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This article presents the results of theoretical study of the phase and attenuation properties of the dipolar 

electromagnetic modes in cylindrical plasma-vacuum-metal waveguide structure. Plasma is described in 

hydrodynamic approach and is supposed to be slightly non-uniform in axial direction and strongly non-uniform in 

radial direction. It was studied the influence of the external magnetic field value, the electron effective collision 

frequency and other waveguide parameters on the phase and attenuation properties of the considered waves. 
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INTRODUCTION 
 

At present time the intensive both experimental and 

theoretical studies of the different kinds of discharges 

are carried out. One of the directions of the research is 

the studying of creation and sustaining of rather long 

plasma columns by travelling surface waves. The 

travelling wave that sustains the discharge propagates 

along plasma column that usually placed in metal 

waveguide structure and is the eigen wave of it. The 

properties of such surface wave sustained discharges 

strongly depend as on the value of external magnetic 

field value and waveguide parameters (the plasma 

column radius, the dielectric wall thickness and the 

electric permittivity of discharge tube or a presence of 

cooling and/or screening systems) and also discharge 

parameters (plasma density value and spatial 

distribution) depends on the properties of the wave 

[1, 2].  

Among other approaches to model such surface 

wave sustained discharges one can use electrodynamics 

approach. According this approach plasma is modeled 

by the simplified model equations and the main 

attention is paid to the description of the wave that 

sustains the discharge. Such approach can be used to 

model stable state of gas discharges that are sustained 

by the electromagnetic waves of the surface type. 

In the framework of such approach it was carried out 

the theoretical studies of influence of plasma density 

radial profile on the properties of the discharge that is 

sustained by the symmetric wave [3]. In the number of 

papers [1, 2, 4] it was declared that the dipolar waves 

with azimuth wavenumber (m = ±1) can be successfully 

used for plasma column sustaining. The aim of this 

article is to study phase and attenuation properties of the 

dipolar waves for different plasma density radial 

profiles, external magnetic field value, plasma column 

radius, the electron effective collision frequency and 

other waveguide parameters. 
 

 

 

1. BASIC EQUATIONS 
 

Let us study the propagation of the electromagnetic 

dipolar with azimuth wave number m = ±1 waves in the 

three component cylindrical waveguide structure. The 

considered waveguide structure is composed of 

magnetized plasma column with radius Rp, vacuum gap 

between plasma column and waveguide metal wall with 

radius Rm. External constant magnetic field B0 is 

directed along the axis of this structure.  

Plasma is considered as cold and weakly absorbed 

media that is characterized by the effective electron 

collision frequency   that is constant in the plasma 

volume and is small as compared with the wave 

frequency ω. The radial plasma density distribution n(r) 

was modeled in the Bessel-like form as: 

n(r) = n(0) J0(δ r), were J0 is the Bessel function of the 

first kind and δ is plasma density non-uniformity 

parameter. This parameter can varies from δ = 0 

(radially uniform plasma) up to δ = 2.405 (strong 

radially non-uniform plasma that corresponds to 

ambipolar diffusion regime) [3]. Also, plasma density is 

considered to be slightly varying in the axial direction 

on the distances of wavelength order. So, the wave field 

change slightly along the waveguide structure and the 

solutions of the system of Maxwell equations that 

govern wave propagation can be found in WKB 

approach: 

 

3

0

( ') '

, , , ,, ( , , ) , ( , )e

z

z

i t im k z dz

r z r zE H r z E H r z

 

 
− + + 

= , (1) 
 

where m and k3 are azimuth and axial wavenumber, E, 

H – amplitude of electric and magnetic wave field 

components, respectively. Changing the A value along 

the discharge at the distances of the wavelength order is 

small compared to the magnitude of this quantity           

((A-1(∂A/∂z)<<k3), where symbol A denotes E, H, k3, or 

n. So, all terms of order O(k3
-1 (∂ln(A)/∂z)) are 

neglected in further expressions [6].  
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Taking in account the expression (1) the equations for 

radial wave components in plasma region can be written 

as: 

 

 

( ) ( )
( ) ( ) ( ) ,

( )

( ) ( ) ( )( )
( ) ,

( ) ( ) ( )

p
2p p p3

r z
1

p pp
3 2p z

r
1 1 1

i r E rkm
H r E r E r

kr k r

k H r i r E rm H r
E r

k r k r r r




 







  


= −





= − −


 (2) 

 

where ε1,2,3(r) are the components of permittivity tensor 

of magnetized collisional plasma [5] that depends on 

radial coordinate r throw the dependence of n(r). The 

ordinary differential equations for tangential wave field 

components in plasma region can be written as:  
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where p(r) = 1(r)(k2
3 −k21(r))+ k22

2(r), k = /c − is 

the vacuum wavenumber. 

