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COMPUTER CALCULATION OF PROBABILITY FOR BINARY 
COLLISIONS OF ELECTRONS WITH IONS AND MOLECULES 
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Computer calculation of rate coefficient for binary collision i    as a function of temperature is presented, 
and the Maxwell electron velocity distribution function is chosen. The finite elements of the fifth order made it pos-
sible to significantly speed up the process of calculation i   . The result of the approximation is a smooth func-
tion and the values of this function, its first and second derivatives, have no jumps at the mesh nodes and the accu-
racy of calculation is within the limits of statistical errors for the source data. These advantages and the results will 
be used in future tasks. 

PACS: 29.17.+w; 41.75.Lx 
 

INTRODUCTION 
In the non-equilibrium plasma, elastic and inelastic 

collisions determine the rates of many collision proc-
esses. Collisions of electrons with heavy particles (ion 
or with atom) are of the certain interest for plasma pro-
duction and sustain. If you consider the case of elastic 
collisions, scattering is not accompanied by an appre-
ciable loss of energy; in the case of inelastic interac-
tions, the energy losses are higher. 

The probability of electron scattering through a cer-
tain angle   is determined by the value of the interac-
tion potential of the scattering particle with the incident 
electron. It is proportional to the differential scattering 
cross section    /d d d d      and the angular 

dependence of the scattering cross section  /d d   
can take as a simple form, which simplifies calculations 
and can be quite complex. Total rate coefficient for 
collisions with the relative velocity   is defined as 

   /i d d d     .  
The frequency of collisions for monoenergetic elec-

trons is determined by the expression    e i n     
where n  is the density of particles which electron col-
lides.  

FINITE ELEMENT APPROXIMATION 
Many problems in applied mathematics are reduced 

to solving different equations of various types (linear 
and non-linear). One of the powerful numerical meth-
ods is the finite element method, which is a universal 
tool for solving problems of mathematical physics. 

The finite element method is based on the fact that 
any arbitrary and continuous function  x  in the 
computational domain, for example, the temperature, 
can be approximated by a set of piecewise continuous 
functions defined on a finite number of subdomains 
(finite elements) [1].  

The region of integration is divided into elements in 
such a way that on each of them the unknown function 
could be approximated, for example, by polynomials. 
Inside each element, an unknown function is repre-
sented by a linear combination of basis functions, un-
known coefficients, while the values of the function are 
at the nodal points of the approximation. As coordinate 

functions, functions are taken that are identically zero 
everywhere, except for one finite element, inside which 
they coincide with the basis functions. Thus, the prob-
lem of approximating a function is reduced to a system 
of linear algebraic equations, the number of equations 
of which coincides with the number of nodal points. 
These elements have common anchor points and to-
gether they approximate the shape of the region.  

The essence of the problem is that we need to ap-
proximate the known experimental data for electron 
impact ionization average cross section. This method 
meets our requirements, since excessive accuracy is not 
needed and the time spent on the calculation is rather 
small. Also, the advantages of the method are that the 
first and second derivatives at the mesh nodes are 
matching. For this reason, this method is suitable for 
calculations and can be used in work [2]. 

FORMULATION OF THE PROBLEM 
There are Lagrangian and Hermitian finite elements 

and each of them has its own advantages. The main 
disadvantage of Lagrangian finite elements is that they 
include additional points on the segment and deriva-
tives at the main nodes are not matching. We use fifth 
degree polynomials to approximate a function for 
which the first and the second derivative are matching 
at the mesh nodes. This is essential advantage of Her-
mitian finite elements. In accordance with the above 
written we will be use the fifth-order Hermitian finite 
element approximation for the rate coefficient. A pow-
erful tool for simulating processes in plasma is de-
scribed in the work [3]. 

Using the general formula for the rate coefficient for 
probability of binary collisions:  

  3
i e iS f d         ,                (1) 

we assume that the velocity distribution function is the 
normalized Maxwellian: 
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where   is the velocity of electrons. Thermal velocity 
2 /Te ekT m   depends on temperature, where k  is 

the Boltzmann constant, T  is the temperature of elec-
trons, em  is the mass of the electrons.  
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Next, we take the   values for the ionization cross-
section of the hydrogen atom from review [4] and ap-
proximate with columns (piecewise constant elements) 
which defined on finite number of subdomains (Fig. 1). 

 
Fig. 1. Function approximation using piecewise 
constant elements for electron impact ionization  

cross-section [4] 
The required function S  depends on the electron 

temperature. Next, we introduce a temperature data grid 
with equidistant nodes i. We make the following 
change of variable:  2 2/ Teu   . 

