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EXCITATION OF TM MODE BY A RELATIVISTIC ELECTRON BEAM 
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The excitation of an electromagnetic TM mode by a relativistic electron beam in a waveguide with a sinusoidal-

corrugated azimuth conducting wall in a constant uniform external guiding magnetic field is theoretically studied. 

We consider a thin annular electron beam moving along the waveguide axis and rotating at an equilibrium radius 

around its axis. In the approximation of a small corrugation depth, the analytical dependences of the growth rate of 

instability and resonant frequencies on the parameters of the beam and waveguide are determined. 
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INTRODUCTION  

High-current relativistic electron beams are widely 

used to produce powerful electromagnetic radiation 

when interacting with waves propagating in vacuum and 

plasma waveguides (e.g. see [1 - 5]). This radiation can 

be used to heat the plasma and accelerate charged parti-

cles. Waveguides with periodically inhomogeneous in 

azimuth inner surface are used to generate an electro-

magnetic radiation in the devices with a relativistic elec-

tron beam, which rotates in an external magnetic field. 

In this case, an increase in the power of electromagnetic 

radiation during the interaction of high-current beams 

with electromagnetic waves requires the use of wave-

guides with a smooth surface change.  

In [6], excitation of a TE mode by a relativistic elec-

tron beam moving in an external uniform guiding mag-

netic field in a waveguide with an ideally conducting 

inner surface sinusoidally corrugated in azimuth was 

considered. In this paper, we consider the excitation of a 

TM mode by a relativistic electron beam moving in 

such a structure.  

1. PROBLEM STATEMENT  

AND DISPERSION EQUATION 

Let us consider the excitation of electromagnetic 

waves by a relativistic electron beam in a cylindrical 

waveguide with an inner surface that is periodic in the 

azimuthal angle. The waveguide radius in a cylindrical 

coordinate system (r, , z) may be expressed as 

     NqRR cos(10  , (1) 

where R0 is the mean radius of the waveguide, and N is 

the positive integer, q<1,  20 . We assume that 

the waveguide is homogeneous along the z axis. There 

is an external guiding homogeneous magnetic field 

00 HzeH  , where ze  is the unit vector along the z ax-

is. 

We assume that a thin relativistic electron beam of 

radius 0r  with equilibrium density  0rrnn Sb   

moves in the waveguide, where Sn  is the surface 

charge density,  qRr  100 . The beam rotates around 

the waveguide axis and moves along z axis with equilib-

rium velocities 0v  and 0v z , respectively. 

Where   Hr00v ,  00   mcHeH , 

  212
0

2
00 1



  z , c00 v  , czz 00 v , е is 

the electron charge (е0).  

The equation of beam electrons motion in the field 

of an electromagnetic wave and the guiding magnetic 

field has the form 
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where vp m , Е, Н are the components of the TM 

mode.  

The electric fields due to the electrons of beam is 

given by 
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where ben , vj ben  are the charge density and the 

current density, respectively, satisfying the equation of 

continuity 
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The expression for the longitudinal component of 

the electric field of the TM mode in the waveguide can 

be written as 

       
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where nNsln  , s is an integer.  

The components of the TМ mode can be expressed 

in terms of the longitudinal electric field as follows:  
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where 
222

zkck   .  

The displacement of the trajectory and the velocity 

of electrons relative to their equilibrium trajectory and 

velocity it is possible to determine from Eq. (2) in a 

linear approximation by the amplitude of the electro-

magnetic field. Substituting these values into the equa-

tion of continuity (4), we find the perturbation of the 

charge density and current density of the electron beam. 

Then, taking into account (5), we obtain from Eq. (3) 
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the expression for Ez, which we use in the boundary 

condition on the inner surface of the waveguide (1) 

    0E Rz . (6) 

Considering a fixed value of s in Eq. (6), as a result 

of the corresponding calculations (see [6]), we obtain 

the following dispersion equation 

   0mna ,  (7) 

where 
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 xJ l ,  xN l  are the Bessel functions of the first and 

second kind,      xJdxdxJ ll  .  

In the limiting case of small corrugation depths 

(q<<1), Eq. (7) can be written as 
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where 
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0Rk , nm,  is the Kronecker delta.  

Below we will consider the resonance of beam elec-

trons with the main harmonic s, taking into account the 

first harmonics (n=±1) of an azimuthally corrugated 

waveguide. 