It is possible to obtain analytic solutions for wave 

field components in vacuum region: 
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where k2= k2
3 − k2 is the transverse wave number in 

vacuum, Im, Km − modified Bessel function of the first 

and second kind, respectively and А1-4 are field 

constants and a stroke denotes derivative with respect to 

argument.  

The expressions for А1-4 can be obtained from the 

boundary conditions on the plasma – vacuum interface 

at r = Rp [3] as (5). 
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The wave field components at plasma-vacuum 

interface Ep(Rp), Hp(Rp) that are present in formula (5) 

must be obtained by numerical integration of the system 

of ordinary differential equations (3). 

The analogue of the dispersion equation (local 

dispersion equation) can be obtained from the boundary 

conditions at vacuum–metal interface (the vanishing of 

the electric tangential components of the wave at the 

waveguide metal wall r = Rm): 
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Let us note, that the solution of the local dispersion 

equation (6) connects the values of local density n and 

complex axial wave vector k3 at the given wave 

frequency value ω. 
 

2. MAIN RESULTS 
 

Let us firstly study the phase properties and the 

spatial attenuation of the dipolar electromagnetic wave 

that propagates along the plasma column and sustains it. 

This is the first step in the studying of axial structure of 

the discharge in the framework of the electrodynamic 

approach [1-4]. The basic idea of this approach is that 

the wave that sustains the discharge is the eigenwave of 

this discharge structure on the whole length of the 

plasma column. Therewidth there is a mutual influence 

of the wave considered and sustained plasma density 

value. So, due to such sircumastances the axial plasma 

source parameters variation in such approach is 

determined by the phase properties and the spatial 

attenuation of the wave sustaining the discharge. Also, 

according to the Zakrzhevsky stability criterium on the 

basis of studied attenuation properties [7] it is possible 

to estimate the region, where the eigen wave can 

sustaine the discharge.  
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Let us present the results of the phase and 

attenuation properties of the eigen dipolar (m = ±1) 

waves of the studied waveguide structure. The 

considered wave possesses all six components of 

electric and magnetic wave field, so the solution of the 

analogue of the dispersion equation for arbitrary 

problem parameters is possible only with the help of 

numerical methods. To carry out the numerical study of 

the dispersion equation (6) the following dimensionless 

variables and parameters are introduced: wave 

frequency ϖ = ω/ωp, axial wave number x = Re(k3)Rp, 

attenuation coefficient α = Im(k3)Rp, effective collision 

frequency /  = , external magnetic field value 

Ω = ωCe/ω, radius of plasma column σ = Rp ω/c and 

radius of metal enclosure η = Rm/Rp. 

The dependence of the wave phase properties for the 

dipolar modes m = ±1 (the dependence of normalized 

frequency ϖ versus x) in the approach of radially 

uniform plasma (δ = 0) is presented in the Fig. 1. It is 

necessary to point that under the fixed generator 

frequency ω the value of ϖ varies due to the changing 

of plasma density and consequently ωp value along the 

plasma column. The calculations are made for the 

following normalized parameters:  = 0.2,  = 0.3, 

 = 1.1 and   = 0.001. 

 

 
Fig. 1. The eigen wave normalized frequency ϖ via  

axial wavenumber x  for the dipolar modes m = ±1  
 

 
Fig. 2. The eigen wave normalized attenuation 

coefficient  via axial wavenumber x for the dipolar 

modes m = ±1 

 

The carried out research has shown that for the fixed 

normalized frequency ϖ value the dipolar wave with 

m = +1 has the solution with more wave length that the 

wave with m = -1. The appropriative results for the 

attenuation coefficient   study for the same parameter 

set are presented in the Fig. 2. The parameters set is the 

same as in the Fig. 1. It is shown that these waves 

possesses the similar (x) dependence, but for 

attenuation coefficient value is somewhat bigger than 

for the m = +1 mode. Due to this circumstances one can 

expect that the discharges, sustained by the m = +1 

mode possesses somewhat bigger maximum possible 

density and shorter length that the discharges sustained 

by the m=-1 mode. It is necessary to mention the 

existence of the region with extremely rapid growth of 

spatial attenuation coefficient when normalized 

wavenumber is small (x  0) for the both modes. The 

existence of such region leads to the limitation of the 

area, where waves considered can maintain stable long 

discharge. 

The carried out analysis have shown that this modes 

possesses the wave field structure analogous to the wave 

of surface type in the regions where wavenumber is 

rather small (see blue and red points in Figs. 1, 2). 

