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The results of processes investigation of nonlinear interaction of wave in plasma were expounded. First of all the 

mechanisms of the processes control of three frequencies wave interaction were considered. It was shown that using 

of the whirligig principle allows to point out to conditions of existence of decay processes and to conditions of sup-

pression of decay processes. It was discovered that separated waves with circle polarization do not decay in plasma.   
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INTRODUCTION 

Processes in plasma are separated into two funda-

mental directions: processes of interaction wave-particle 

type  and one of wave-wave type. In the last case pro-

cesses of wave interaction can be divided on parametric 

processes and nonlinear ones. Processes of three wave 

interaction in plasma should be highlighted from non-

linear ones. These processes are mostly studied and 

most often appear in experiment. Such feature of these 

interactions is connected that they are conditioned by 

the quadratic nonlinearity. The nonlinearities of more 

higher order do not observe in experiment (they are 

small and proportional to third and more higher power 

of small parameters). Essential meaning among three 

wave interaction in plasma have decays. They allow to 

transform energy of high frequency waves into energy 

of low frequency ones that effectively heat plasma. This 

is positive function of decays. On other hand they can 

prevent to propagation and accumulation wave energy 

in the plasma waveguides and cavities. Such to effec-

tively to control the characteristics of interacting waves 

it is necessary to know conditions that will support de-

cays and that will support these processes. In this work 

the answers for some of these questions will be present-

ed. The principle of whirligig was putted into base of 

finding of effective mechanism for control of wave in-

teraction processes in plasma [1, 2]. 

1. STABILIZATION OF THREE WAVE 

DECAY PROCESS IN PLASMA 

As example of using of whirligig principle let us 

consider stabilization of well studied (see, for example, 

[3,4]) three wave process in plasma. The set of equa-

tions that describes investigating processes will look 

like this 

0 0 1 2A A A ; 1 1 0 2A A A  ; 2 2 0 1 3A A A A   ; 3 2A A  . (1) 

Here 0A  – amplitude of wave that decays, with max-

ima frequency 0 ; 1A   amplitude of high frequency 

wave, on that take place decay. The frequency of this 

wave equals 1 ; 2A – amplitude of low frequency wave 

that take part in the process of three wave deacay. The 

frequency of this wave equals  . There is synchronism 

between waves ( 0 1   ). 3A – amplitude of fourth 

wave that as we suppose must suppress decay process. 

This wave have frequency that equals to one of low fre-

quency wave and is synchronous with them and interac-

tion with them with coefficient that equals  . 

We will to study the initial study of decay. In this 

case amplitude of decaying wave can be considered as 

constant ( 0A const ). Then equation for amplitude 2A  

is obtained from set of equation (1): 
22

2 1 2 0 2 0A A A     
 

.    (2) 

From equation (2) it is seen that decay process will 

be suppressed if following condition will be satisfied: 
22

1 2 0A   .     (3) 

Taking into account, that first addend in square 

brackets is conditioned by the linear process and second 

is conditioned by nonlinear process then inequality is 

satisfied easily. 

Inequality (3) was obtained by using additional sta-

bilizing perturbance ( 3A ). The whirligig principle may 

be us full to find out conditions of conditions decay ex-

istence and to find out conditions of suppression. As 

example of such analysis we will consider processes of 

nonlinear three wave interaction in the Magnetoactive 

plasma. 

1.1. FORMULATION OF PROBLEM.  

MAIN EQUATION  

Common initial equations are Maxwell ones for 

field, continuity equation for plasma density and equa-

tion of motion for plasma particles: 

   

1 4 1
, , ,

0, .

E H
rot H j rot E j env

c t c c t

n v e e
nv v v E vH

t t m mc

 
    

 

 
         

(4) 

To avoid of unwieldy formulae, physical content of 

which is difficultly to understand, we in this section 

limit our consideration by one dimensional case, i.e. the 

derivatives that do not equals zero are temporal one and 

one of the space derivative: 0 and 0
z t

  
 

. 