2. LINEAR GROWTH OF INSTABILITY  

In the absence of a beam (nb=0), Eq. (8) describes 

the dispersion of the TM mode propagating in the 

waveguide, the inner wall of which is sinusoidally cor-

rugated along the angle . In the zero approximation for 

the depth of the corrugation, this dispersion relation is  

 
2

0

2

,

222

0 Rkc msz   ,  (9) 

where ms,  is the m-th root of the s-th order Bessel 

function of the first kind (   0, mssJ  ).  

Taking into account the finite depth of the corruga-

tion leads to a shift in the frequency of the cylindrical 

waveguide (   0 ). From Eqs. (8) and (9) at 

s≠N/2, we obtain up to quadratic values of the parame-

ter q the following expression for this displacement.  
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 (10) 

This equation shows that the frequency shift in this 

case is proportional to the square of the corrugation 

depth. 

For values s=N/2, when the azimuth number of the 

main harmonic (s) is equal to the azimuth number of the 

first harmonic of the corrugated waveguide, we have 
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As follows from this equation, the frequency shift in 

this case is proportional to the depth of the corrugation 

to the first degree.  

Taking into account in Eq. (8) terms proportional to 

the density of the electron beam leads to the appearance 

of resonance terms at  Hzz sk  0v  and 

   Hzz sk  1v 0 .  

When the TM mode is excited by an electron beam 

under resonance conditions  Hzz sk  0v , at 

s≠N/2, the growth rate, as well as the frequency and the 

axial wavenumber of the wave, are of the form 
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Here =r0/R0, and   it is determined by formula 

(10). 

The signs () in Eqs. (13) and (14) correspond to 

two points of intersection of the frequencies of the vac-

uum corrugated waveguide with the beam mode. In this 

case, the condition must be satisfy  
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Under resonance conditions    Hzz sk  1v 0  

the growth rate takes the form 
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The necessary conditions for wave excitation in this 

case are   01 1  sV , and also 

    .11 ,00,00 mszmsz cRs    
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Of particular interest is the interaction of the elec-

tron beam with electromagnetic waves at s = N/2. In this 

case, the beam electrons can be in resonance with both 

the main harmonic (s-th) and the first harmonic of the 

azimuthally corrugated waveguide. 

Calculation of the growth rate under resonance con-

ditions  Hzz sk  0v  at 
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gives a fourth-degree equation for the correction to the 

frequency due to the beam, from which follows the ex-

pression for the growth rate  
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1Qb  at Qs>0; 22Qb  at Qs<0.  

CONCLUSIONS  

In this work, we study the excitation of the TM 

mode by an annular relativistic electron beam moving in 

a waveguide with a sinusoidally corrugated wall in a 

guiding magnetic field. 

The dispersion equation is obtained that describes 

the interaction of the electron beam with the electro-

magnetic wave, and analytical studies of this equation 

are carried out in the limiting case of a small corruga-

tion depth. It is shown that the beam can excite both 

main modes of the waveguide and harmonics of cyclo-

tron frequencies due to the corrugated wall of the wave-

guide. Under conditions of cyclotron resonance of beam 

electrons with the main mode, the instability growth rate 

(12) is proportional to the cube root of the beam density. 

It is shown that it is possible to excite a TM wave at the 

numbers of harmonics of cyclotron frequencies, which 

are shifted relative to the main by unity (15). In this case 

the growth rate is proportional to the square root of the 

beam density.  

Under the conditions of cyclotron resonance of the 

beam with the main harmonic and the first harmonic of 

the corrugated waveguide, at s = N/2, there is an in-

crease in the growth rate. In this case, the instability 

growth rate (16) is proportional to the fourth root of the 

beam density and the square root of the corrugation 

depth.  
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ЗБУДЖЕНЯ ТМ-ХВИЛІ РЕЛЯТИВІСТСЬКИМ ЕЛЕКТРОННИМ ПУЧКОМ  

В АЗИМУТАЛЬНО ГОФРОВАНОМУ ХВИЛЕВОДІ 

В.В. Огнівенко 

Теоретично досліджено збудження електромагнітної ТМ-хвилі релятивістським електронним пучком у 

хвилеводі з синусоїдально гофрованою по азимуту провідною стінкою у постійному однорідному зовніш-

ньому ведучому магнітному полі. Розглянуто тонкий трубчатий електронний пучок, що рухається вздовж 

осі хвилеводу і обертається на рівноважному радіусі навколо його осі. У наближенні малої глибини гофра 

визначені аналітичні залежності інкрементів нестійкості і резонансних частот від параметрів пучка і хвиле-

воду. 
 