When normalized wavenumber is rather big (see green 

points in Figs. 1, 2) the radial structure of the dipolar 

eigen wave becomes of more complex. The radial wave 

field structure   for   this  case  is  presented  in  the  

Fig. 3 for m = -1 mode and in the Fig. 4 for m = +1 

mode. The wave field components in the Figs. 3, 4 are 

normalized by the E(r=0). The score parameters are 

the same as for the Fig. 1. For both dipolar modes the 

calculations are made for the same value of the 

dimensionless parameter ϖ = 0.485. The displayed 

solution of the system (6) for m = -1 mode (see Fig. 3) 

is the following: x = 3.987,  = 0.0049. Corresponding 

eigen values for m = +1 (see Fig. 4) are: x = 3.398, 

 = 0.0052.  

 

 
Fig. 3. The wave field radial distribution for the dipolar 

mode m = -1 for green point from Figs. 1, 2 

 

Red line on the Figs. 3, 4 corresponds to the wave 

field component in plasma column and blue line – in the 

region of vacuum gap. The abscissa axis corresponds to 

the normalized radial coordinate r / Rp.  

According to the classification presented in [2] this 

wave is of the pseudo-surface one. The Hr wave field 

component possesses the maximum absolute value in 

plasma column far from the plasma–vacuum interface. 

Other wave field components have its maximum 

absolute value exactly at plasma-vacuum interface.
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Fig. 4. The wave field radial distribution for the dipolar 

mode m = +1 for green point from Figs. 1, 2 

 

It was carried out the study of the influence of the 

vacuum gap size and the plasma column radius on the 

phase properties and spatial attenuation of dipolar 

modes for different values of the problem parameters. 

The studies have shown that for both dipole modes 

m = ±1 the increase of the vacuum gap size leads to an 

increase in the normalized wave frequency ϖ, especially 

in the region of small x values. The influence of the 

waveguide metal wall on ϖ becomes practically 

insignificant when the skin depth of the wave field into 

the vacuum becomes much smaller than the size of 

vacuum gap (η > 1.8). Also, the increase of the 

parameter η leads to the decrease of the eigen wave 

group velocity and to the corresponding increase of the 

spatial attenuation coefficient  in the whole x range for 

both dipolar modes. 

Carried out studies have also shown that in the case 

of radially uniform plasma the increase of the plasma 

column normalized radius σ leads to the decrease of the 

normalized wave frequency ϖ of the dipole waves with 

m = ±1 in the whole range of axial wave numbers x. 

The strongest influence of the parameter σ value on the 

dipolar wave phase properties occurs in the region of 

small and moderate normalized axial numbers x < 1.5. 

Besides, the increase of the plasma column 

normalized radius σ value leads to the decrease of the 

spatial attenuation coefficient α. It is necessary to 

mention that when the parameter σ increases in the 

range 0.3 < σ < 0.6, the strongest decrease of 

coefficient α occurs in the region x < 1.5. At the same 

time, for large σ values (σ > 1), the strongest decrease 

of α occurs in the region x > 4. 

It was also carried out the study of phase and 

attenuation properties of eigen modes the waveguide 

structure upon external magnetic field value. The results 

of this study are presented in Figs. 5-8. The numerical 

calculations were carried out for the case of radially 

uniform plasma. Other score parameters are the same: 

 = 0.3,  = 1.1,   = 0.001. Numbers on the figures 

just near the curves correspond to the different  

values. 

 
 

Fig. 5. The eigen wave normalized frequency ϖ via  

axial wavenumber x for the dipolar mode m=+1 

 for different   values 

 

The carried out study has shown that the dependence 

of phase and attenuation properties of dipolar modes 

with m = +1 and m = -1 is substantially different. Thus, 

the increase of the parameter  value from 0.2 up to 

0.85 leads to the uniform growth of the normalized 

wave frequency ϖ for the m = +1 mode in the whole 

range of axial wave numbers x (see Fig. 5). At the same 

time frequency ϖ for the m = -1 mode when external 

magnetic field increases and parameter Ω growth from 

0.2 up to 0.9 decreases in the region x < 3 and increases 

in the region x > 4 (see Fig. 7). It is necessary to 

mention that normalized frequency of the eigen dipolar 

mode m = +1 are somewhat greater than the normalized 

frequency of the m = -1 mode for the same parameters 

of waveguide structure. Besides, external magnetic field 

influences much greatly on the phase characteristics of 

the m = +1 mode than on the m = -1 mode. 

External magnetic field strongly affects the 

normalized attenuation coefficient . Thus, for eigen 

mode with m = +1 the strengthening of the external 

magnetic field leads to the increase of spatial 

attenuation coefficient , mainly in the regions of small 

x < 1 and large x > 3 axial wave numbers values (see 

Fig. 6). The influence of external magnetic field value 

 on the attenuation coefficient  for the m = -1 mode 

is qualitatively similar to that of m = +1 mode, but 

quantitatively is in almost one order smaller (see Fig. 8). 

