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Acceleration of electrons in the field of two electromagnetic waves propagating in a slowing down medium in 

the direction of motion of electrons is considered under conditions when one of the waves propagates with a phase 

velocity greater than the velocity of electrons, and the other with a phase velocity less than the velocity of electrons. 

Taking into account deceleration by radiation, we determine dependence of the electron energy on the coordinate 

along the direction of acceleration. Thus, we obtain the expression for the maximum electron energy and effective 

acceleration length.  
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INTRODUCTION 

A number of new methods of charged particles ac-

celeration are known to use the inversion of the elemen-

tary effects of radiation and scattering of electromagnet-

ic waves by moving charged particles [1]. Studying the 

possibility of inverting the known mechanisms of elec-

tromagnetic waves emission is important for the search 

of new methods of the charged particles acceleration 

[2, 3]. In this work, we investigated the possibility of 

accelerating electrons under conditions of the inverse 

anomalous light scattering effect [4, 5]. The author ana-

lyzed the mechanism of charged particles acceleration, 

as well as the physical reasons limiting the increase in 

the energy of electrons. 

1. THE KINEMATICS OF SCATTERING 

The elementary effect of anomalous scattering is that 

an incident photon with a frequency of 1, scattered by 

a relativistic electron moving in a refractive medium, 

causes the appearance of an induced photon of the same 

frequency 1 and a photon of scattered light with a fre-

quency of 2 [4]. The laws of energy conservation and 

momentum of an electron in an elementary act of anom-

alous scattering can be written in the form:  

 2112    , 2112 kkpp   ,  (1) 

here 1, p1 and 2, p2 are the energy and momentum of 

an electron before and after interaction with photons, 

i  and ik  are the energy and momentum of a pho-

ton, i = 1, 2. 

In the elementary process of inverse anomalous scat-

tering, the energy and momentum of two incident pho-

tons of frequencies 1 and 2 are given to a particle. In 

this case, the laws of conservation of energy and mo-

mentum have the form 

 2112    , 2112 kkpp   .  (2) 

Assuming that the momentum of a photon in a me-

dium is equal 
k

k

c

n
, and the energy of photons is 

small compared to the energy of a particle, it follows 

from (2) that frequencies 1 and 2 satisfy the relation 
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similar to the case of anomalous scattering of light by a 

moving charged particle (1). Here and in what follows, 

for simplicity, we assume that the medium is isotropic, 

characterized by a refractive index  n  that depends 

on the frequency, cvβ  , 1 and 2 are the angles be-

tween the particle velocity v and the wave vectors k1 

and k2, and c is the speed of light in vacuum. 

It should be noted that the stimulated anomalous 

scattering of an electromagnetic wave by an intense 

relativistic electron beam leads to the development of 

collective beam instability, as a result of which the in-

tensities of the incident and scattered radiation increase 

simultaneously. The condition for the resonance of the 

beam electrons with the incident and scattered electro-

magnetic waves has the form [6] 

  2121 kkv  .  (4) 

In the case of anomalous scattering and the corre-

sponding inverse effect, it is necessary that for one wave 

the condition is satisfied 1cos 11 n , while for the 

other wave the condition is 1cos 22 n . Here 

ni=n(ωi). Below we will consider the process inverse to 

stimulated anomalous scattering, namely, the accelera-

tion of electrons in the field of two incident electromag-

netic waves of frequencies 1 and 2, when the wave-

resonance condition (4) is satisfied. 

2. ACCELERATION DYNAMICS 

Let an electron flow move in the positive direction 

of the z axis with an initial velocity v0. Two plane mon-

ochromatic waves E1 and E2 propagate in the same di-

rection: 

   111 sin,  Atz xeE ,   222 sin,  Atz xeE ,  (5) 

where Ai is the amplitude of the wave, tzk iii  , 

i, ki are the frequencies and wave vectors of the waves,  

i = 1,2; ex is a unit vector along the x-axis. Let 2> 1 

and the phase velocity of one of the waves is less than 

the velocity of the beam, and the phase velocity of other 

wave is greater than its velocity: 

 c
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The electromagnetic fields (5) produce a transverse 

oscillator speed of electrons. Taking into account the 

conservation of the generalized transverse (perpendicu-
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lar to the z-axis) momentum of the electrons in the elec-

tromagnetic fields (5), the expression for the transverse 

oscillator velocity of the electrons can be written in the 

form 

  2211 coscos 


aa
c

x  ev ,  (7) 

where 
i

i
i

mc

eA
a


 ,   2121


 β  is the relativistic 

factor, e  is the electron charge, m  is its mass. 

In the longitudinal direction, along the z axis, the 

electrons move under the action of the ponderomotive 

force generated by the beats of the two considered elec-

tromagnetic waves. The dynamics of changes in the 

energy of electrons in the field of these waves is de-

scribed by the equation: 
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where  2mc  is the energy of an electron.  

The second term in equation (8) describes the radia-

tion energy loss of an individual electron for radiation. 
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The first term in the eq. (9) is due to the loss of the 

electron energy for radiation in the field of the electro-

magnetic wave E1, and the second term in this equation 

is due to the loss of energy of an electron for radiation 

in the field of the electromagnetic wave E2. 

