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EXCITATION OF TM MODE BY A RELATIVISTIC ELECTRON BEAM
IN AN AZIMUTHALLY CORRUGATED WAVEGUIDE
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The excitation of an electromagnetic TM mode by a relativistic electron beam in a waveguide with a sinusoidal-
corrugated azimuth conducting wall in a constant uniform external guiding magnetic field is theoretically studied.
We consider a thin annular electron beam moving along the waveguide axis and rotating at an equilibrium radius
around its axis. In the approximation of a small corrugation depth, the analytical dependences of the growth rate of
instability and resonant frequencies on the parameters of the beam and waveguide are determined.
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INTRODUCTION

High-current relativistic electron beams are widely
used to produce powerful electromagnetic radiation
when interacting with waves propagating in vacuum and
plasma waveguides (e.g. see [1 - 5]). This radiation can
be used to heat the plasma and accelerate charged parti-
cles. Waveguides with periodically inhomogeneous in
azimuth inner surface are used to generate an electro-
magnetic radiation in the devices with a relativistic elec-
tron beam, which rotates in an external magnetic field.
In this case, an increase in the power of electromagnetic
radiation during the interaction of high-current beams
with electromagnetic waves requires the use of wave-
guides with a smooth surface change.

In [6], excitation of a TE mode by a relativistic elec-
tron beam moving in an external uniform guiding mag-
netic field in a waveguide with an ideally conducting
inner surface sinusoidally corrugated in azimuth was
considered. In this paper, we consider the excitation of a
TM mode by a relativistic electron beam moving in
such a structure.

1. PROBLEM STATEMENT
AND DISPERSION EQUATION

Let us consider the excitation of electromagnetic
waves by a relativistic electron beam in a cylindrical
waveguide with an inner surface that is periodic in the
azimuthal angle. The waveguide radius in a cylindrical
coordinate system (r, ¢, z) may be expressed as

R()=Ry[L+qcos(Ng], )
where Ry is the mean radius of the waveguide, and N is
the positive integer, g<1, 0< ¢ < 2n. We assume that
the waveguide is homogeneous along the z axis. There
is an external guiding homogeneous magnetic field
H, =e,H,, where e, is the unit vector along the z ax-
is.

We assume that a thin relativistic electron beam of
radius r, with equilibrium density n, =ngd(r—ry)
moves in the waveguide, where ng is the surface
charge density, I, < Ry(L—q). The beam rotates around
the waveguide axis and moves along z axis with equilib-
rium velocities v, and v, , respectively.

Where  vo=ron,, oy, =|gHy/(meyg),
2
Yo =(1—B<2po —B?JV + Boo =Vg0/C, Bro=Vyo/C,els
the electron charge (e<0).
The equation of beam electrons motion in the field
of an electromagnetic wave and the guiding magnetic
field has the form

dp 1

—=e<E+—|v(H, +H)|;, 2

i { N )]} @
where p=mvy, E, H are the components of the TM

mode.
The electric fields due to the electrons of beam is
given by
1 82E 1
— =47 Vp+—— 3
c? ot ( c? J] ®)
where p=en,, j=en,v are the charge density and the

current density, respectively, satisfying the equation of
continuity
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The expression for the longitudinal component of
the electric field of the TM mode in the waveguide can
be written as

(ro.z,t)= rexplillo+k,z—at), (5)
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where |, =s+nN, sis an integer.

The components of the TM mode can be expressed
in terms of the longitudinal electric field as follows:

_ ik, 6 ik, 0
' k2 ar ° " Krop *
_ lw 0 _iw 0
" Kerdp " Koo

where k, =,/@?/c* -k’ .

The displacement of the trajectory and the velocity
of electrons relative to their equilibrium trajectory and
velocity it is possible to determine from Eq. (2) in a
linear approximation by the amplitude of the electro-
magnetic field. Substituting these values into the equa-
tion of continuity (4), we find the perturbation of the
charge density and current density of the electron beam.
Then, taking into account (5), we obtain from Eg. (3)
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the expression for E,, which we use in the boundary
condition on the inner surface of the waveguide (1)
E.[R(p)]=0. (6)
Considering a fixed value of s in Eqg. (6), as a result
of the corresponding calculations (see [6]), we obtain
the following dispersion equation

"amn (0)1| =0, (7)
where
/N
am = [G [k R(p)lexpi(n-mNe]do,
—7/N

G|(x):‘] ( )_MN (X)'

o= o}, [B3, (k. 1)+ C 3/ (k.1 )],

e

c =M{Jf(kl%)— o, J.(km))]

—2_ 2
Wy, K, To®,

o, =4ne’ng /(myots),
J;(x), N,(x) are the Bessel functions of the first and
second kind, J;(x)=(d/dx)J, (x).

In the limiting case of small corrugation depths
(g<<1), Eq. (7) can be written as

a a
n+1,n — l, (8)
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+ q :{ daz GIn (a)(5m,n+2 + 5m,n—2)'

a=k Ry, &y, isthe Kronecker delta.

Below we will consider the resonance of beam elec-
trons with the main harmonic s, taking into account the
first harmonics (n=£1) of an azimuthally corrugated
waveguide.

2. LINEAR GROWTH OF INSTABILITY

In the absence of a beam (n,=0), Eq. (8) describes
the dispersion of the TM mode propagating in the
waveguide, the inner wall of which is sinusoidally cor-
rugated along the angle ¢. In the zero approximation for
the depth of the corrugation, this dispersion relation is

w; [¢* =k = 22 /RS (9
where ¢, is the m-th root of the s-th order Bessel
function of the first kind ( J, (x..,)=0).