Components of field we select in the form: 

 x yE ,H ;  y xE ,H   high frequency  HF  field,  

mailto:vbuts@kipt.kharkov.ua


ISSN 1562-6016. ВАНТ. 2021. № 4(134) 145 

zE   longitudinal low frequency  LF  field,       (5) 

and also 
0 zH H const   – constant external magnetic 

field in which plasma is placed 

In the magnetoactive plasma natural modes are 

waves with circular polarization. Keep in mind this we 

introduce new dependent variables: 

; ;x y x y x yE E iE H H iH v v iv        .  (6) 

Set of equations (4) for this new dependent variables 

is transformed into next one: 

     

1 1
( ) ,

4
,

( ) ( ).

y x
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z c t c t
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e e
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t z m mc


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



 

    
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   

  
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

 

 
  

 

(7) 

where 0 /H eH mc    electron cyclotron frequency. 

If dependent variables from coordinate z is as 

( ~ ikze ), equations (7) are ones for two nonlinear, con-

nected oscillators for two HF waves: 

 
22 2

0 0

2 2 2 2 2
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2 2

4 41
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 
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 
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          

(8) 

      ( ) ( )z H z

e e
v v v E i v i v H

t z m mc
    

 
  

 
.(9) 

Here 2

04 /p e n m   is plasma frequency which is 

frequency of excited LF-wave. 

Dispersion curves for electromagnetic and plasma 

waves is presented on Figs. 1, 2. Arrows point out pos-

sible resonantly interacting triplets of wave. 
 

  

Fig. 1. Dispersion  

diagram of wave that 

propagate in one direction 

Fig. 2. Dispersion diagram 

of wave that propagate 

different directions 

Latter we will neglect by dependence from space 

coordinate (resonator case). In this case all dependence 

versus coordinate can be rewrited as /G z ikG     for 

high frequence variables, and /G z i G     for low 

frequency ones. In this case set of equations for low 

frequency variables has the form: 

1
0( )z

n
i v n n

t



 


.      (10) 

 24

2

z
z

v e e e kc
n i v v E v E

t i m mc




 
   

     
        

     
.(11) 

In the nonlinear addend of set (10), (11) it may sub-

stitute expressions that obtained from linear equations. 

Solution of equations (8), (9) we will find in the 

form: 

 ( )exp( ) . . , 1,2,3j j jE A t i k c j     .    (12) 

Here  j j jt k z   ; 
j  and 

jk  frequency and 

wave vector of interacting wave. These wave character-

istic satisfy to linear dispersion equation. Amplitudes 

( )jA t  slowly vary as a result of nonlinear wave interac-

tion. Frequencies and wave vectors of interacting waves 

must satisfy to famous synchronism conditions: 

1 2 3    ,    1 2 3k k k  .  (13) 

1.2. DECAY OF TYPE t t l   TRANSVERCE 

WAVE WITHOUT EXTERNAL MAGNETIC 

FIELD 0H   

First of all we will consider most simple and well 

studied decay of transverse wave into transverse one 

and plasma one when external magnetic field is absent 

0H  . Dispersion diagrams waves are presented on 

Figs. 1, 2. This is decay of t t l   type. In this case it 

may be limited by studying of dynamics of linear polar-

ization wave with components xE , yH   0y xE H  . 

Then ; ;x x yE E v v H iH     . 

For analysis of slow nonlinear dynamics of ampli-

tudes of interacting waves from equations (8 - 11) by 

usual method [3 - 5] the following set of shorted equa-

tions to defining of these amplitudes is obtained: 

1
2 3

22

pA
A a

t

 




 


, 2

1 3

12

pA
A a

t

 







       (14) 

 2

1 23
1 2

1 22

k ka e
A A

t m 

  
  

  
.     

In this set for slow function of longitudinal velocity 

the new designation was introduced: 

3 3A a . 

The results of this section, in particular integrals, 

practically do not differ from results, presented in [3]. 

1.3. DECAY OF WAVES WITH CIRCULAR 

POLARIZATION 

Using whirligig principle we expect that in this case 

one wave with circular polarization will not decay. De-

cay process will be suppressed.  

In this case it is necessary to take into account all 

components of electromagnetic waves field. Using set 

of equations (8) - (10) it may obtain following set of 

shorted equations to define amplitudes jA  that slowly 

varying and describe dynamics wave amplitudes with 

right and left circular polarization: 

1
2 3

22

pA
A a

t

 






 


, 2
1 3

12

pA
A a
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 




 




 ,   (15) 

 
   

2

1 23
1 2 1 2

1 24

k ka e
A A A A

t m 

 
              

.   

