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The possibility of explaining the nature of low-frequency oscillations observed in devices with non-neutral 

plasma by the instability of the relative azimuth motion of non-neutral plasma components and by anisotropy of the 

ion distribution function is discussed. The resonance condition for ions with a diocotron mode with a finite value of 

the longitudinal wave vector kz is studied. Numerical estimations are made for the plasma parameters and unstable 

oscillations, that are characteristic for experiments. Frequencies, growth rates, and other characteristics and features 

of the expected electron-ion instability are estimated. The conclusion is made that the nature of low-frequency 

oscillations observed in devices with non-neutral plasma can be explained by this instability. 
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INTRODUCTION 
 

In the papers [1, 2] the behavior of the frequencies of 

electron eigenmodes (Trivelpiece-Gould modes) with the 

azimuth number m=+1 of a waveguide partially filled 

with non-neutral plasma with an excess of electrons was 

analyzed. It was shown that the family of lower hybrid 

modes and the diocotron mode, due to the Doppler shift 

caused by the rotation of electrons along the azimuth, can 

turn out to be low-frequency in the laboratory frame of 

reference. They can have the order of characteristic ion 

frequencies. Under these conditions, electron-ion 

instability is possible due to the relative motion along the 

azimuth of the non-neutral plasma components. In non-

neutral plasma, electrons always rotate faster than ions. 

This is a general property of non-neutral plasma. This 

situation coincides with the condition for the origin of the 

Buneman instability, under which electrons move faster 

than ions [3].  

In the MISTRAL device, in which non-neutral plasma 

is produced, unstable low-frequency oscillations are 

observed. They run along the azimuth, have an azimuthal 

numbers m=1, 2 and frequency of the order of the 

cyclotron frequency of the working gas ions, ω~ωci [4-6]. 

The nature of the fluctuations has remained unexplained 

reliably for several decades. Low frequency oscillations 

were also observed in many other experiments (see, for 

example, [7-9]).  

In this paper, we investigate the possibility of 

explaining the nature of low-frequency oscillations 

observed in experiments by the instability of the relative 

motion along the azimuth of electrons and ions of non-

neutral plasma. Using the results of papers [1, 2, 10, 11], 

the characteristics of the expected electron-ion instability 

are estimated for the values of parameters typical for 

experiments [4-9]. The frequencies and growth rates of 

oscillations are estimated depending on the intensities of 

the radial electric and longitudinal magnetic fields. The 

peculiarities of this instability are compared with the 

characteristic features of unstable oscillations observed in 

experiments.  

All results in present paper, as well as in [1, 2, 11], are 

presented as dependences on the parameter 

 q=2ωpe
2/ωce

2.         (1) 

Parameter q (1), along with the charge neutralization 

coefficient f=ni/ne, determines the ratio between the radial 

electric and longitudinal magnetic fields. It determines 

the characteristic frequencies of both electrons and ions, 

and the equilibrium and stability of non-neutral plasma 

itself. Just the quantities, that determine the parameter q, 

are controlled and changed in the experiment.  
 

1. RESONANCE OF AN ION WITH A 

DIOCOTRON MODE 
 

Within the framework of the model of a waveguide 

partially filled with a non-neutral cold homogeneous 

plasma, it was found [1, 2], that the electronic modes of 

the slow lower hybrid family (in [1, 2] they are denoted 

by “SLH”) and diocotron mode (mode “1” in [1, 2]) 

with an azimuth number m=1 and a finite value of the 

longitudinal wave vector kz can be low-frequency for 

certain values of the parameter q and coefficient  of 

plasma charge neutralization f. In this range of 

parameters, electron modes can interact resonantly with 

ions, which should lead to electron-ion instability.  

