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     It is shown that in a plasma located in an external magnetic field (magnetically active plasma) it is possible to 

convert the energy of low-frequency oscillations into the energy of high-frequency oscillations. Such a 

transformation is possible due to the fact that in such a plasma it is possible to create conditions for nonreciprocal 

coupling between high-frequency waves. 
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INTRODUCTION 
 

     Non-reciprocal mediums in many of their properties, 

differ significantly from the usual reciprocal mediums. 

Such properties of media and such systems, in which 

nonreciprocity arises, arise practically in all areas of 

physics. This special property of systems and media is 

well studied and widely used in electrodynamics and 

optics (see, for example, [1-5]). Below we will be 

interested in that special property of nonreciprocal 

systems, the use of which makes it possible to convert 

the energy of low-frequency oscillations into the energy 

of high-frequency oscillations. In our previous works 

[6-9], it was shown that the non-reciprocal coupling of 

high-frequency oscillatory systems allows them to draw 

energy from a low-frequency source. In particular, the 

work [8] experimentally shows the possibility of 

excitation of high-frequency oscillations of non-

mutually coupled circuits by a low-frequency source, 

the frequency of which is forty times lower than the 

frequency of high-frequency exited circuits. Note that 

the non-reciprocal coupling of high-frequency 

oscillations can be created artificially (as in [8]).  In 

addition, it can exist naturally in media that have the 

property of nonreciprocity. There are many such media. 

Well-known examples are ferrites and plasmas in an 

external magnetic field. In the present work, it is shown 

that conditions can indeed be created in a magnetoactive 

plasma under which electromagnetic waves do not 

mutually interact with each other. Such connection 

between these high-frequency waves makes it possible 

to excite them using low-frequency sources (for 

example, using low-frequency longitudinal plasma 

oscillations). 

     Below, in the second section, the problem is 

formulated, and the system of equations is written out. 

In the third section, a system of truncated equations is 

obtained, which allows analytical methods to find a 

solution to the original equations. Conditions for the 

excitation of high-frequency waves using the energy of 

low-frequency longitudinal plasma oscillations are 

obtained. In particular, there found increment of 

parametric instability, which is proportional to the 

amplitude of longitudinal plasma oscillations.  The 

fourth section describes the nonlinear dynamics of the 

three-wave interaction for the case when the interaction 

matrix elements for high-frequency waves are 

proportional to the first power of their wave vectors. In 

conclusion, the main results of the work are formulated.  

 

1. STATEMENT OF THE PROBLEM  

AND BASIC EQUATIONS 
 

The system of initial equations are the Maxwell 

equations for fields and the equations of hydrodynamics 

for plasma: 
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Fig. 1. Dispersion diagram of interacting waves. The 

interaction occurs with the participation of longitudinal 

plasma waves. Case 
1 20; 0k k   
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To simplify the form of general formulas below, we will 

proceed from the diagrams of interacting waves, which 

are presented in Figs. 1, 2. It follows from them that we 

will consider the interaction of three waves. Two of 

them are transverse (
1 2,  ), and the third is 

longitudinal, i.e. type interaction is t t l  considered. 

We will also consider a spatially one-dimensional case, 

i.e., the entire process of interaction will depend on only 

one spatial coordinate z . The whole system is placed in 

an external magnetic field 
0H , which is directed along 

the z  axis. In this case, the system of equations (1) for 

transverse waves will take the form: 
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Let us write out the equations for low-frequency 

longitudinal waves: 
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Fig. 2. Dispersion diagram of the same trio of waves as 

in Fig. 1. Distinction: high-frequency waves are 

directed in one direction:
1 20; 0k k   

 

     Let a low-frequency longitudinal wave has been 

excited in the plasma. The electric field of this wave can 

be written as: 
 

 exp . .zE E i k c                           (4) 

 

Here ( )t z    . 

