРОВАНИЕ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ РАСПЛАВОВ ПРИ ВЫПЛАВКЕ ЧУГУНА

Впервые получены удовлетворительные результаты при переносе моделей для прогнозирования термодинамических свойств элементов с трехкомпонентных систем на многокомпонентные. Разработана модель определения численного значения коэффициента активности серы и кремния в чугуне. Уточнена модель для вычисления равновесного коэффициента распределения серы между чугуном и шлаком.

Современное состояние вопроса.

Коэффициенты распределения элементов являются основными термодинамическими параметрами, определяющими эффективность и степень завершенности ионообменных процессов в системе «металл-шлак». Поскольку термодинамические характеристики, позволяющие количественно описать процесс, применимы лишь в случае равновесных процессов, особенно актуальной является проблема равновесия и оценка степени ее достижения при определении возможных областей применения термодинамики для количественной характеристики реальных процессов.

Изучение равновесного распределения любого компонента между металлом и шлаком обычно сводится к экспериментальному определению активностей или коэффициентов активностей и установлению функциональной зависимости их от известных факторов. Комплекс вопросов, связанных с трактовкой понятия «активность» и ее коэффициент уже обсуждался в наших работах [1–3]. В частности, используя экспериментальные данные по численным значениям коэффициента активности углерода, предоставленные Соколовым В.М., на основании полученных нами раннее результатов исследований [3,4] был сделан вывод о том, что коэффициент активности компонента в многокомпонентной системе должен зависеть от параметра, характеризующего общее состояние системы; состояние данного компонента в зависимости от его окружения (состояния электронного облака атомов данного компонента в системе конкретного состава), и параметра, характеризующего индивидуальность данного компонента.

Трактовка металлического расплава как химически единой системы [5] предоставляет возможность использовать интегральные физико– химические параметры межатомного взаимодействия в качестве функций состояния системы. Все параметры определялись в соответствии с теорией направленной химической связи. Использование параметров межатомного взаимодействия при трактовке химической связи как направленной позволяет с единых физико-химических интерпретировать результаты ионообменных процессов между реагирующими фазами.

Изложение основных материалов исследования.

В настоящих исследованиях в качестве параметра, характеризующего структурное состояние металлического расплава был выбран параметр Z^Y . Для оценки состояния данного компонента в зависимости от окружения определен параметр ρ_1 , характеризующий зарядовую плотность на поверхности ионизированного атома. Состояние компонента до его вступления во взаимодействие в системе отражает параметр Z_0^Y чистого ком-

понента. Возможность описать состав многокомпонентной системы ограниченным числом интегральных и парциальных критериев, определяющих физико-химические свойства системы и отдельных ее компонентов, позволяет вплотную подойти к решению задач прогнозирования.

В качестве отправного базового массива экспериментальных данных выбраны данные трехкомпонентных железоуглеродистых расплавов, представленные В.М. Соколовым, наиболее приближенные по концентрационному диапазону к составу чугуна (табл.1).

Nº	С	Si	Fe	Т	lgfc
1	4,48	0,55	94,97	1623	0,09
2	4,24	1,59	94,17	1623	0,17
3	4,24	1,67	94,09	1623	0,17
4	4,14	1,55	94,31	1573	0,17
5	4,58	0,09	95,33	1563	0,02
6	4,54	1,42	94,04	1673	0,11
7	4,40	1,64	93,96	1673	0,15
8	5,06	0,21	94,73	1763	0,02
9	4,84	1,42	93,74	1773	0,09
10	4,58	1,87	93,55	1773	0,17
11	4,99	1,42	93,59	1873	0,12
12	5,10	0,48	94,42	1823	0,05
13	4,93	1,09	93,98	1823	0,11
14	4,89	1,55	93,56	1823	0,12
15	5,58	0,15	94,27	1963	0,02
16	5,12	1,88	93,00	1973	0,15

Таблица 1 Данные о составе и активности углерода в металлическом расплаве

В результате получена следующая модель, описывающая логарифм коэффициента активности углерода (*r* = 0,94):

$$\lg f_X = 0.944 \cdot a - 5.33 \tag{1}$$

где X – компонент системы, для которого определяется значение коэффициента активности, для данного случая – углерод, $a = Z^Y \cdot \rho_{l_X} + Z_0^Y$.

Учитывая возможные погрешности при определении коэффициента активности компонентов металла, особое внимание было уделено проблеме проверки предложенной модели (1). Полученная модель (1) экзаменовалась на экспериментальных данных Куликова и Винцера [6–7], включающих в себя составы чугуна и численные значения коэффициентов активностей серы в чугуне, а также на данных Клитцера [8], включающих в себя составы чугуна и численные значения коэффициентов активностей серы в чугуне, а также на данных Клитцера [8], включающих в себя составы чугуна и численные значения коэффициентов активностей кремния в чугуне. Результаты сопоставления расчетных и экспериментальных данных представлены на рис.1.