Let us determine at what values q and other 

parameters the frequency of the diocotron mode 

coincides with the resonant ion frequencies. We 

determine also the values of the resonant frequencies 

themselves. This will make it possible to estimate the 

frequencies and growth rates of unstable oscillations, 

which can be expected in such non-neutral plasma, and 

to evaluate the possibility of explaining by this 

instability the nature of unstable oscillations observed in 

experiments with non-neutral plasma [4-9]. 

The condition for the resonance of an ion with a 

wave in non-neutral plasma has the form [12]: 
i

res rot im n   +      (2) 

(m=0, +1, +2, … ,    n=0, ±1, ±2, …), where  

( ) 2 0i

rot ci i = − +     (3) 
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is the “slow” ion rotation frequency, ωci=eiB/(mic)>0,  

( ) ( )

1 1
2 2

2 4
sgn 1 1ir

i ci ci

i e

meE
e q f

m r m

   
 =  − = + −   

   
 

( )

1
2 2

1e e

ce

i i

m m
q f

m m

    
 =  + −   
     

                (4) 

 

is the “modified” cyclotron frequency of ion. Depending 

on q value, the frequency Ωi  (4) can take values from 

ci to the maximum value ci(1+mi/me)½ >> ci. 

Resonance (2) under condition n=0 is the Cherenkov 

resonance, and under condition n≠0 it is the cyclotron 

resonance.  

As it is shown in [2], the frequency of the diocotron 

mode ω1 is equal to 

( ) ( ) ( ) 2 2

1 4 ce p w z pq R R f k R  =  − −
  

.  (5) 
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Fig. 1. Resonant frequencies (2) of argon ions at 

azimuth wave number m=+1 and resonance 

multiplicities n=+1, 0, –1. The frequency of the 

diocotron mode (5) is also shown by the dotted line and 

the number “1”. The intersections of mode “1”  

and resonant frequencies are indicated by squares. 

Dependence Δω (15) is also shown. The numerical 

values of the calculation parameters are indicated at the 

top of the figure. All frequencies are normalized to ωci 
 

     It reaches the area of low (ion) frequencies and zero 

frequency under the condition (Rp/Rw)2>f (see Fig. 2,a in 

[2]). We consider this condition to be satisfied. The 

behavior of diocotron mode and resonant frequencies of 

ions (2) for m=1 and lower resonance multiplicities 

n=+1, 0, –1 are shown in Fig. 1. In experiments [4-9], 

unstable low-frequency oscillations rotating in the 

positive direction (ω/m>0) are observed. That is why we 

consider positive resonant frequencies (2). When m=1 

the lowest positive resonant ion frequency (2) is the 

frequency with n=0. This is the Cherenkov resonance 

between the electron mode and the ions. The electron-

ion instability under the conditions of this resonance 

was studied in [10] at kz=0. Let us consider this 

resonance (ω1 = ωres) at kz≠0 and f≠0.  

Substituting in the left hand side of equation (2) the 

expression for the frequency of diocotron mode (5) and 

putting in the right hand side of equation (2) m=1 and 

n=0 we get the equation for q, at which the frequency of 

diocotron mode is resonant for ions:   

( )
2

2

22

pi

z p

e w

Rm
q f k R

m R

  
− − =  

    

   (6) 

( )

1
2

1 1 1i

e

m
q f

m

 
= − + + − 

 
. 

By introducing a variable  

( )

1
2

1 1 1i i

ci e

m
y q f

m

 
 = + −  
  

,               (7) 

we obtain from (6) a simpler equation for y: 

2 2 22 2 0i

z p

e

m
y y k R

m
 − −− + = .                (8) 

In (8), the notation is introduced 

( ) ( )2 2 1p wR R f f  − − .                 (9) 

The behavior of η depending on f is shown in Fig. 2. We 

are interested in the area where value η is positive: 

(Rp/Rw)2>f. As follows from (9), always η ≤1, and when 

Rp/Rw<1/2, the inequality η << 1 is satisfied. 