The dimensionless velocity of plasma particles 

under the action of such a field is 
0 exp( ) . .zv V i k c   , 

0 ( / )V i eE mc   . The main result we are interested in 

can be obtained by assuming that this speed is given. It 

is not perturbation. Then we substitute this speed into 

the system of equations that describe the high-frequency 

dynamics of fields and particles, i.e. into the system of 

equations (2). In addition, we will assume that the 

interaction process occurs in a spatially limited volume 

(in a resonator). Therefore, the dynamics of the process 

under study depends only on time  

(                   ; / zz ik   ). As a 

result, after simple but cumbersome calculations, the 

following system of nonlinear equations with varying 

coefficients can be obtained to determine the dynamics 

of high-frequency fields and high-frequency velocities: 
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Here 
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plasma frequency. System (5) is closed since the 

longitudinal velocity of particles (low-frequency 

velocity) is given (see (3) and (4)). 

2. ANALYTICAL SOLUTION  
 

     The system of equations (5) is a system of four 

second-order ordinary differential equations for fields 

(two equations for the first and second high-frequency 

waves, as well as two equations for different 

polarizations), as well as four first-order ordinary 

differential equations for determining high-frequency 

particle velocities plasma. Thus, the system of equations 

(5) is equivalent to the system of twelve ordinary 

differential equations of the first order. Note that each 

polarization can be considered independently. The 

system (5) does not contain terms that describe the 

interaction of these polarizations.  Note that such terms 

appear when it is necessary to take into account the 

dynamics of low-frequency waves. The system of 

equations (5) does not contain equations describing the 

low-frequency dynamics of fields and velocities. 

Despite this simplification, it is still quite complex. 

Solutions of system (5) will be sought in the form: 
 

   1 1 2 2exp exp . .E A i A i k c     ; 

   1 1 2 2exp exp . .v a i a i k c     ;  
 

3 exp( ) . .zv a i k c   ,                                (6) 
 

where 1,2 1,2 1,2t k z    , 
3 0a V const  ‒ is given.  

     The factors in front of the high-frequency exponents 

in the linear approximation are constants and slow 

functions of time when nonlinear terms are taken into 

account: 

1,2 1,2 1,2 1,2 1,2( ); ;A A t A A 

1,2 1,2 1,2 1,2 1,2( );a a t a a   . 

      The first terms in formulas (6) describe (in a 

complex form) a wave that propagates along the axis, 

and the second terms describe a wave that propagates 
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towards it (
2 0k  , see Fig. 1) or in the same direction   

(
2 0k  , see Fig. 2). We will also assume that the 

frequencies and wave vectors of the interacting waves 

satisfy the synchronism conditions: 
 

1 2   ;   
1 2k k   .                       (7) 

 

     In the linear approximation, the connection between 

the field amplitudes and velocities is described by the 

formula 

 j j j HA a i      .                             (8) 

 

Nonlinear terms determine the slow dynamics of the 

amplitudes: 
 

 1 3 2 2HA i a A i a   ;   2 3 1 1 2/HA i a A i a    ;     

 1 2 3 2 2a k a A ia   ;  2 1 1 1 1a k a A ia   .               (9) 

 

     When obtaining (9), we took into account relations 

(7). 

Let us substitute expressions (8) into the second 

equation of system (9): 
 

1 1 3 2 Ha k a a   ;    2 2 3 1 Ha k a a .            (10) 
 

Equations (10) are equivalent to the pendulum equation: 
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     It follows from this equation that if high-frequency 

waves are unidirectional (see Fig. 2), then only 

oscillatory dynamics of high-frequency waves occurs. 

