С.Д.Винничук, А. А.Шестаков

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ГИДРАВЛИЧЕСКИХ ПОТЕРЬ ПРИ ДОКРИТИЧЕСКОМ И КРИТИЧЕСКОМ ИСТЕЧЕНИИ ДЛЯ ВЫХОДНЫХ ОТВЕРСТИЙ В ПРИТОЧНОМ ТРУБОПРОВОДЕ

В статье приведены результаты обработки экспериментальных данных, полученных при исследовании истечения сжимаемой жидкости (воздух) из выходного отверстия приточного трубопровода для докритического и критического режима течения.

Традиционно, в гидравлических расчётах при определении расхода несжимаемой жидкости вытекающей из выходного отверстия при скоростях $v \le 150\,$ м/с, используют коэффициент расхода [1], который учитывает как геометрические особенности отверстия, так и режим течения жидкости — скорость, плотность, перепад давления и т.д. Существует ряд работ [1] [2] [3], в которых приводятся такие зависимости.

Однако при критическом перепаде давления, расход воздуха, рассчитанный с использованием данных зависимостей, отличается от расходов полученных во время гидравлических испытаний. Так, например, для отверстия диаметром 1,86 мм при избыточном статическом давлении в трубопроводе $P_{\text{ст изб}} = 1,5 \text{ кг/см}^2$ такое отличие составляет 17 %, и продолжает увеличиваться с ростом перепада давления, поскольку коэффициент расхода не учитывает потери давления в скачке уплотнения.

современных самолётах воздушно тепловых противообледенительных системах (ВТ ПОС) применяются приточные трубопроводы, использующие в качестве теплоносителя горячий воздух. Определить количество воздуха вытекающего из отверстия можно двумя коэффициент коэффициент методами: используя расхода, или гидравлических потерь. Поскольку на близких к критическому и на критическом режимах течения воздуха ($\lambda \ge 0.7$) на выходных отверстиях приточных трубопроводов первый из подходов приводит к значительным погрешностям, то актуальной становится задача определения коэффициента гидравлических потерь выходного отверстия. В настоящее время этот вопрос является недостаточно изученным, а данные, приведенные в литературе [1-6 и др.], относятся к частным случаям, чаще всего за пределами диапазона перепада давлений на отверстии, характерного для ВТ ПОС.

В связи с выше изложенным на АНТК им. О. К. Антонова были проведены дополнительные исследования, целью которых было определение коэффициента гидравлических потерь полного давления воздуха при входе в выходное отверстие определённой геометрии в диапазоне перепада давления

 $P_{\text{изб}} = 1 \div 2 \ \text{кг/cm}^2$, имеющем место в приточных трубопроводах ВТ ПОС. Настоящая работа посвящена обработке данных экспериментальных исследований.

Суммарный коэффициент гидравлических потерь отверстия можно условно разделить на три части:

$$\zeta_{\Sigma} = \zeta_{\text{bx}} + \zeta_{\text{пут}} + \zeta_{\text{вых}} \tag{1}$$

где ζ_{Σ} – суммарный коэффициент гидравлических потерь на выходном отверстии;

 $\zeta_{\mbox{\tiny BX}}-$ коэффициент гидравлических потерь на входе в отверстие; $\zeta_{\mbox{\tiny RIY}}-$ коэффициент путевых потерь;

 $\zeta_{\text{вых}}$ — коэффициент гидравлических потерь на выходе из отверстия;

Второе и третье слагаемой в формуле (1), $\zeta_{пут}$ и $\zeta_{вых}$, довольно хорошо описано в литературе и согласуется с экспериментальными данными. В то же время отсутствуют данные о коэффициенте гидравлических потерь при входе в выходное отверстие. Для определения таких величин на АНТК им. О. К. Антонова были проведены специальные гидравлические испытания.

В качестве исследуемого объекта был приточный трубопровод из алюминиевого сплава 30x1, в котором было вскрыто выходное отверстие диаметром 1 затем 3 и 5,11 мм. Сечение перпендикулярное оси исследуемого объекта представлено на рис.1.

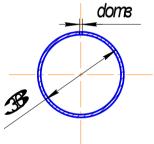


Рис. 1.Сечение перпендикулярное оси исследуемого объекта.