From the two roots of equation (8), only one root that 

is equal to 

( ) ( )
221 1 1 i

z p

e

m
y k R

m

−
 

=  + − + 
  

,                (10) 

satisfies inequality (7). We study only it. Solution (10) 

determines the resonant frequency (2) and the q value in 

the point of intersection with diocotron mode (5):  

( )
1

1
2

res

ci

y


= −


,  
2 1

1

e

res

i

m y
q

m f

−
=

−
.              (11) 
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Fig. 2. Dependence η  on  f  (9) for  Rp/Rw=0.5.  

The square denotes the value of η at f =0.1,  

discussed in Section 2 
 

The dependences of the resonance frequency (11) on 

the parameters f and (Rp/Rw)2 in the area (Rp/Rw)2>f are 

shown in Figs 3. For kzRp =0.03 (upper curve) inequality 

(12) is satisfied, for kzRp=0.003 (lower curve) the 

opposite inequality is satisfied. The values of other 

calculation parameters are shown in Figs 3.    

Expressions for y (10) and ωres  (11) are simplified in 

limiting cases. So, when 

( ) ( )
22

1 z p e ik R m m
−

 −                         (12) 

solution (10) takes the form 
2 2

2 2

11
1

p wres

ci p w

R R

R R f

−
 − =

  −
.              (13) 
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In the case opposite to inequality (12), solution (11) is 

given by the expression 
1
2

2 21 1
1

2 2

res i

z p

ci e

m
k R

m

  
  +  − 
     

.             (14) 

Expressions (10), (13), (14), as well as (5), are valid when 

kzRp<<1, q<<qmax =1/(1-f). As follows from (13), (14), 

the resonance frequency is proportional to  magnetic field 

and inversely proportional to the mass of ion (ωres  ωci). 

Expression (14) gives larger values ωres than (13), The 

latter does not depend on kzRp. In Fig. 3 the behavior of 

resonance frequency ωres is presented depending on f and 

(Rp/Rw)2.  In Fig. 3,a  the results of calculations using the 

exact formulas (10), (11) for argon (mi=40 a.u.). In Fig. 

3,b – using the simplified formula (13). 

With a decrease in the parameter (kzRp), the frequency 

ωres decreases to the level (13). The value qres, at which 

the resonance between diocotron mode (5) and an ion (2) 

(ω1=ωres) is reached, is determined by the second equality 

(11). When f→(Rp/Rw)2, the value η decreases, and the 

frequency ωres and qres increase. 

As follows from (9)-(14), when (Rp/Rw)2<1/2  the 

resonance of ions with diocotron mode is realized at 

frequencies greater and much greater than the cyclotron 

frequency ωci. Only when (Rp/Rw)2>1/2 the resonant 

frequency ωres (13) can become less than ωci. This is 

possible when condition (12) is satisfied, i.e., when 

parameter (kzRp) has a sufficiently small value. For 

illustration in Fig. 4 the area is presented where ωres< ωci. 

It has the form of a triangle (shaded in Fig. 4). At the 

upper boundary of the triangle, where (Rp/Rw)2=1, we 

have ωres=0. At the bottom of the triangle, we have 

ωres=ωci. 

As we see, the resonance of an ion (2) with the 

diocotron mode (5) can be achieved at frequencies both 

lower and higher than the ion cyclotron frequency ωci. 
 

2. RESONANCE OF AN ION WITH 

DIOCOTRON MODE IN EXPERIMENTS 
 

At what frequencies the resonance of the ion (2) with 

the diocotron mode (5) is achieved when the values of the 

parameters are typical for experiments [4-9] and others 

similar to them? We estimate these frequencies from 

formulas (9)-(14) and Figs. 2, 3. We use characteristic 

values of the parameters in experiments.  

We estimate the minimum value kz for a plasma 

cylinder of finite length L in the “usual” way: kz~π/L. For 

typical dimensions of the plasma cylinder in experiments 

Rp~1 cm, L~100 cm we obtain (kzRp)2~10-3. 