The amplitude of these oscillations is determined by the 

initial conditions. If the interacting high-frequency 

waves propagate in opposite directions (see Fig. 1), then 

equation (11) describes the dynamics of an unstable 

pendulum. The amplitude of such a pendulum grows 

exponentially. The instability increment is  
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     Let us substitute (8) into the first two equations of 

system (9). We obtain the following equations for 

determining the amplitudes of slowly changing high-

frequency fields: 
 

 1 3 2 2 2/ HA i a A     ;  2 3 1 / 1 HA i a A   .  (13) 

 

System (13) corresponds to the linear oscillator 

equation: 
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     It follows from Eq. (14) that the slow dynamics of 

high-frequency fields due to non-linear terms leads only 

to slow oscillatory dynamics of these fields. It is only 

due to the nonlinear dynamics of particles (see (12)) the 

amplitude of the fields can also increase. 

 

 

 

3. GENERAL MODEL OF THREE-WAVE 

INTERACTION IN THE PRESENCE OF NON-

RECIPROCAL COUPLING BETWEEN  

HIGH-FREQUENCY WAVES 
 

     Let's see what the linear dependence of the matrix 

coupling elements on the wave vectors of interacting 

high-frequency waves leads to. In the general case, the 

system of equations that describes such a three-wave 

interaction will look like: 
 

1 1 1 2 3a k V a a ;  2 2 2 1 3a k V a a ;   3 3 1 2a V a a .    (15) 
 

     Multiply the left and right parts of each equation in 

system (15) by. We multiply each equation of the 

complex conjugate system by. We add the resulting 

equations. The left side of the resulting equation will be 

the derivative of the total energy of the interacting 

waves. Introducing the notation adopted in [10], the 

resulting equation will take the form 
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Here 
2

j jN a – number of quanta in j-wave.  

Multiplying each equation of system (15) by  j jk a , 

and the complex conjugate system by   j jk a , we 

obtain a relation expressing the momentum conservation 

law: 
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     In the one-dimensional case, from equations (16) and 

(17) we obtain the following relations between the 

matrix elements of system (15): 
 

3 1 1 1 1 2 2; .V k V k V k V                      (18) 
 

     Let us substitute (18) into the system of equations 

(15). 

From the resulting system of equations (taking into 

account the complex conjugate system), we can obtain 

the following integrals: 
 

1 2N N const  ;
1 3N N const  .            (19) 

 

Integrals (19) are obtained for the case when interacting 

waves propagate in opposite directions (see Fig. 1). 

Integrals (19) indicate that high-frequency waves can 

simultaneously increase their amplitude (the first 

integral of system (19)). The second integral shows that 

the energy of high-frequency waves is drawn from the 

energy of low-frequency waves. If high-frequency 

waves propagate in one direction (see Fig. 2), then their 

energy does not change (
1 2N N const  ). 
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CONCLUSIONS 
 

     Thus, in a magnetoactive plasma there is a range of 

parameters in which conditions can be created for 

converting the energy of low-frequency oscillations into 

the energy of high-frequency oscillations. Let us note 

that after works [6-9] it might seem that in all 

nonreciprocal media such conditions can be created. 

The results of the work show that finding such 

conditions is a rather difficult task, and it is not always 

obvious that such conditions can be found. It should 

also be noted that the reason for the non-reciprocal 

coupling between high-frequency waves is the particle 

dynamics. More specifically, these are nonlinear terms 

due to the magnetic Lorentz force, as well as nonlinear 

terms associated with hydrodynamics. It is important to 

note that in the absence of an external magnetic field, 

these two nonlinear terms annihilate each other. 
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ПЕРЕТВОРЕННЯ ЕНЕРГІЇ НИЗЬКОЧАСТОТНИХ КОЛИВАНЬ НА ЕНЕРГІЮ 

ВИСОКОЧАСТОТНИХ КОЛИВАНЬ У МАГНІТОАКТИВНІЙ ПЛАЗМІ 

 

В.О. Буц 

 

     Показано, що в плазмі, яка знаходиться у зовнішньому магнітному полі (магнітоактивна плазма), є 

можливість перетворювати енергію низькочастотних коливань в енергію високочастотних коливань. Таке 

перетворення можливе завдяки тому, що в такій плазмі можна створити умови для невзаємного зв'язку між 

високочастотними хвилями. 
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