The most essential results that is seen at analysis of 

third equation of set (15) is fact that amplitude of third 

wave (low frequency, Langmuir) does not change with 

time ( 3a const ) if field of high frequency wave con-

tains only wave with circular polarization. Really from 

third equation of set (15) it is seen that multiplier in 

square brackets of right part of this equation contains 
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only products of amplitudes of different polarization. If 

wave field that decaying contains only one polarization, 

then factor in square brackets is zero. Thus wave with 

circular polarization will not take part in three wave 

interaction (in decay of t t l   type). 

1.4. DECAY OF t t l   TYPE  

WITH EXTERNAL MAGNETIC FIELD 0H   

Let us consider most common case when there are 

all components of fields of electromagnetic wave and 

plasma is placed in external magnetic field. The shorted 

set of equations that describes dynamics of high fre-

quencies transverse wave may be obtained from set (4). 

Solution for high frequency wave may find in form: 
2

1

( ) exp( ) . .x j j

j

E A t i k c


  ; 
2

1

( ) exp( ) . .y j j

j

E B t i k c


  (16) 

Then to find dynamics of low frequency waves the 

following shorted equation is obtained: 
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          
   

       
     

     

.(17) 

It is lightly to show that in this case if in the interac-

tion process takes part only one transverse natural wave 

with circular polarization, then such waves do not decay 

into transverse and longitudinal ones, i.e. process 

t t l   can not realize.  

To prove this fact enough in formula (17) substitute 

expression: 

   / 2; / 2x yE E E E E E i       .  (18) 

Then it is lightly to see when there is only one wave 

with circular polarization ( E or E  ) the right part of 

equation (15) (and equation (17) too) is zero. This 

means that such transverse wave which rotates on circle 

does not excite longitudinal plasma wave and does not 

decay. 

1.5. INFLUENCE OF FARADEY EFFECT  

ON DECFY PROCESS 

Above we seen, if in magnetoactive plasma excited 

only one natural wave, then process of decay will be 

suppressed. Such process of decay is realized only in 

that case when in plasma excited two waves with right 

and left circular polarization. But from whirligig princi-

ple it follow, if waves rotate enough fast, this may rip 

off instability in the magnetoactive plasma wave rotate 

because of Faraday effect. This is linear process. This 

rotation can suppress process of decay. It may find con-

dition of such suppression. For this it may find follow-

ing shorted equations from equations (7) that describe 

dynamics of waves component at Faraday effect  

;x y y xE E E E    ;    (19) 

where /E E t   ;   2 2 2/ 2H p H        . 

When formulae were obtained we supposed 

1 2 ; ,H p        

E i E   .     (20) 

Formula (20) point out on fact that natural modes 

take additional phase dynamics that conditioned by Far-

aday effect. This additional dynamics will appear as 

detuning of synchronism, for example, in equation (17), 

not allowing to excite Langmuir wave. But if amplitude 

of decaying will be enough large, this detuning will not 

essentially change dynamics of wave interaction. To 

define value of this amplitude from equations, for ex-

ample (15), it is possible to find value of increment of 

decay instability: 

  /pc      ;  /eE mc  .  (21) 

If value of this increment will be larger than detun-

ing, conditioned by Faraday effect then decay process 

will be realized. The condition of realization of such 

decay is inequalities. 

  ;    
3/2

/ /H pc     .   (22) 

2. RESULTS OF NUMERICAL ANALYSIS 

The results described above were obtained by ana-

lyzing the shortened equations. Such equations are 

much simpler than the original equations. However, 

when they were obtained, many terms and many deriva-

tives were discarded. The question arises: to what extent 

do the results obtained correctly describe the dynamics 

of the system under study? To answer this question, it is 

necessary to find a solution to the original equations. 

Such a solution can only be obtained by numerical 

methods. This section presents the results of a numerical 

analysis of the original equations. Immediately note that 

the results obtained by numerical methods are in good 

agreement with the analytical results obtained above. 

For comparison the numerical solutions of the origi-

nal system of equations with the solutions of the short-

ened system of equations, we will set the initial values 

of the interacting fields based on the equations of the 

linear approximation of the original system. 