Taking into account the finite depth of the corruga-
tion leads to a shift in the frequency of the cylindrical
waveguide (@ =a,+A®). From Egs. (8) and (9) at
S#N/2, we obtain up to quadratic values of the parame-
ter g the following expression for this displacement.

2_2 2
Aw = q /},/sz,mC x

4R; o, (10)
v 1+Z J;+N< s,m)+ ‘], ( sm) )

o ‘]5+N( s‘m) > Js—N( s,m)

This equation shows that the frequency shift in this
case is proportional to the square of the corrugation
depth.

For values s=N/2, when the azimuth number of the
main harmonic (s) is equal to the azimuth number of the
first harmonic of the corrugated waveguide, we have

2 2
Ao = iM .
2R o,

As follows from this equation, the frequency shift in
this case is proportional to the depth of the corrugation
to the first degree.

Taking into account in Eq. (8) terms proportional to
the density of the electron beam leads to the appearance
of resonance terms at w=Kk,v,,+s@,, and

z 720
o=k, V,+(stlm,, .
When the TM mode is excited by an electron beam
under resonance conditions =K, V,,+S®,,, at

s#N/2, the growth rate, as well as the frequency and the
axial wavenumber of the wave, are of the form

(11)
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= \/}/zzo(sa)HL _ﬂzoAC‘))2 - ;(sz,mcz/RO:| .

Here &=ro/Ro, and Aw it is determined by formula
(10).

The signs (z) in Egs. (13) and (14) correspond to
two points of intersection of the frequencies of the vac-
uum corrugated waveguide with the beam mode. In this
case, the condition must be satisfy

Sﬂ¢0720 > &s m(l+Aw ROJ/ZO/CZS m)
Under resonance conditions @ =k, v,,+(s+1)w,,,
the growth rate takes the form

Wy ¢

[

Im(dw) = Vol , (15)

s+l

where

S
Vsﬂ = ‘]sﬂ(§ s,m{fl ‘]s

xfL-q?(z2, —s%)/4.
The necessary conditions for wave excitation in this
case are (+1V,,, >0, and also

(S il)ﬂ(pl)]/zo > &s,m (1+ Aa) ROyZO/CZs,m) "

(&an)=dealzen) |
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Of particular interest is the interaction of the elec-
tron beam with electromagnetic waves at s = N/2. In this
case, the beam electrons can be in resonance with both
the main harmonic (s-th) and the first harmonic of the
azimuthally corrugated waveguide.

Calculation of the growth rate under resonance con-
ditions w =Kk, v,,+s@,, at

9’ ZomC’

(%L/yzo)\/(sa)HlyzD)z _ISZ,mCZ/ROZ << 3 Ys
8R; @,

gives a fourth-degree equation for the correction to the

frequency due to the beam, from which follows the ex-
pression for the growth rate

o) [ | it

X (kzc - ﬂzoa)q )‘] s (§Zs,m ]1/2|Qs|1/4 bQ

where
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B Xen
b, =1 at Q>0; b, =+v2/2 at Q.<0.

CONCLUSIONS

In this work, we study the excitation of the TM
mode by an annular relativistic electron beam moving in
a waveguide with a sinusoidally corrugated wall in a
guiding magnetic field.

The dispersion equation is obtained that describes
the interaction of the electron beam with the electro-
magnetic wave, and analytical studies of this equation
are carried out in the limiting case of a small corruga-
tion depth. It is shown that the beam can excite both
main modes of the waveguide and harmonics of cyclo-
tron frequencies due to the corrugated wall of the wave-

1-—

X

guide. Under conditions of cyclotron resonance of beam
electrons with the main mode, the instability growth rate
(12) is proportional to the cube root of the beam density.
It is shown that it is possible to excite a TM wave at the
numbers of harmonics of cyclotron frequencies, which
are shifted relative to the main by unity (15). In this case
the growth rate is proportional to the square root of the
beam density.

Under the conditions of cyclotron resonance of the
beam with the main harmonic and the first harmonic of
the corrugated waveguide, at s=N/2, there is an in-
crease in the growth rate. In this case, the instability
growth rate (16) is proportional to the fourth root of the
beam density and the square root of the corrugation
depth.
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3BYIKEHS TM-XBUWJII PEJIATUBICTCBKHUM EJIEKTPOHHUM ITYYKOM
B ABUMYTAJIBHO TO®POBAHOMY XBHUJIEBOAI

B.B. Oznieenxo

TeopeTHyHO NOCHIIPKEHO 30Y/KEHHS eJIeKTpoMarHiTHOI TM-XBWIII PelITUBICTCHKUM €JIEKTPOHHUM ITyYKOM Yy
XBHJICBOJII 3 CHHYCOiJaJIbHO TO(POBAaHOIO 1O a3UMYTY IPOBITHOIO CTIHKOKO Y MOCTIHHOMY OJHOPITHOMY 30BHIII-
HBOMY BEIy4OMY MarHiTHOMY mojii. Po3risiHyTo TOHKMI TpyOuaThii eNeKTpOHHHUI My4YOK, IO PyXaeThCs B3JIOBXK
oci XBWIJIEBOJY 1 00epTaeThcsl Ha PIBHOBXHOMY pajiyci HaBKoJIO Horo oci. Y HaOmmkeHHI Majioi mOHuHN rodpa
BH3HAUYEHI aHAJIITUYHI 3aJIe)KHOCTI IHKPEMEHTIB HECTIMKOCTI 1 pe30HAaHCHHUX YacTOT BiJ MapaMeTpiB IMydKa i XBHIIE-

BOLY.
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