пиальное значение, поскольку выражение (1) может быть рекомендовано как для вычисления коэффициента активности углерода, так и для вычисления коэффициента активности серы и кремния в чугуне.

В работе Куликова [7] для определения коэффициента активности серы в чугуне рекомендуется зависимость от содержания кремния:

$$\lg f_S = -\frac{1300}{T} + 1.473 + 0.047 \cdot [\% Si] + 0.0024 \cdot [\% Si]^2$$
(2)

В табл.2 составы чугуна представлены с экспериментально определенными [7] и рассчитанными разными методами коэффициентами активности серы ($\lg f_S$ – экспериментально определенная величина, $\lg f_S(1)$ – величина, определенная по формуле (1), $\lg f_S(2)$ – величина, определенная по формуле (2)

Таблица.2 Соста	авы чугуна	и коэфо	рициенты	активностей,	рассчитанные	по	моде
лям (1) и (2)			_		_		

N	Si	Mn	s	Р	С	Т	Z^{Y}	$\rho_{l_{C}}$	$\lg f_S$	lgf_S (1)	lgf_S (2)
1	1,04	1,51	0,050	1,18	4,03	1405	1,4427	3,8107	0,6656	0,8577	1,9079
2	0,94	1,11	0,059	1,25	3,89	1405	1,4309	3,8004	0,6532	0,8095	1,8498
3	0,83	1,14	0,056	0,83	3,90	1405	1,4187	3,7998	0,6284	0,7712	1,6955
4	0,72	1,03	0,043	0,80	3,93	1400	1,4137	3,8022	0,6138	0,7626	1,6809
5	0,64	1,28	0,047	0,92	3,89	1400	1,4174	3,7954	0,5977	0,7661	1,6164
6	0,57	1,30	0,044	0,92	3,81	1400	1,4130	3,7871	0,5763	0,7432	1,5365
7	0,65	0,93	0,074	1,39	3,70	1430	1,4173	3,7810	0,6075	0,7249	1,6658
8	0,67	0,94	0,070	1,37	3,70	1425	1,4174	3,7812	0,6021	0,7297	1,6680
9	1,29	1,47	0,067	1,06	3,30	1400	1,4229	3,7473	0,5635	0,7276	1,5085
11	2,14	1,20	0,049	0,04	3,96	1450	1,4379	3,8202	0,7042	0,8177	2,0749
12	2,32	1,20	0,041	0,05	3,97	1450	1,4430	3,8232	0,7404	0,8368	2,1684
13	1,50	1,40	0,024	0,03	4,10	1400	1,4278	3,8237	0,6532	0,8311	1,8617
14	1,50	0,90	0,025	0,03	4,10	1400	1,4192	3,8282	0,6721	0,8096	1,9402
15	2,00	0,80	0,030	0,03	4,10	1400	1,4312	3,8346	0,7308	0,8540	2,1797
16	2,25	0,80	0,030	0,02	4,00	1420	1,4343	3,8286	0,7404	0,8406	2,2190
17	2,20	0,80	0,030	0,04	4,00	1420	1,4336	3,8281	0,7364	0,8378	2,2017
18	1,13	0,71	0,069	1,22	3,50	1310	1,4160	3,7704	0,6191	0,8060	1,7217
19	0,97	0,97	0,070	0,94	3,75	1375	1,4178	3,7892	0,6075	0,7805	1,7068
20	2,82	0,31	0,042	0,79	3,76	1485	1,4517	3,8177	0,8357	0,8289	2,6322
21	0,70	1,41	0,023	0,53	4,10	1420	1,4181	3,8142	0,6021	0,7736	1,6600
22	0,51	1,35	0,037	0,50	4,25	1420	1,4163	3,8255	0,6085	0,7811	1,6782
23	0,45	1,51	0,020	0,51	4,30	1435	1,4187	3,8279	0,6053	0,7793	1,6679
24	0,79	0,19	0,027	0,76	4,78	1437	1,4259	3,8838	0,7451	0,8644	2,4437
25	0,89	0,19	0,037	0,10	4,77	1485	1,4132	3,8852	0,7551	0,7871	2,2811
26	0,77	0,21	0,033	0,10	4,61	1478	1,4054	3,8705	0,7143	0,7515	2,1057
27	0,83	0,19	0,022	0,10	4,61	1473	1,4064	3,8714	0,7218	0,7597	2,1384
28	0,93	0,19	0,038	0,10	4,69	1481	1,4119	3,8789	0,7443	0,7793	2,2401
29	0,95	0,20	0,032	0,10	4,74	1484	1,4140	3,8832	0,7559	0,7884	2,2862
30	0,99	0,20	0,036	0,10	4,58	1472	1,4104	3,8703	0,7308	0,7718	2,1856

Сопоставительный анализ экспериментальных данных и величин, рассчитанных разными методами, отображен на рис.2. Полученные удовлетворительные результаты при переносе модели для трехкомпонентной системы на многомерную позволяют использовать ее при вычислении равновесного распределения элемента между чугуном и шлаком.