At each grid interval, we represent the   as a con-
stant value and analytically calculate the integral. The 
number of such integrals is equal to the number of in-
tervals; therefore, we can represent equation (1) as a 
sum by the number of nodal points i . 
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where N  is the number of points, 2 /Te iA    , 

iu and 1iu   is the lower and upper integration.  
It is also of interest to calculate the first and second 

derivatives of the function S  with respect to tempera-
ture:  
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A program has been written that makes it possible 
using equations (3) - (5) to calculate the S  for any 
value of temperature of electrons. S  is the continuous 
in temperature and all derivatives exist and this is the 
advantage of this program. But the main disadvantage 
is that the program calculates slowly, since (3) - (5) 
contains summation over the number of intervals and it 
takes time. 

The task is to simplify the S  calculation, we will 
approximate the results using Hermitian finite elements 
with a polynomial of the fifth degree. Next, we intro-
duce a new grid of temperature data.  

M  is the number of intervals, k  is the discrete 
variable which enumerates of mesh nodes and varies 
from 1 to M .  
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Below are the finite elements for the fifth degree 
polynomial [5]: 
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NUMERICAL RESULTS OF MODELLING 
The next step is to write a Fortran program. In order 

to calculate S  using formula (6) in Fortran, we need 
to know the constants, namely iS ,  / idS dT , and 

  2 2/
i

d S dT  which are calculated at each nodal 

point. Since these constants are required, at the prepara-
tory stage, our program launches a program that calcu-
lates the equations (3) - (5) and fills with these values at 
the nodes of its own mesh. When this stage is passed 
our program is ready to work.  

 
Fig. 2. S  values which are calculated by direct  

and approximation method at each temperature value 
S  is the deviation values of the direct method  

from the approximation method 
For numerical experiments, we chose a temperature 

range from 0 to 1000 eV and chose 100000 temperature 
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values in which we will calculate S . Next, we made 
the calculation using the new program (we will call the 
approximation method) and using the old program 
(direct method) and compared the time of their calcula-
tion, the results are shown below: 

0.109201apprt s  is the approximation method,    
3.08882cyclet s  is the direct method. 

Numerical simulation results are presented in Fig. 2. 
The figure shows that the result for one function calcu-
lated in two different method is the same.  

CONCLUSIONS 
At the first stage, a method was developed for cal-

culating S  for electronic collisions using tabular val-
ues of  . The calculation of S  as a function of tem-
perature is proposed. A distinctive feature is that S  
function is quickly calculated, and also the result of the 
approximation of S  is a smooth function and the 
values of this function have no jumps. The application 
of polynomials in finite elements of the fifth order 
made it possible to speed up the process of calculating 

S  by about 30 times  28.27cycle

appr

t
t

 . These advantages 

will be used in future tasks. 
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КОМПЬЮТЕРНЫЙ РАСЧЕТ ВЕРОЯТНОСТИ ПАРНЫХ СТОЛКНОВЕНИЙ ЭЛЕКТРОНОВ  
С ИОНАМИ И МОЛЕКУЛАМИ 

Ю.М. Марчук, Ю.С. Кулик, В.Е. Моисеенко 
Предложен компьютерный расчет вероятности парных столкновений i    как функции от темпера-

туры. Выбрана максвелловская функция распределения электронов по скоростям. Конечные элементы пято-
го порядка позволили значительно ускорить процесс расчета i   . Результатом аппроксимации является 
гладкая функция. Значения этой функции, ее первой и второй производных не имеют скачков в узлах сетки, 
а точность расчета находится в пределах статистических ошибок исходных данных. Эти преимущества и 
результаты будут использованы в будущих задачах. 

КОМП'ЮТЕРНИЙ РОЗРАХУНОК ЙМОВІРНОСТІ ПАРНИХ ЗІТКНЕНЬ ЕЛЕКТРОНІВ  
З ІОНАМИ ТА МОЛЕКУЛАМИ 

 

Ю.М. Марчук, Ю.С. Кулик, В.Є. Моісеєнко 
Запропоновано комп’ютерний розрахунок вірогідності парних зіткнень i    як функції від темпера-

тури. Вибрана максвелiвська функція розподілу електронів за швидкостями. Скінченні елементи п'ятого 
порядку дозволили значно прискорити процес обчислення i   . Результатом апроксимації є гладка фун-
кція. Значення цієї функції, її першої та другої похідних не мають стрибків у вузлах сітки, а точність знахо-
диться в межах статистичних помилок вхідних даних. Переваги даного методу будуть використані в майбу-
тніх задачах. 