We put the degree of neutralization f equal to f=0.1, 

and the geometric parameter Rp/Rw is put equal to  

Rp/Rw=0.5. In this case, the parameter η is equal to        

η=0.167 (see Fig. 2). The parameter (me/mi), for example, 

for argon, which is often used in experiments, is equal 

me/mi≈1.36·10-5. For such parameter values, the 

inequality opposite to (12) is well satisfied: the left hand 

side of inequality (12) is 18 times greater than the right 

hand side. Under these conditions, the resonant frequency 

is determined by formula (14), which gives the value: 

ωres/ωci ≈ 13. A approximately the same value 

(ω|res/ωci ≈ 12.8) is also given by Fig. 3,a. It is indicated 

by a square in Fig. It’s interesting, the corresponding 

value of Ωi is equal, according to (14), Ωi≈27ωci. For 

resonance multiplicity n>0, the resonant value Ωi will be 

even greater, and for n<0, it will be smaller. 

The above estimates indicate that under the chosen 

values of the parameters typical for experiments [4-9], 

the coincidence of the frequency of the diocotron mode 

(5) with the resonant frequency of ions (2) at azimuth 

wave number m=1 and resonance multiplicity n=0 

occurs at a frequency significantly exceeding the ion 

cyclotron frequency ωci. For lighter ions, a thinner and 

longer plasma cylinder, formula (13) will become 

applicable and the resonant frequency can be 

comparable to the ion cyclotron frequency ωci.  

 
0.00 0.05 0.10 0.15 0.20 0.25
0

10

20

30 mi=40 a.u.,   Rp/Rw=0.5

kzRp=0.003

 f

kzRp=0.03

ωres/ωci 

a 

 
0,0 0,2 0,4 0,6 0,8 1,0

0

2

4

6

8

10

 2

2

p

w

R

R

 f

f=0.1
ωres/ωci 

b 

Fig. 3. Values of resonant ion frequencies (2) at the 

point of intersection with diocotron mode (5): 

depending on f  for two values of the parameter kzRp 

(kzRp=0.03; 0.003) (a) and depending on the parameter 

(Rp/Rw)2 for f=0.1 (b). The square in Fig. 3,a indicates 

the value ωres  for parameter values typical for the 

experiments, discussed in Section 2 
 

3. FREQUENCIES OF EXPECTED 

INSTABILITY  
 

It is natural to expect that the electron-ion instability, 

excited due to the relative motion of electrons and ions, 

has a maximum growth rate in the vicinity of the 

resonance ω1 = ωres. It was shown in [10] that in the 

hydrodynamic approximation and for kz=0, instability 

exists only in the vicinity of this resonance. However,  the 

hydrodynamic approximation is inapplicable for 

description of ions in a real experiment. Ions produced in 

crossed fields have a developed transverse motion, which, 

by the way, was analyzed in detail in the same paper [10], 

and the kinetic description is necessary. 
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The form of the distribution function of such ions, 

which adequately takes into account the features of their 

production, was determined in paper [13]. It is highly 

anisotropic and non-Maxwellian in transverse energies. 

This is an additional reason for plasma instability. 

According to the analytical and numerical calculations 

performed in [11] for a waveguide completely filled with 

non-neutral plasma, taking into account the finite value of 

the longitudinal wave vector kz≠0 and the ion distribution 

function, electron-ion instability also exists far from the 

resonance in the region q<qres, although with a slower 

growth rate (Imω≡γ~ωpi). Moreover, instability also takes 

place at values that are an order of magnitude smaller 

than qres (11).  

We believe that the behavior of the modes does not 

change radically when the waveguide is partially filled. 

Let us indicate a number of factors that should lead to a 

decrease in the frequency of unstable oscillations in 

comparison with the resonant frequency of ions. 

