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This work is a part of acomplex investigation of the interaction of Cu-W composite materials with thermal 

electric arc discharge plasma. The plasma of 3.5 A DC arc discharge between novel Cu-W composite materials, 

fabricated by shock pressing technology at the temperature of 750°C, was studied at this stage. Spectra of such 

plasma emission were registered and treated to determine the radial distributions of plasma temperature in three 

different cross-sections of the plasma channel, namely in near-cathode, near-anode and middle cross-sections. 

     PACS: 52.70.-m, 52.80.Mg 

 

INTRODUCTION 

 
Nowadays, there is still interest growing in studying the 

thermal effect of the plasma of electric discharges, which 

occur during the operation of switching devices, on their 

electrodes/contacts surface. The implementation of 

innovative developments continues and the main research 

approaches in this field are permanently improved and 

optimized. The reason for this development is the need to 

meet the necessities of the power industry. 

So, for example, due to the need to increase the 

productivity of arc welding, compositions of two arcs are 

being developed [1] (tandem arc welding), a combination 

of a laser beam with an arc [2] (hybrid laser-arc welding), 

the use of plasmatrons [3] (plasma welding) and the 

application of pulse power sources [4] (pulse arc welding). 

Such new trends, even with small improvements in 

efficiency and productivity, can make a significant 

contribution to industries such as shipbuilding and aircraft 

construction, which require a large volume of high-quality 

welds. 

Moreover, new variants of already known processes of 

plasma sputtering of solutions and suspensions are being 

developed [5], the efficiency of creating thin films by the 

magnetron method is improved [6], variations are 

increased and the characteristics of synthesized solutions 

with nanoparticles are improved [7], etc. 

In addition to the direct practical application of thermal 

plasma, there is a study of its negative effect on the 

materials of contacts and electrodes of switching devices. It 

is well-known, during the switching of electrical circuits 

(for example, in electric and gas switches for high and 

medium voltage equipment, in collector motors, 

generators, electric trains, in switches of distribution 

systems of medium and high degree of load, etc.), an 

electric arc occurs, which causes significant erosion of 

contact materials. Such a process naturally leads to a 

reduction in the service life, a decrease in work efficiency, 

and a number of other negative consequences in such 

devices. 

Obviously, to prevent or solve such problems in 

switching devices, there is a need to create novel and 

improve existing electrodes and contact materials. One 

such material is a composite based on copper and tungsten. 

Composite Cu-W electrodes are in great demand due to 

the wide possibilities of their practical application, such as 

welding electrodes, electrical contacts, materials for heat 

dissipation in integrated circuits with a high degree of 

integration, arc tips and microwave materials, high-

temperature erosion materials, ballasts of various shapes 

and sizes, jet blades, X-ray screens, divertor plates for 

thermonuclear reactors [8, 9], etc. 

The main aim of this work, as a part of the complex 

investigation, is to carry out the preliminary diagnostics of 

thermal plasma of electric arc discharge between 

composite Cu-W electrodes by optical emission 

spectroscopy techniques and determination of the 

possibility of their use for investigation of the interaction of 

thermal plasma of arc discharge with novel Cu-W 

composite materials. 
 

1. EXPERIMENT 
 

The DC electric arc discharges of 3.5 A were initiated 

between vertically-oriented square in section (5×5 mm) 

electrodes made from Cu-W50 vol.% composite material 

fabricated by shock pressing technology at the temperature 

of 750 °C. The three different cross-sections of the plasma 

channel, namely cross-sections near to anode and cathode 

and in the middle cross-section between electrodes, were 

investigated. 

The registration device with spatial and spectral 

resolution [10] was used to obtain the emission spectra of 

plasma with Cu and W vapours admixtures from different 

cross-sections of the arc channel. The images shown in 

Fig. 1 were obtained by RGB CCD camera with the 

exposure time of 1/400 s (a, c), 1/1000 s (b). Neutral filter 

NG8 was used (a, c) [11]in order to extend the dynamic 

range. 

The spectra emission intensity converted into grayscale 

with taking into account spectral sensitivity and absorption 

coefficients of filter are shown in Fig. 2. Ten points in 

radial directions from the axis of the plasma channel were 

selected and spectral profiles of both Cu I and W I spectral 

lines were selected and approximated by the Voigt function 

in each of these points. Typical approximations of spectral 

lines profiles are shown in Fig. 3. Thus, the spatial (radial) 

profiles of each spectral lines were obtained (see Fig. 4). 
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Fig. 1. Emission spectra with spatial and spectral resolution registered from near-anode (a), middle (b) and near-

cathode (c) cross-sections of arc discharge channel 

 

a b c 
 

Fig. 2. Emission spectra with spatial and spectral resolution with taking into account spectral sensitivity registered 

from near-anode (a), middle (b) and near-cathode (c) cross-sections of arc discharge channel 

 

a b 

Fig. 3. Typical approximations of spectral profiles of Cu I 515.3 nm (a) and W I 500.6, 501.5 nm (b) lines by Voigt 

function 
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a b 

Fig. 4. Typical approximations of spatial profiles of Cu I (a) and W I (b) lines by Gauss function (emission intensity 

obtained from near-anode cross-section) 

     The Gauss function was used to approximate the spatial 

profiles to obtain the differentiable function in order to 

transform the observed emission intensity into its local 

values by the Bockasten method [12]. 