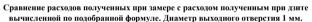
Величины давлений, устанавливаемых во время испытаний в приточном трубопроводе, а также расход (количество) воздуха, вытекающий из выходного отверстия, приведены в таблице $\mathbb{N}1$. В данной таблице $\delta P_{\text{кам}} = P_{\text{кам}} - P_{\text{атм.}}$ где $P_{\text{кам}}$ и $P_{\text{атм}}$ соответственно давление в приточном трубопроводе и атмосферное давление окружающего воздуха. В данной таблице так же приведены расходы воздуха замеренные ($G_{\text{замер}}$) и полученные при расчёте ($G_{\text{расчет}}$) с использованием зависимости для коэффициента гидравлических потерь на входе в отверстие, полученной в результате обработки данных эксперимента.

														Ta	Таблица №1	№1
0,01 0,02 0,03	0,0		0,04	90,0	0,1	0,2	0,4	0,5	9,0	8,0	-	1,2	1,5	1,8	2	2,1
				7	Диаметр отверстия d1	orbepo	стия d1	= 1 MM								
0,09 0,15 0,19	0,19		0,22	0,27	0,38	55,0	0,78	0,84	66'0	1,09	1,21	1,36	1,57	1,76	1,91	1,95
0,09 0,15 0,187	0,18	_	0,221	0,27	0,37	0,54	0,77	98'0	0,94	1,09	1,23	1,35	1,54	1,73	1,85	1,92
				1	Диаметр отверстия $d_2 = 3$ мм	отверс	стия ф	=3 MM								
0,86 1,31 1,68	1,68	~	1,99	2,11	3,06	4,58	5,62	5,88	6,61	7,37	8,78	10	10,97	12,7	14	15,1
0,92 1,35 1,68	1,68		1,95	2,19	3,13	4,45 5,44	5,44	6,29 7,03	7,03	7,71	8,95	10,1	11,11	12,6	14,1	15,2
		i		Д.	Диаметр отверстия $d_3 = 5.11$ мм	этверст	ия d ₃ =	5,11 MM	j j							
2,39 3,36 4,32	4,32		4,71	5,26	6,85	76,6	12,6	15,6	18	19,7	21,5	24,9	28	32,8	35,6	38,7
2,33 3,33 4,11	4,11		4,756	5,33	7,57	10,8	13,2	15,3	17,2	18,9	22	24,9	27,7	31,6	35,4	37,9
														Ta	Таблица №2	No.2
					Диаме	этр отве	Диаметр отверстия 1 мм	1 MM								
0,01 0,02 0,03	0,0	3	0,04	90,0	0,1	0,2	0,4	0,5	9,0	8'0	1	1,2	1,5	1,8	2	2,1
1,84 2,91 3,	33	3,73	4,38	5,3	7,32	10,6	15,1	16,9	19,1	21,2	23,8	26,3	30,4	34,2	37,1	37,9
1,84 1,75 1,678	1,6		1,752	2,07	1,83	1,86	2,11	2,2	96'0	2,97	3,1	2,89	2,128	1,93	1,04	2

Обработка полученных в ходе эксперимента данных проводилась с помощью критериального уравнения следующего вида:

$$\zeta_{\text{BX}} = A + \frac{B}{Re_{\text{OTB}}},$$
 (2)

где полагалось, что коэффициент A является функцией отношения диаметра отверстия к диаметру $d_1=1$ мм., т.е. $A=\ f(d_{\text{отв}}/d_1)$.


При обработке экспериментальных данных оказалось, что величину коэффициента В определяют данные таблицы 2, т.е. для $d_{\text{отв}}=d_1$. На основании этих данных величина В выбиралась из условий минимального среднеквадратичного отклонения прямой (A^* $Re_{\text{отв}}+B$) от значений ($\zeta_{\text{вх}}*Re_{\text{отв}}$).

При выборе зависимости для коэффициента A использовалось значения $(\zeta_{\text{вх}}*\text{Re}_{\text{отв}}-\text{B})/\text{Re}_{\text{отв}}$, для значений диаметра 1, 3 и 5.11 мм.

При трех значениях диаметра функция $A = f(d_{\text{отв}}/d_1)$ может быть аппроксимирована параболой $A=ax^2+bx+c$, где $x = d_{\text{отв}}/d_1$. По результатам обработки данных получена следующая зависимость для A(x): $A(x) = 0.0474 \cdot x^2$, а общее уравнение (2) для $\zeta_{\text{вх}}$ имеет вид

$$\zeta_{\text{BX}}(x) = 0.0474x^2 + \frac{1820}{\text{Re}_{\text{OTB}}}$$
 (3)

На ниже приведенных рисунках 2,3 и 4 представлены сравнение замеренных расходов воздуха с вычисленными используя полученную $\zeta_{\text{вх}}$ согласно зависимости (3).