Рис.2 Соотношение между экспериментальными значениями коэффициента активности серы в чугуне и величинами, рассчитанных по формулам (1) и (2)

При проведе-

нии экзамена модели (1) для вычисления равновесного коэффициента активности серы в чугуне были вычислены коэффициенты активности серы для данных по химическому составу чугуна, доведенного до равновесного состояния [7]. Результаты такого экзамена удовлетворительны и представлены на рис.3.

Рис.3 Соотношение между экспериментальными и расчетными значениями коэффициента активности серы в чугуне для равновесных данных

Для вычисления равно-

весного распределения серы между чугуном и шлаком нами были использованы экспериментальные данные Куликова [7], содержащие составы чугуна и шлака, а также определенные для них коэффициенты активности серы и равновесные коэффициенты распределения L_S^0 . В ходе аналитической и статистической обработки представленных данных кроме логарифма коэффициента активности серы в чугуне для описания равновесного состояния привлекался параметр, характеризующий общее состояние шлакового расплава (ρ) а также параметр, характеризующий изменение зарядовой плотности на поверхности ионизированного атома – ρ_1 . В ре-

189

зультате, для вычисления логарифма коэффициента равновесного распределения серы между чугуном и шлаком была получена модель (r = 0,9):

$$\lg L_S^0 = 2.63 \cdot a - 3.12 \tag{3}$$

где $a = \lg f_{[S]} \cdot \rho + \rho_{l(S)} + \begin{pmatrix} T_{\text{шл}} \\ 1000 \end{pmatrix}.$

По данным работы [7] коэффициент равновесного распределения серы между чугуном и шлаком предложено рассчитывать по формуле:

$$\lg L_S^0 = 2.55 \cdot B - 2.07 + \lg f_{[S]} \tag{4}$$

где *B*, являясь обобщенным показателем основности вычисляется следующим образом:

$$B = \frac{(CaO) + 0.5 \cdot (MgO) - 1.75 \cdot (S)}{(SiO_2) + 0.6 \cdot (Al_2O_3) \cdot [((CaO) + 0.5 \cdot (MgO))/(SiO_2) - 1.19]}$$

Сопоставительный анализ расчетов по моделям (3) и (4) представлен на рис.4.

Как видно

из рис.4 расчет по предложенной нами формуле (3) дает более точное соответствие эксперименту чем предложенная в работе [7] формула (4).

Для вычисления коэффициента равновесного распределения серы между чугуном и шлаком в тех случаях, когда отсутствуют данные по температуре шлака нами предложена следующая модель:

$$\lg L_{\rm S}^0 = 3.471 \cdot a + 0.264 \tag{5}$$

где $a = \lg f_{[S]} \rho + \rho_{l_{(S)}}$. Данная модель описывает коэффициент L_S^0 с коэффициентом корреляции r = 0.87 (рис. 5).

Ранее нами уже обсуждался вопрос прогнозирования равновесного коэффициента распределения серы между чугуном и шлаком. В частности, в работе [9] была предложена следующая модель:

$$\lg L_S^0 = 9.033 \cdot Z^Y + 18.53 \cdot \rho - 0.096 \cdot \Delta e - 24.272$$
(6)

где Z^{Y} – интегральный параметр, описывающий структурное состояние чугуна, ρ , Δe – параметры шлака.

Рис.5 Соответствие расчетных по модели (5) и экспериментальных данных равновесного коэффициента распределения серы между чугуном и шлаком

Однако при практической реализации в системе контроля

шлакового режима в условиях ДП№9 [10] возникали ситуации, когда отношение фактического распределения серы к равновесному было больше единицы. Данные для таких выпусков приведены в табл.3.

