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MATHEMATICAL SIMULATION OF THE STRESS-STRAIN STATE  

OF THE WINDING OF A CLOSED MAGNETIC SYSTEM 
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Mathematical modeling of the stress-strain state of the winding of a closed magnetic system was carried out, 

which consists in the development of a three-dimensional geometric model of the helical winding and the determina-

tion of the values of the characteristics of the magnetic system, which are best from the point of view of meeting the 

requirements of the technical task of the designed object. 

PACS: 52.55.Hc; 52.65.Kj   
 

INTRODUCTION  

The most important property of the magnetic con-

figuration of the system designed to contain high-

temperature plasma is the presence of magnetic surfac-

es, which are formed by the trajectories of the lines of 

force of the magnetic field at multiple rotations around 

the main axis of the torus. Obtaining three-dimensional 

geometric models for mathematical modeling of the 

calculation of the stress-strain state of the winding of a 

closed magnetic system is the most important and time-

consuming design task. Its solution is associated with 

several simplifications and assumptions: the poles of 

magnetic windings are modeled by infinitely thin con-

ductors with current; the task of determining the lines of 

force is solved under the condition that several hundreds 

of revolutions around the main axis of the torus are suf-

ficient; the traces of the lines of force of the magnetic 

field in a fixed meridional section are located on a 

closed curve; the increment of the length element along 

the line of force of the magnetic field in the direction of 

the magnetic induction vector, which ensures sufficient 

accuracy of the estimation calculations, is taken from a 

few millimeters to tens of millimeters. There are also 

characteristics that, together with the boundary magnet-

ic surface, decisively affect the retention of the plasma, 

these are: the magnitude of the angle of rotation trans-

formation; the rate of fall of the specific magnetic vol-

ume across the magnetic surfaces (magnetic pit); rate of 

change of rotational transformation along the radius 

(width); modulation of the magnetic field strength along 

the force line. Searching for the optimal combination of 

these parameters is the main task in mathematical mod-

eling and calculations of the stress-strain state (SSS) of 

the winding of a closed magnetic system. 

1. THREE-DIMENSIONAL GEOMETRIC 

MODEL OF SCREW WINDING 

The method of kinematic modeling was used to ob-

tain a three-dimensional geometric model. The essence 

of the method is that for the assignment of the surface it 

is necessary to describe its frame (creating and guiding 

curve), a family of planes that determine the location of 

sections and boundary conditions. The description of the 

kinematic surface of the helical winding (HW) consists 

of the description of the change in the shape of the 

drawing curve and the description of the law of move-

ment of this curve in the plane and the law of the change 

of the curve in space.  

Coordinates of the winding line located on the sur-

face of the torus. Consider the torus (Fig. 1) with pa-

rameters R0 and (a0 + h/2), here h is the height of the 

pole [1]. The medial line of a normal section is called 

the line of its section with an "overblown" torus. Denote 

through ; 
  і ; 

  toroidal coordinates of the 

ends of the medial line. The dimensions of the pole are 

determined by the following parameters – the height h 

and the difference in coordinates i    . The 

following shows how to find the angular width of the 

normal pole section, i.e. the difference, from these da-

ta    .  

 

Fig. 1. Determination of the length of the medial line: 

1 – torus (R0, a); 2 – “overblown” torus (R0, a + h/2); 

3 – medial line; 4 – normal section 

Suppose that       . The x, y, z coordi-

nates of any point of the "overblown" torus are deter-

mined by its angles  and  by formulas (1)–(3), if in 

them the radius а is replaced by the radius (а + h/2): 

x = [R0 + (а + h/2)
 
cos]cos;  

y = [R0 + (а + h/2)
 
cos]sin;    (1) 

z = (а + h/2)
 
sin.    

If the points with coordinates x, y, z are in the given 

normal plane ( ),   , which passes through the point M 

with coordinates ,  , then the radius vector of this 

point R, offset from the point, lies in the 

plane ( ),   and, therefore, is orthogonal to the previ-

ously introduced vector  . Their scalar product is zero 

y( ) 0x x y zR, R R R ,         (2) 

where Rx = x – xм; Ry = y – yм; Rz = z – zм. 

The points located on the medial line of the normal 

section, by definition, lie on the "overblown" torus and 

in the normal plane. Therefore, their coordinates, firstly, 

can be written in the form of a system of equations (1), 

and, secondly, they satisfy condition (2). 
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Then 

[R0 + (а + h/2)cos]cosx + [R0 + (а + h/2)cos]siny + (а + h/2) sinz = xMx + yмy + zмz. (3) 

The equation connects the angles  and  points of the medial line lying in the normal section, which is deter-

mined by the angles   і . To find the derivative d/d, we differentiate equation (3) by , considering  as a func-

tion of : 

  0 0

( /2)sin cos ( 2)sin sin ( /2)cos

( /2)cos sin ( /2)cos cos 0

x y z

x y

a h a h/ a h

d
R a h R a h .

d

        


          



 

Then 

0

sin [ cos sin ] cos
( / 2).