These local values of emission intensity of selected 

spectral lines were used to determine plasma 

temperature by the Boltzmann plot technique [13]. 
 

2. RESULTS AND DISCUSSIONS 
 

As mentioned above, both copper and tungsten 

atomic spectral lines were used in this work. Namely, 

the spectral profiles of Cu I 510.5, 515.3, 521.8 nm and 

W I 468.1, 488.7, 498.3, 500.6, 501.5, and 522.5 nm 

spectral lines were selected from spectra, approximated 

and used in the determination of plasma temperature. 

Typical Boltzmann plots on the basis of the 

aforementioned spectral lines are shown in Fig. 5. The 

spectroscopic data for each of these lines were 

preliminarily selected in previous works [14, 15]. 

One can see, that approximating straight lines 

coincide almost exactly with the calculated points on the 

Boltzmann plot based on Cu I spectral lines, which 

indicates that temperature is determined with high 

accuracy (< 10 %). 

The accuracy of temperature determination by plots 

on the basis of W I spectral lines has a more significant 

error (< 20 %). Such error is due to the narrow range of 

energy of upper levels of the selected tungsten spectral 

lines (0.82 eV compared with 2.38 eV of copper). It is 

obvious, that the narrower the energy range, the greater 

the error in determining the temperature for the same 

errors in determining the value ln(Iλ
3
/gf). 

The radial distributions of plasma temperature 

determined by the Boltzmann plot technique based on 

both Cu I and W I obtained from near-anode, middle 

and near-cathode cross-sections of the arc discharge 

channel are shown in Fig. 6. 

One can see, that temperatures obtained in different 

cross-sections differ along the discharge gap, especially 

at the axial points (r = 0 mm) of the discharge channel. 

This can be explained by a significant difference in 

metal components concentrations at different points of 

the arc. Naturally, the lower temperature can indicate 

the higher content of metal evaporated from electrode’s 

surface. Thus, it can be assumed, the material of the 

composite electrode evaporates more strongly in the 

near-cathode region compared to the near-anode one. 

a 

b 

Fig. 5. Typical Boltzmann plots based on emission 

intensity of Cu I 510.5, 515.3, 521.8 nm (a) and W I 

468.1, 488.7, 498.3, 500.6, 501.5 and 522.5 nm (b) 

spectral lines (emission intensity obtained from near-

anode cross-section) 
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c 

Fig. 6. Radial distributions of plasma temperature, 

obtained by Boltzmann plot technique based on Cu I 

and W I spectral lines registered from near-anode (a), 

middle (b) and near-cathode (c) cross-sections of arc 

discharge channel 

Moreover, the radial distribution of temperatures 

obtained on the basis of emission intensity of both 

atomic copper and tungsten spectral lines coincides 

within the range of measurements error at most radial 

points of discharge channel. This allows us to draw the 

conclusion that the local thermodynamic equilibrium is 

realized in all three investigated cross-sections of the 

discharge gap between the copper-tungsten composite 

electrodes. 

 

CONCLUSIONS 

 
The novel Cu-W composite material fabricated by 

shock pressing technology at the temperature of 750 °C 

was studied in interaction with 3.5 A DC current arc 

discharge plasma. Spectra of such plasma emission were 

registered and treated to determine the radial 

distributions of plasma temperature in three different 

cross-sections of the plasma channel, namely in near-

cathode, near-anode and middle cross-sections. 

It was found, that the radial distribution of 

temperatures obtained on the basis of emission intensity 

of both atomic copper and tungsten spectral lines 

coincides within the range of measurements error at 

most radial points of the discharge channel. This 

indicates that local thermodynamic equilibrium can 

realize in all three investigated cross-sections of the 

discharge gap between the copper-tungsten composite 

electrodes. 

The results obtained in this work allow us to carry 

out further investigations of the thermal plasma of 

electric arc discharge between other types of novel Cu-

W composite electrodes, namely fabricated at variable 

manufacturing parameters. Moreover, the erosion 

resistance of all of these types of composite electrodes 

should be estimated by determination of the content of 

metal vapours in discharge gap. 
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ОСОБЛИВОСТІ ВЗАЄМОДІЇ КОМПОЗИТНИХ МАТЕРІАЛІВ Cu-W З ТЕРМІЧНОЮ ПЛАЗМОЮ 

ДУГОВОГО РОЗРЯДУ 

 

О. Мурманцев, А. Веклич, В. Борецький, М. Клешич, С. Фесенко, М. Бартлова 

 

Описано частину комплексного дослідження взаємодії Cu-W композитних матеріалів з термічною 

плазмою електродугового розряду. На цьому етапі роботи досліджувалась плазма дугового розряду 

постійного струму 3,5 А між новітніми композитними матеріалами Cu-W, які виготовлені за технологією 

ударного пресування при температурі 750°C. Зареєстровано та оброблено спектри випромінювання такої 

плазми з метою визначення радіального розподілу температури в трьох різних поперечних перерізах 

плазмового каналу, а саме в прикатодному, прианодному та середньому перерізах. 
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