Ŋ	[Si]	[Mn]	[S]	[C]	[F]	(SiO ₂)	(Al ₂ O ₃)	(CaO)	(MnO)	(MgO)	(FeO)	(S)
7241	1,00	0,46	0,018	4,25	0,073	38,3	7,3	47,9	0,22	5,9	0,16	1,6
7244	0,94	0,42	0,020	4,28	0,067	38,7	7,2	47,4	0,27	6,0	0,26	1,6
7252	0,80	0,42	0,024	4,29	0,066	40,3	6,5	46,6	0,43	5,8	0,19	1,4
7265	0,96	0,45	0,019	4,29	0,067	38,5	7,0	47,2	0,25	5,9	0,20	1,6
7188	0,79	0,43	0,019	4,25	0,066	38,4	7,4	47,6	0,25	6,0	0,15	1,5
7196	0,87	0,42	0,020	4,24	0,065	39,2	7,4	46,8	0,27	6,0	0,20	1,5
7199	0,86	0,44	0,022	4,23	0,065	40,0	6,7	46,6	0,34	5,9	0,16	1,4
7200	0,94	0,42	0,021	4,25	0,066	39,9	7,0	46,7	0,30	5,9	0,15	1,4
7201	0,87	0,43	0,024	4,23	0,066	40,2	6,8	46,3	0,39	5,7	0,15	1,4
7205	0,81	0,42	0,021	4,27	0,063	39,2	6,9	47,2	0,28	6,1	0,13	1,5
7300	0,70	0,37	0,026	4,18	0,061	40,8	6,4	45,5	0,51	6,3	0,31	1,3

Таблица.3 Фактические данные по выпускам ДП№9

В табл.4 приведены величины равновесных коэффициентов распределения серы между чугуном и шлаком, рассчитанные по формулам (5) – $L_S^0(5)$ и (6) – $L_S^0(6)$.

N⁰	$L_{S\phi}$.	$L_{S}^{0}(5)$	$L_{S}^{0}(6)$	$\frac{L_{S_{\phi.}}}{L_S^0(5)} \cdot 100$	$\frac{L_{S_{\phi.}}}{L_S^0(6)} \cdot 100$
7241	88,89	96,15	117,87	92,45	102,46
7244	80,00	89,26	114,23	89,63	101,17
7252	58,33	64,84	100,82	89,97	103,39
7265	84,21	98,02	119,08	85,91	104,17
7188	78,95	98,46	100,11	80,18	107,48
7196	75,00	94,78	100,80	79,13	114,87
7199	63,64	98,22	98,22	64,79	108,67
7200	66,67	97,52	105,94	68,36	107,06
7201	58,33	97,37	97,37	59,91	107,11
7205	71,43	96,32	102,46	74,16	105,06
7300	50,00	79,06	79,06	63,24	110,46

Таблица.4 Расчетные коэффициенты равновесного распределения серы для составов табл.3

Иллюстрация данных таблицы 4 приведена на рис.6.

Рис.6 Соответствие равновесного и фактического распределения серы

Выводы.

Таким образом, впервые получены удовлетворительные результаты при переносе моделей для прогнозирования термодинамических свойств элементов с трехкомпонентных систем на многокомпонентные. В результате получено подтверждение об инвариантности относительно компонентности расплавов моделей на основе параметров межатомного взаимодействия. Предложенные модели для вычисления коэффициентов активностей компонент чугуна и коэффициента равновесного распределения серы доведены до практической реализации в системе АСУ доменной плавки для условий ДП№9 комбината «Криворожсталь».

- Приходько Э.В., Петров А.Ф. Физико-химиические критерии для оценки степени микронеоднородности металлических расплавов // Металлофизика и новейшие технологии. – 1998. – Т.20, – С.64–74.
- Приходько Э.В., Тогобицкая Д.Н. Физико-химическое моделирование процессов межатомного взаимодействия в металлургических расплавах // Вестник ПГТУ – 1999. – Вып.7. –С.72–83.
- Тогобицкая Д.Н., Гринько А.Ю. Разработка методики прогнозирования парциальных термодинамических свойств металлических расплавов на основе численного дифференцирования параметров зарядового состояния //Фундаментальные и прикладные проблемы черной металлургии. – 2002. –№5. –С.223– 229.
- Гринько А.Ю. Определение численного значения активности углерода в системе «железо–углерод–легирующий компонент» // Фундаментальные и прикладные проблемы черной металлургии. – 2004.–№7.–С.331–336
- 5. *Приходько Э.В.* Эффективность комплексного легирования сталей и сплавов. К.: Наукова думка, 1995. 292с.
- 6. *Г. фон Энде, Винцер Г*.К вопросу десульфурации чугуна // Черные металлы. 1966. №13. С.19–26.
- 7. *Куликов И.С.* Десульфарация чугуна. М.: Государственное научно-техническое издательство литературы по черной и цветной металлургии, 1962.– 306 с.
- 8. А. фон Клитиер Поведение кремния в доменных печах // Черные металлы. 1996. №16. С.65–75.
- 9. Тогобицкая Д.Н. Моделирование процессов межфазного распределения элементов в системе металл–шлак при выплавке чугуна и стали // Металлургическая и горнорудная промышленность. 1999. №1. –С.8–10.
- Тогобицкая Д.Н., Оторвин П.И., Белькова А.И., Гринько А.Ю. Автоматизированная система контроля и управления шлаковым режимом доменной плавки // Металлург.–2004. –№4.–С.43–46

Статья рекомендована к печати д.т.н., проф. Э.В.Приходько