[ ( / 2)cos ][ cos sin ]

x y x

y x

d
a h

d R a h

     
 

      
 (4) 

 

The length of the arc of the medial line is determined by the formula 

 
2 2 2 2

2
0

2 2 2 2
0

2 2 2 2
0

[ ( / 2)sin cos

[ ( / 2)cos ]sin ] [ ( / 2)sin sin

[ ( / 2)cos ]cos ] ( / 2) cos

( / 2) [ ( / 2)cos ] ,

dS dx dy dz a h

R a h d a h d

R a h d a h d

a h d R a h d

       

           

          

       

 

from which 

2
2 2

0( / 2) [ ( / 2)cos ] .
dS d

a h R a h
d d

 
       

  
 (5) 

Substituting the value of the derivative into expression (5) 
d

d




 we get the differential dependence between the 

angle  and the arc of the medial line S 

2

1 1
.

/ 2
sin [ cos sin ] cos

1
cos sin

x y z

y x

d

dS a h





        

  
     

 

From here 

2
0

sin ( cos sin ) cos 1
.

[ ( / 2)cos ]( cos sin ) sin ( cos sin ) cos
1

cos sin

x y z

y y
x y z

y z

d d d

dS d dS R a h

        
  

               
  

    

 

After performing the appropriate mathematical transformations, we obtain: 

 
22

cos sin1
;

2
( cos sin ) sin [ cos sin ] cos

y x

y x x y z

d

dS a h/

   
 


         

  (6) 

 
220

sin ( cos sin ) cos1
.

( 2)cos
(cos sin ) sin [ cos sin ] cos

x y z

y x x y z

d

dS R a h/

     
 

  
         

  (7) 

 

Relations (6), (7) can be considered as a system of 

two nonlinear differential equations of the first order. 

Solving this system under initial conditions 

,  =      for S = 0, we find dependencies  = (S) 

and  = (S) and with their help we will find the desired 

value of S from the condition + = (S). 

You can greatly simplify the task if you use a raster 

representation of the surface. In this case, the model of 

the HW surface is presented in the form of a grid con-

sisting of characteristic intersecting lines belonging to 

the surface. These lines are meridional cross-sections 

and segments connecting characteristic points when 

dividing the closed lines limiting the cross-sections. 

Intersection points of closed curves, which limit the 

cross-section and segments, form raster nodes, and a set 

of such points on the modeled surface is a raster. If the 

distance between the raster nodes is small, then the ras-

ter points describe the surface of the HW quite accurate-

ly. The three-dimensional geometric model of the HW 

is shown in Figs. 2a, 2b.  
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Fig. 2a. Three-dimensional geometric model of the HW 

(front view) 
 

 

Fig. 2b. Three-dimensional geometric model of the HW 

(arbitrary direction of gaze) 

The formation of the complex surface of the HW is 

carried out by a set of meridional sections (Fig. 3) [2, 3]. 

Infinitely thin conductors, considered as calculated, are 

divided into 720 discrete currents of the element. The 

length of each element ranges from 10 to 16 mm. The 

division is carried out by a cutting plane  = const.  
 

 

Fig. 3. Formation of the surface of the HW by a set of 

meridional sections 

2. DETERMINATION OF THE CHARAC-

TERISTIC VALUES OF THE MAGNETIC 

CONFIGURATION 

Formulation of the problem. The optimization 

problem of determining the values of the characteristics 

of the magnetic configuration is a multi-criteria problem 

of nonlinear programming due to the presence of five 

initial parameters and is formulated as the problem of 

determining the values of the characteristics of the field, 

which are the best from the point of view of meeting the 

requirements of the technical task with an unchanged 

structure of the designed object. Among the initial pa-

rameters, we will single out the most critical (separate 

criterion) – the topology of the magnetic field lines [4] 

and, thereby, reduce the solution of the multi-criteria 

problem to a single-criterion one, and the conditions for 

the performance of the other initial parameters (rota-

tional transformation angle, width, magnetic pit, voltage 

modulation along of the line of force of the magnetic 

field [2]) can be attributed to the limitations of the prob-

lem, which are determined analytically. 