 

 
Fig. 6. The eigen wave normalized attenuation 

coefficient  via axial wavenumber x for the dipolar 

mode m=+1 for different   values 
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Fig. 7. The eigen wave normalized frequency ϖ via  

axial wavenumber x for the dipolar modes  

m=-1 for different   values 
 

 
 

Fig. 8. The eigen wave normalized attenuation 

coefficient  via axial wav enumber x for the dipolar 

mode m=-1 for different   values 
 

 
 

Fig. 9. The eigen wave normalized frequency ϖ via 

axial wave number x for the dipolar modes m=+1 for 

different non-uniformity parameter   values 
 

     It was also studied the influence of effective 

collisional frequency value   on the phase and 

attenuation properties of the waves considered. The 

increase of the parameter   value leads to the slight 

decrease of the frequency ϖ for m = +1 mode in the 

region x < 1 and to its slight increase in the region 

x > 1. At the same time the influence of   value on the 

ϖ eigen frequency ϖ of the m = -1 dipolar is practically 

absent. The spatial attenuation coefficient  for both 

dipolar modes increases with the increase of   value, 

especially in the region x > 4. The attenuation 

coefficient  value of the mode with m = +1 is in one 

order greater than attenuation coefficient of the m = -1 

mode. 

It was also studied the influence of phase and 

attenuation properties of the eigen dipolar modes of the 

waveguide structure upon non-uniformity parameter  

value. The results of this study are presented in Figs. 9-

12. The numerical calculations were carried out for: 

 = 0.2,  = 0.3,  = 1.1,   = 0.001. Numbers on the 

figures just near the curves corresponds to different 

values of the non-uniformity parameter . The 

normalized frequency ϖ of the m = +1 mode decreases 

significantly with the increase of the plasma density 

radial non-uniformity parameter δ, especially in the 

region of large axial wavenumber x values, when 

plasma density radial profile is similar to that of the 

ambipolar diffusion regime (see Fig. 9). Simultaneously 

the spatial attenuation of the m = +1 mode increases 

significantly (see Fig. 10). The studies have shown that 

the influence of the radial non-uniformity of plasma 

density on the frequency ϖ and attenuation coefficient  

for the m = -1 mode is similar to that of the m = +1 

mode (see Figs. 11, 12). 

 

 
 

Fig. 10. The eigen wave attenuation coefficient  via 

axial wavenumber x for the dipolar mode m=+1 for 

different non-uniformity parameter  values  
 

 
 

Fig. 11. The eigen wave normalized frequency ϖ via 

axial wavenumber x for the dipolar modes m=-1 for 

different non-uniformity parameter   values  
 

 
 

Fig. 12. The eigen wave attenuation coefficient  via 

axial wavenumber x for the dipolar mode with m=-1 for 

different non-uniformity parameter  values
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CONCLUSIONS 

 

The article presents the results of detailed theoretical 

analysis of the phase and attenuation properties of the 

electromagnetic modes with azimuth wavenumber 

m = ±1 in magnetized cylindrical plasma-vacuum-metal 

waveguide structure. The study was carried out in the 

framework of hydrodynamic approach taking into 

account slightly axial and strongly radial non-uniformity 

of plasma density.  

It was studied the influence of the external magnetic 

field value, the electron effective collision frequency 

and geometrical waveguide parameters on the phase and 

attenuation properties of the considered waves. It was 

found the plasma density ranges in which the studied 

eigen waves of the given frequency can propagate in the 
waveguide structure and also the dependence of the 

sizes of these ranges upon the score parameters for 

different plasma density radial profiles. It was also 

found the dependence of spatial attenuation coefficient 

of the wave upon the problem parameters to estimate 

the region, where the eigen wave can sustain the 

discharge. This research is the first step in studying of 

the plasma density stationary axial distribution in rather 

long gas discharges supported by the eigen waves of the 

considered waveguide structure in the framework of 

electrodynamic approach. 

This work was supported by the Ministry of 

Education and Science of Ukraine, under the grant 
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ЕЛЕКТРОМАГНІТНІ ДИПОЛЬНІ ХВИЛІ В МАГНІТОАКТИВНОМУ НЕОДНОРІДНОМУ 

ПЛАЗМОВО-ВАКУУМНО-МЕТАЛЕВОМУ ХВИЛЕВОДІ  

 

М.О. Азарєнков, В.П. Олефір, О.Є. Споров  

 

Наведено результати теоретичних досліджень фазових властивостей та просторового загасання 

дипольних електромагнітних хвиль, що поширюються в циліндричній хвилеводній структурі плазма – 

вакуум – метал. Плазма розглядається в гідродинамічному наближенні та вважається слабко неоднорідною в 

аксіальному напрямку та сильно неоднорідною в радіальному напрямку. Досліджено вплив величини 

зовнішнього магнітного поля, ефективної частоти зіткнень електронів та інших параметрів хвилеводної 

структури на фазові властивості та просторове загасання дипольних хвиль. 