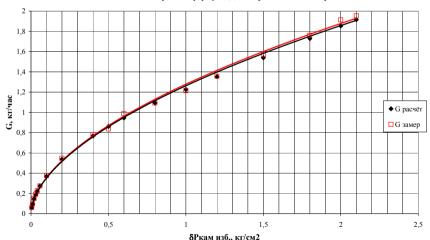


Рис. 2. Сравнение расходов воздуха полученных при замере с расходом полученным при $\zeta_{\text{вх}}$ вычисленной по формуле (3). Диаметр выходного отверстия 1 мм.

Сравнение расходов полученных при замере с расходом полученным при дзите вычисленной по подобранной формуле. Диаметр выходного отверстия 3 мм.

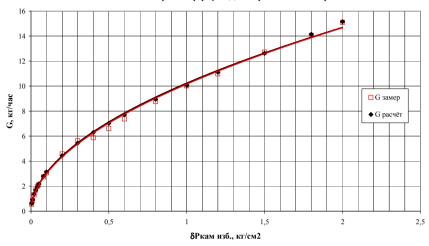


Рис.3. Сравнение расходов воздуха полученных при замере с расходом полученным при $\zeta_{\text{вх}}$ вычисленной по формуле (3). Диаметр выходного отверстия 3 мм.

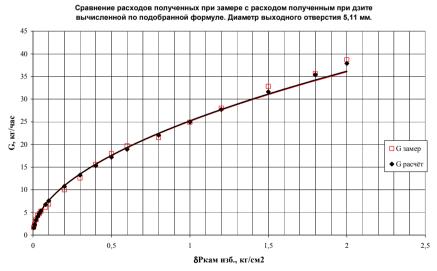


Рис.4. Сравнение расходов воздуха полученных при замере с расходом полученным при $\zeta_{\text{вх}}$ вычисленной по формуле (3). Диаметр выходного отверстия 5,11 мм.

Выводы: В результате обработки экспериментальных данных получена зависимость для коэффициента сопротивления входа в отверстие, которая при численных расчетах расходов обеспечивает отклонение от экспериментальных данных на уровне, соизмеримом с точностью замеров. Для значений перепадов давлений, характерных в ВТ ПОС такая величина не превосходит 4%, что вполне достаточно для инженерных расчётов.

- 1. Идельчик И. Е. Справочник по гидравлическим сопротивлениям/ Под ред. М. О. Штейнберга. 3-е изд., перераб. доп. М.: Машиностроение, 1992 г. 672 с.:ил.
- 2. Быков Л. Т., Ивлентьев В. С., Кузнецов В. И. Высотное оборудование пассажирских самолётов Машиностроение, 1979. 332 с.
- 3. Крумина Воздуховоды силовых установок. М.: Машиностроение, 1979 г.
- 4. Талиев В. Н. Аэродинамика вентиляции. М.: Стройиздат, 1979.–295 с.
- 5. *Ханжонков В. И.* Сопротивление истечению через отверстия в стенке в присутствии проходящего потока//Промышленная аэродинамика. М., ЦАГИ, 1959 г. № 15, с. 5-19.
- 6. *Носов М. М. Барнакова Т. С.* Сопротивление входных и выходных отверстий в присутствии проходящего потока// Промышленная аэродинамика. 1959 г. № 15, с. 20 38.

Поступила 22.01.2009р.

УДК 681.513; 37:65.012

М.С.Кулик, д.т.н., професор, ректор НАУ

О.К.Юдін, д.т.н., завідувач кафедри НАУ

А.Б.Елізаров, к.т.н., доцент кафедри НАУ

О.В.Матвійчук-Юдіна, доцент кафедри НАУ

ВПРОВАДЖЕННЯ НОВІТНІХ ТЕХНОЛОГІЙ В СУЧАСНІ СИСТЕМИ ДОКУМЕНТООБІГУ НАВЧАЛЬНОГО ЗАКЛАДУ

Вступ.

Однією з найважливіших умов успішного функціонування будь-якого вищого навчального закладу (ВНЗ) є ефективний обмін інформаційними потоками між підрозділами університету, тобто наявність системи якісного документообігу та автоматизованих систем сбору й обробки даних. У цей час, незважаючи на досить сучасну обчислювальну базу, що мають більшість навчальних інститутів і деканатів ВНЗ, процеси інформаційного обміну застарілі й не оптимальні, або повністю відсутні. Працівникам деканатів доводиться виконувати величезний обсяг рутинної роботи з обліку й обробки зростаючих обсягів даних. Визначенні процедури виконуються з метою

62 © М.С.Кулик, О.К.Юдін, А.Б.Елізаров, О.В.Матвійчук-Юдіна