Substituting expressions (5), (7) and (9) in (8) and 

keeping the resonance terms 33v kz  , for relativ-

istic electrons (
2
>>1) we obtain the following equations 

of motion:  
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1 1 an
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tzk 33  , 213  , 213 kkk  . Here, in-

stead of t, we introduced a new independent variable 

0z . When calculating the radiation loss of an indi-

vidual electron in the eq. (10), it was assumed that the 

frequency 2 is so high that n2=1, and also that 12,1 a , 

  1
2
1

22
12 1 nnaa  .  

Consider the motion of an equilibrium (synchro-

nous) particle, whose phase relative to the combination 

wave remains constant during the acceleration process: 

c=const. Then, from Eq. (10) with a fixed value of the 

parameter , we obtain the following equation, which 

determines the energy of an equilibrium particle c as an 

implicit function of the coordinate z: 
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 00 c , the subscript ''c'' denotes the values of the 

equilibrium particle. 

It follows from equations (10) and (12) that the en-

ergy of electrons in the accelerating phase 0sin c  

increases as they move along z. 

In the case c<<*, when the ponderomotive force 

accelerating the electrons significantly exceeds the force 

of radiative deceleration of an individual electron, from 

Eq. (12) we obtain the following law of increasing the 

energy of an equilibrium particle  

 zc  22
0 .  (13) 

In the case *–c<<*, when the ponderomotive force 

accelerating the electrons significantly exceeds the 

damping force by the radiation of an individual electron, 

from Eq. (12) we obtain the following law for the in-

crease in the energy of an equilibrium particle:  
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Let's note that the function B(x) monotonically in-

creases from a value approximately equal to 0.7 at 

1x  to unity at 1x . 

Equation (14) shows that the limiting energy to 

which electrons can be accelerated is  
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Dependence of the normalized particle energy 

on the normalized acceleration length 
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Figure shows the graph obtained by solving equation 

(12). As can be seen from Figure at  2
*z , the parti-

cle energy approaches the maximum energy (the differ-

ence is about 3%). For relativistic particles, taking into 

account that the wave frequencies satisfy the relations 

(3) and (6), the expression (15) can be written in the 

form 
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where 1v1  c . 

From this equation it follows, for example, that for 

electrons with an initial energy of tens of 

megaelectronvolt, an electromagnetic wave Е1 in the 

centimeter range and parameters а2 а1, maximum en-

ergy of accelerated electrons can be several tens of 

gigaelectronvolt. The limitation of the maximum elec-

tron energy in the considered acceleration method is due 

to the fact that at values of c close to *, practically all 

the energy acquired by the particle in the accelerating 

field of the combination wave is lost by the particle to 

radiation.  

Equation (14) and Fig. 1 also show that the charac-

teristic distance L*, at which electrons gain energy close 

to the maximum possible, is equal to 
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We note that this distance increases with an increase 

in the maximum electron energy and the acceleration 

length up to energies of several gigaelectronvolt, in the 

considered example, can be hundreds of meters. 

CONCLUSIONS 

Continuous acceleration in the considered case is 

possible while maintaining the synchronism of electrons 

with the combination wave along the acceleration 

length. For this, one can, for example, change the ge-

ometry of the slow wave structure or alternate sections 

with different values of frequencies 1 and 2.  

Since the accelerating force is proportional to the 

square of the charge, electrons and positrons can be ac-

celerated in one bunch, compensating the space charge 

of each other. 

It should also be noted that the above calculations of 

the dynamics of electron acceleration correspond to the 

case when the ionization losses by particles are small. 

This can be achieved, for example, when accelerating in 

plasma in the field of intense laser radiation and a slow 

plasma wave (plasma FEL [6, 7]) or upon acceleration 

in a thin channel in the medium. In the latter case, the 

radius of the channel should be less than the wavelength 

of the low-frequency slow wave and may be much larg-

er than the wavelength of the high-frequency (laser) 

radiation. 
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УСКОРЕНИЕ ЭЛЕКТРОНОВ С ПОМОЩЬЮ ОБРАЩЕННОГО АНОМАЛЬНОГО РАССЕЯНИЯ 

В.В. Огнивенко 

Рассмотрено ускорение электронов в поле двух электромагнитных волн, распространяющихся в замед-

ляющей среде в направлении движения электронов, когда одна из волн распространяется с фазовой скоро-

стью большей скорости электронов, а другая с фазовой скоростью меньшей скорости электронов. Учитывая 

торможение излучением, определена зависимость энергии электронов от длины ускорения. Получено выра-

жение для максимальной энергии электронов и эффективной длины ускорения. 

ПРИСКОРЕННЯ ЕЛЕКТРОНІВ ЗА ДОПОМОГОЮ ОБЕРНЕНОГО АНОМАЛЬНОГО РОЗСІЯННЯ 

В.В. Огнівенко 

Розглянуто прискорення електронів у полі двох електромагнітних хвиль, що поширюються в уповіль-

нюючому середовищі в напрямку руху електронів, коли одна із хвиль поширюється з фазовою швидкістю 

більшою швидкості електронів, а інша з фазовою швидкістю меншою швидкості електронів. Враховуючи 

гальмування випромінюванням, визначена залежність енергії електронів від координати уздовж напрямку 

прискорення. Отримано вираз для максимальної енергії електронів і ефективної довжини прискорення. 