To carry out a numerical analysis of the decay proc-

ess, it is convenient to introduce dimensionless variables 
2

3

1 1 0

1

1

, , , ,

, ; ;

1,2,3 1,2 for waves, 3 for wave.

j p j

j z j

eE v n
i n n

mc c c n

t k kz
c

j j HF j LF


  

  


  

    

  

   

a a e

 

For numerical study of the decay dynamics of the 

linearly polarized wave (Section 1.2), we rewrite the 

system of equations (14) in the form: 

* 31 2
1 2 3 2 1 3 3 1 2, ,V V V

  

 
   

  

aa a
a a aa aa .    (23) 

Here matrix elements 1 1 22pV c   , 

2

2 12pV c   ,  3 1 2 22V k k c   .  

Note that by renormalizing the amplitudes in system 

(23), the matrix elements 1 2 3, ,V V V  can always be 

transformed to the form when they are equal: 

1 2 3V V V V    (see [3]). For the numerical analysis of 

the decay process, the following parameters of the sys-

tem were selected: 
9 1

1 2.77 10f s   is frequency of the 

HF pump wave, 
9 3

0 16 10n cm   is plasma density, 
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2 1 p     is frequency of the excited HF-wave, 

3 p   is frequency of the excited LF-wave. 

The graphs of the amplitudes dynamics 2 2 2

1 2 3, ,a a a  

versus time are shown in Fig. 3 for stable and unstable 

(for the case of decay of a linearly polarized wave) for 

the set values of the wave amplitudes ( 0)j j  a0 =a  

a b 

c d 

e f 

Fig. 3. Dependences of amplitudes 2 2

1 2
,a a , 2

3
a  of waves 

with linear polarization on time :  a, b, e, f  short-

ened; c, d  the original system of equations.  

Initial values: 1 0.01a0 , 2 0.001a0 (a-d); 

3 0.03a0  (a, c); 3 0.0001a0  (b, d). 

For V1=V2=V3=1: 1 0.001a0 , 2 0.0025a0 ; 

3 0.01a0  (e); 1 0.01a0 , 2 0.001a0 , 3 0.0001a0  (f) 

As can be seen from the graphs in Fig. 3, the magni-

tudes of the wave amplitudes are practically the same 

both in the case of the shortened and the original system 

of equations. In this case, the small difference in the 

oscillation period of the amplitudes in the description of 

the decay by the original and the shortened system of 

equations is due to the inclusion of cubic and higher 

order terms in nonlinearity in the original system of 

equations. At equal values of the matrix elements, the 

dynamics of the amplitudes of excited waves ( 2 2

2 3,a a ) 

practically coincides (see [3]).  

The integrals of system (23) (known as the Manley-

Rowe relations) remain constant (with machine preci-

sion) over the entire computation time interval. It fol-

lows from these integrals that at the initial amplitudes 
2 2

2 1 1 2(0) (0)V Va a  and 
2 2

3 1 1 3(0) (0)V Va a  the 

maximum values of the amplitudes of the decaying 

waves, depending on the plasma density, are in the rela-

tion 
 

2

3max 1 21

2

2max p

k k

 




a

a
. This dependence is con-

firmed by the results of numerical analysis. 

The obtained results in their physical meaning fully 

correspond to the results given in [3].  

For a numerical analysis of wave decay with circular 

polarization (Section 1.3), the system of equations (15) 

is also convenient to rewrite in dimensionless variables 

1,2

1,2

1

eA

mc



 a 3
3,

a

c
a  with the same matrix elements 

1 2 3, ,V V V . 

Graphs of amplitude dynamics versus time are 

shown in Fig. 4 for decay of waves with circular polari-

zation when describing this decay by the shortened (26) 

and the original initial system of equations. 

a 
 

b 

Fig. 4. Dependences of amplitudes    
2 2

2

1 2 3, , 
a a a   

of waves with circular polarization on time  : Initial 

values of amplitudes 1 1 0.01  a0 a0 , 

2 2 0.001  a0 a0 , 3 0.0001a0 ; 

shortened (a); the original system of equations (b) 

As can be seen from the graphs in Fig. 4, with circu-

lar polarization of waves, the dynamics of the ampli-

tudes of high-frequency waves practically did not 

change in comparison with the case of waves with linear 

polarization, but the maximum amplitude of the excited 

low-frequency wave  the longitudinal velocity 3z a   

significantly decreased. 

If only waves of one circular polarization participate 

in the decay of the type t t l  , then such three-wave 

interactions of the waves are suppressed. 