1. According to [11], in the range of values q<qres, the 

frequency ω of the unstable mode generally follows the 

resonant frequency of ions (2) (in the case under 

consideration m=1, n=0 it is equal ωres≈ωi
rot (3)), 

remaining lower than it by the value 

Re ~ ~i

rot pi −   =                  (15) 

( )

11 1
22 2

2 2 1

e i

ce ci i

i e

m mf f f
q q

m m f

    
=  =       

−      
.                 

From the last equality it is seen that the value Δω can be 

comparable with Ωi. (Dependence Δω (15) on q is shown 

in Fig. 1.) In this case, the frequency of unstable 

oscillations ω becomes less or much less than Ωi and can 

become of the order of the ion cyclotron frequency ωci 

even at those values q for which Ωi>>ωci. Oscillations 

with such frequencies are observed, for example, in 

experiments with non-neutral plasma at the MISTRAL 

plasma device [4-6]. The nature of these oscillations is 

discussed for decades. In other experiments (for example, 

in [9]), the frequency of unstable oscillations exceeds the 

cyclotron frequency ωci by tens of times and is associated 

by the authors with the frequency of radial oscillations of 

the ion Ωi in regimes with a strong radial electric field, 

when Ωi>>ωci. 

2. The frequency  ωi
rot (3) itself  decreases when the 

parameter q decreases  in the area q<qres. The frequency 

of unstable oscillations ω should also decrease with it. 

For this reason, the frequency of unstable oscillations also 

can become comparable with ωci.  

The above estimations and reasoning are of a 

qualitative nature. For a quantitative analysis, it would be 

necessary to solve the problem about the stability of non-

neutral plasma partially filling a waveguide taking into 

account for adequate kinetics of ions produced in crossed 

fields by ionization of the working (residual) gas, 

similarly to how it was done in [11] for a waveguide 

completely filled with plasma. To do this, it is necessary 

to generalize, to the case of a waveguide partially filled 

with plasma, the technique for solving the kinetic 

equation for ions, developed in [14].  

Note that in estimations similar to those given above, 

it is necessary correctly to take into account the finite 

value of kz because of the sharp dependence of the 

frequency of the diocotron mode ω1 (5) on kz. 
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Fig. 4. Area on the plane of parameters (f (Rp/Rw)2), 

inside which ω|res/ωci ≤ 1 (shaded). Calculation by 

formula (13). The gray shaded area, located at the 

bottom of the picture, in which (Rp/Rw)2 < f, is not 

considered. Inequality (7) is not satisfied in it 
 

4. PECULIARITIES OF SLH MODE 
 

The family of slow lower hybrid (SLH) modes also 

passes through the area of low (ion) frequencies and 

through zero frequency (see [1, 2]). However, in the long-

wavelength limit (kzRp<<1), it passes at much smaller 

values q than the diocotron mode. Accordingly, the 

growth rates of the electron-ion instability associated with 

SLH modes are slower than the growth rates associated 

with diocotron mode. As calculations in [11] showed, in 

the case of complete filling of the waveguide with non-

neutral plasma, the maximum growth rate of SLH modes 

is less than the cyclotron frequency (γ~ωpi<ωci), and when 

f<<1 it is much less (γ<<ωci).  

In addition, all radial modes of the SLH family pass 

through the low-frequency area and can be unstable, 

while in the experiment only oscillations having a radial 

dependence of the amplitude corresponding to the lowest 

radial mode are observed.  

For these reasons, interaction of diocotron mode with 

ions seems to be more preferable for explaining the 

nature of the low-frequency instability observed in 

experiments [4-9] and others than interaction of SLH 

modes with ions. 
 