To solve the problem of mathematical modeling of 

SSS, we will introduce partial criteria for the optimality 

of characteristic3 

   

where k = 1, 2, 3, 4; i = 1, 2, 3  – main stresses 

acting on the faces of the selected pole element of the 

magnetic windings;  – tangential stresses on a 

selected element; – deformations in the direc-

tions of the axes, which are applied to the characteristic 

points of the end elements; – angles of rota-

tion of the calculated points of the final elements in the 

direction of the coordinate axes. 

The solution to the task of determining the partial 

optimality criteria of SSS characteristics is reduced to 

the determination of parameters , which 

are in the range of available values  and at the same 

time provide a minimum of all optimality criteria . 

For optimality based on a set of criteria, we will intro-

duce a vector optimality criterion . Then the objec-

tive function can be written as 

 min
X D

Q X ,


 

where  – vector of controlled param-

eters;  – objective function or system performance 

criterion. 

Controlled parameters include: 

– geometric characteristics of the torus; 

– the law of winding poles on a toroidal surface 

 where  – the angle characterizing 

the position of the winding line point in the meridional 

section;  і  – modulation coefficients;  – the num-

ber of steps of the helical conductor along the length of 

the torus;  – the number of occurrences of helical con-

ductors; 

– quantities included in the Biot-Savart law  

 

where S – radius vector drawn from the element  to 

the point at which the magnetic field vector is calculat-

ed; 
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– a number of constants characterizing the properties 

of the materials that make up the winding pole; 

– the square of thecross section of winding poles. 

The main requirement for the mathematical model of 

the SSS is that the mathematical description should ac-

curately reflect the magnitudes of stresses and strains 

occurring in the elements of the magnetic system. The 

accuracy of the model is determined by the reliability of 

the results obtained during the tests. 

3. CALCULATION MODEL OF SSS 

1. It is assumed that the currents flowing through the 

conductors of the magnetic windings are concentrated in 

an infinitely thin conductor located in the center of the 

magnetic windings. 

2. Infinitely thin conductors are divided into 720 

discrete current cells. The length of each element varies 

from 10 mm to 16 mm. The division is carried out by a 

cutting plane (Fig. 4). 

3. In the selected coordinate system, the coordinates 

of the ends of the elements and the coordinates of the 

midpoints of the segments of each discrete element are 

calculated. 

4. Using the analytical expression of the Biot-

Savart-Laplace law 
  





3S

Sld

C

J
B




, 

where
0S r r  , radius vector drawn from the current 

element Jdl to the point of observation, the vector of the 

magnetic field B and forces acting on the middle of the 

discrete element of each conductor of the helical wind-

ing is calculated. 

 

Fig. 4. Vector representation of the calculation of forces 

acting on discrete current elements  
 

The results of the calculations of the distribution of 

the magnetic field and the forces acting on the discrete 

current elements (n is the number of the current ele-

ment) are shown in Figs. 5–9.  

 
Fig. 5. Distribution of the modulus of the induction vec-

tor of the magnetic field Вn(1) along the length of the 

1st half-pole 

 
Fig. 6. Distribution of the modulus of forces dFn(1) 

along the length of the 1st conductor of the 1st half-pole 
 

 
Fig. 7. Distribution of the radial force component 

dFn(1) along the length of the 1st conductor of the 1st 

half-pole 

 
Fig. 8. Distribution of the azimuthal component of the 

force dFn(1) along the length of the 1st conductor of the 

1st half-pole 
 

 
Fig. 9. Distribution of the poloidal force component 

dFn(1) along the length of the 1st conductor of the 1st 

half-pole 

CONCLUSIONS 

Mathematical models and methods of determining 

the stress-strain state of the winding of a closed magnet-

ic system have been developed. The practical value of 

the obtained results is that the developed models and 

methods can be used to calculate electrodynamic forces 

in the conductors of the helical winding of a closed 

magnetic system, which allows solving a number of 

design, technological and operational tasks, namely: – at 

which currents the forces reach extreme values; in 

which deformations of the poles lead to distortions of 

the geometry of the winding poles and how these per-

turbations in the geometry are reflected in the properties 

of the magnetic field that hold the plasma. 
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МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ НАПРУЖЕНО-ДЕФОРМОВАНОГО СТАНУ ОБМОТКИ 

ЗАМКНУТОЇ МАГНІТНОЇ СИСТЕМИ 

С.О. Мартинов, В.П. Лук’янова, С.І. Прохорець, А.Ю. Юркін, М.А. Хажмурадов  

Проведено математичне моделювання напружено-деформованого стану обмотки замкнутої магнітної си-

стеми, котре полягає в розробці тривимірної геометричної моделі гвинтової обмотки та визначенні значень 

характеристик магнітної системи, найкращих з точки зору задоволення вимог технічного завдання проекто-

ваного об'єкта. 

 