The results of a numerical study confirm that in the 

presence of waves of the one circular polarization: 

1,2 1,2
(0) 0 and (0) 0  a a  or 

1,2 1,2
(0) 0 and (0) 0  a a  the 

amplitude of the LF wave remains constant, frequency 

HF waves is 3 1 2HF a VV   (Fig. 5). 
 

 
Fig. 5. Dependence of the field amplitude 2

3a . 

On time to time at: 1 0.01 a0 , 2 0.001 a0 , 

1 0.0 a0 , 2 0.0 a0 , 3 0.005a0  

The same result takes place in the presence of waves 
2

1 2 3, , 
a a a  and in the absence of waves 1 2, 

a a . 

In the presence of an external magnetic field (Sec-

tion 1.4), the dynamics of the LF wave amplitude versus 

time in the absence of one of the circularly polarized 

waves completely coincides with the dynamics of the 

LF wave amplitude in a system without a magnetic field 

 this amplitude remains constant regardless of the 

magnitude of the external magnetic field. 
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The influence of the detuning caused by the Faraday 

effect (Section 1.5) on the decay dynamics will be ana-

lyzed by numerically solving the original system of 

equations. The initial values for the fields were chosen 

to satisfy the linear equations of this system of equa-

tions. From the condition for the existence of decay 

(22), we introduce the threshold value of the pump wave 

amplitude   
3/2

0 2( ) / /H pthres H c     , at which 

the detuning value due to the external magnetic field 

becomes equal to the increment of the decay process. So 

with values 0 40H G  (40) 0.02th  .  
 

a b 

c d 

Fig. 6. Dependences of amplitudes 2 2

1 2,x xa a , 2

3a  on time 

for various values of the magnetic field: 

0 0H   (a); 0 10H G  (b); 0 25H G  (c);  

0 60H G  (d). Initial field amplitudes:  

1 0.02x a0 , 2 0.001x a0 ; 3 0.001a0  

As can be seen from Fig. 6 with an increase in the 

detuning parameter at 0 10H G  (10) 0.005thres  , the 

strict periodicity of the dynamics amplitudes of high-

frequency waves was violated, the dynamics of the am-

plitudes of low-frequency waves remained practically 

the same as at 0 0H   with slightly lower maximum 

values. With an increase in the detuning parameter at 

0 25H G  (25) 0.01thres  , the dynamics of the LF 

wave amplitude also changes qualitatively, and at 

0 60H G  (60) 0.03thres   exceeds the initial pump 

wave amplitude, which leads to the breakdown of the 

wave decay process. 
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CONCLUSIONS 

The examples considered above show that the whirl-

igig principle can be used not only to stabilize various 

instabilities, but also as a tool to predict both the condi-

tions for stable states and the conditions for the devel-

opment of instabilities. In this work, with his help, it 

was possible to determine the conditions under which 

the interactions of waves in a magnetoactive plasma will 

be unstable, as well as the conditions for the suppression 

of these instabilities. These results allow us to point out 

the range of parameters that must be selected to imple-

ment the required modes of wave interaction. In particu-

lar, it is shown that circularly polarized waves will be 

stable with respect to decays. 
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УПРАВЛЕНИЕ ПРОЦЕССАМИ ВЗАИМОДЕЙСТВИЯ ВОЛН В ПЛАЗМЕ 

В.А. Буц, И.К. Ковальчук, А.П. Толстолужский, А.Г. Загородний 

Изложены результаты исследования процессов нелинейного взаимодействия волн в плазме. Прежде все-

го рассмотрены механизмы управления процессами трехчастотного взаимодействия. Показано, что исполь-

зование принципa юлы позволяет указать на условия существования распадных процессов и на условия по-

давления процессов распада. Обнаружено, что отдельные волны с круговой поляризацией не распадаются в 

плазме. 

КЕРУВАННЯ ПРОЦЕСАМИ ВЗАЄМОДІЇ ХВИЛЬ У ПЛАЗМІ 

В.О. Буц, І.К. Ковальчук, О.П. Толстолужський, А.Г. Загородній 

Викладені результати дослідження процесів нелінійної взаємодії хвиль у плазмі. Насамперед розглянуті 

механізми керування процесами тричастотної взаємодії. Показано, що використання принципу дзиґи 

дозволяє вказати на умови існування розпадних процесів і на умови придушення процесів розпаду. 

Виявлено, що окремі хвилі із круговою поляризацією не розпадаються в плазмі. 