5. REMARKS 
 

The frequencies of low frequency oscillations 

observed in experiments are often compared with the ion 

cyclotron frequency ωci. However, in non-neutral plasma, 

the cyclotron frequency is not a characteristic frequency 

of either ions or electrons. Characteristic frequencies are 

the “modified” cyclotron frequencies Ωe,i (4). They are 

equal to the frequencies of radial oscillations of 

electrons/ions in crossed magnetic and electric fields. The 

value Ωi (4) is expressed through the used variables and 

parameters q, f  and me/mi. In a radial electric field that is 

weak for ions (ωci
2>>|4eEr/mir| or otherwise                 

q(1-f)<<me/mi), the frequency Ωi is close to the cyclotron 

frequency, Ωi≈ωci. In a strong electric field 

(ωci
2<<|4eEr/mir| or me/mi<<q(1-f)≤1), the frequency Ωi 

significantly exceeds ωci. The maximum value Ωi (4) is 

reached in the Brillouin limit for electrons (q=qmax=1/(1-

f)). For example, for argon we have: 
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(i)max  (me/mi)½ ce(me/mi)½ ce271 ci. The 

“modified” cyclotron frequency of electrons Ωe depends 

on parameters q, f. It decreases to zero as the parameter q 

increases. It is interesting that when 

( ) ( ) ( )max1 1 1e i e iq m m f q m m − − = − ,         (16) 

the frequencies Ωe and Ωi become equal. At larger q than 

(16), the frequency Ωe becomes even less than the 

“modified” cyclotron frequency of ions Ωi.  
 

CONCLUSIONS 
 

The discussed electron-ion instability has the same 

peculiarities as the low-frequency oscillations have, 

observed in experiments [4-9] and others:  

1. The instability can be low-frequency in the long-

wavelength limit kzRp<<1, like the mode observed in the 

experiment.  

2. The instability should take place in a wide range 

of changing of the parameter q, as well as the unstable 

oscillations are observed in the experiment. 

3. The amplitude of unstable mode has a dependence 

on the radius corresponding to the lowest radial mode 

(i.e., it has no zeros within the interval 0<r<Rp<Rw). 

(This was shown in [15] for q<<1 and f<<1). 

Oscillations, observed in experiments, have a radial 

dependence of such a form only.  

4. Measurements [5, 6] show that low-frequency 

oscillations grow rapidly in experiments, so that the 

instability should have a fast growth rate: γ≥ωci. Such 

growth rates of the discussed instability are possible at 

sufficiently large values of q or/and f. If (according to 

[10, 11] and (15)), we estimate the growth rate of 

diocotron mode as γ~ωpi, then from (15) it follows that 

the growth rate γ will exceed ωci in the area, where 

qf>2me/mi. Unstable low-frequency oscillations in 

experiment arise at field strengths and plasma densities 

at which the parameter q satisfies this inequality. 

The considered instability, that arises due to the 

relative azimuth motion of electrons and ions of non-

neutral plasma, as well as anisotropy and the non-

Maxwellian nature of the ion distribution function, can 

be low-frequency and can claim to explain the nature of 

unstable low-frequency oscillations observed in 

experiments with non-neutral plasma [4-9] and others. 
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МОДИ ТРАЙВЕЛПІСА-ГУЛДА ХВИЛЕВОДУ,  

ЧАСТКОВО ЗАПОВНЕНОГО ЗАРЯДЖЕНОЮ ПЛАЗМОЮ. ЧАСТИНА 3 
 

Ю.М. Єлісеєв  
 

     Обговорюється можливість пояснити природу низькочастотних коливань, які спостерігаються у 

пристроях із зарядженою плазмою, нестійкістю відносного руху по азимуту компонентів плазми і 

анізотропією функції розподілу іонів. Досліджено умову резонансу іонів з діокотронною модою з кінцевим 

значенням поздовжнього хвильового вектору kz. Проведено числові оцінки для параметрів плазми та 

нестійких коливань, характерних для експериментів. Оцінено частоти, інкременти зростання та інші 

характеристики та особливості очікуваної електрон-іонної нестійкості. Зроблено висновок про можливість 

пояснити нею природу низькочастотних коливань, що спостерігаються в установках із зарядженою 

плазмою. 


