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COMPUTER CALCULATION OF PROBABILITY FOR BINARY
COLLISIONS OF ELECTRONS WITH IONS AND MOLECULES

Yu.M. Marchuk, Yu.S. Kulyk, V.E. Moiseenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine

Computer calculation of rate coefficient for binary collision <o,v > as a function of temperature is presented,

and the Maxwell electron velocity distribution function is chosen. The finite elements of the fifth order made it pos-
sible to significantly speed up the process of calculation < o,v > . The result of the approximation is a smooth func-

tion and the values of this function, its first and second derivatives, have no jumps at the mesh nodes and the accu-
racy of calculation is within the limits of statistical errors for the source data. These advantages and the results will

be used in future tasks.
PACS: 29.17.+w; 41.75.Lx

INTRODUCTION

In the non-equilibrium plasma, elastic and inelastic
collisions determine the rates of many collision proc-
esses. Collisions of electrons with heavy particles (ion
or with atom) are of the certain interest for plasma pro-
duction and sustain. If you consider the case of elastic
collisions, scattering is not accompanied by an appre-
ciable loss of energy; in the case of inelastic interac-
tions, the energy losses are higher.

The probability of electron scattering through a cer-
tain angle & is determined by the value of the interac-
tion potential of the scattering particle with the incident
electron. It is proportional to the differential scattering

cross section do(v)=(do/dQ)dQ and the angular

dependence of the scattering cross section (do-/ dQ)

can take as a simple form, which simplifies calculations
and can be quite complex. Total rate coefficient for
collisions with the relative velocity v is defined as

o,(v)=[(do/dQ)dQ.

i

The frequency of collisions for monoenergetic elec-
trons is determined by the expression v, (v) =vo, (v)n

where n is the density of particles which electron col-
lides.

FINITE ELEMENT APPROXIMATION

Many problems in applied mathematics are reduced
to solving different equations of various types (linear
and non-linear). One of the powerful numerical meth-
ods is the finite element method, which is a universal
tool for solving problems of mathematical physics.

The finite element method is based on the fact that

any arbitrary and continuous function ¢(x) in the

computational domain, for example, the temperature,
can be approximated by a set of piecewise continuous
functions defined on a finite number of subdomains
(finite elements) [1].

The region of integration is divided into elements in
such a way that on each of them the unknown function
could be approximated, for example, by polynomials.
Inside each element, an unknown function is repre-
sented by a linear combination of basis functions, un-
known coefficients, while the values of the function are
at the nodal points of the approximation. As coordinate
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functions, functions are taken that are identically zero
everywhere, except for one finite element, inside which
they coincide with the basis functions. Thus, the prob-
lem of approximating a function is reduced to a system
of linear algebraic equations, the number of equations
of which coincides with the number of nodal points.
These elements have common anchor points and to-
gether they approximate the shape of the region.

The essence of the problem is that we need to ap-
proximate the known experimental data for electron
impact ionization average cross section. This method
meets our requirements, since excessive accuracy is not
needed and the time spent on the calculation is rather
small. Also, the advantages of the method are that the
first and second derivatives at the mesh nodes are
matching. For this reason, this method is suitable for
calculations and can be used in work [2].

FORMULATION OF THE PROBLEM

There are Lagrangian and Hermitian finite elements
and each of them has its own advantages. The main
disadvantage of Lagrangian finite elements is that they
include additional points on the segment and deriva-
tives at the main nodes are not matching. We use fifth
degree polynomials to approximate a function for
which the first and the second derivative are matching
at the mesh nodes. This is essential advantage of Her-
mitian finite elements. In accordance with the above
written we will be use the fifth-order Hermitian finite
element approximation for the rate coefficient. A pow-
erful tool for simulating processes in plasma is de-
scribed in the work [3].

Using the general formula for the rate coefficient for
probability of binary collisions:

Sv=<ouv >:jfeoi (v)vd’v, (1)

we assume that the velocity distribution function is the
normalized Maxwellian:

1 v?
1o = Fou =WGXP[__2J’ )
T UTe Te

where v is the velocity of electrons. Thermal velocity
Uy, =+/2kT /m, depends on temperature, where & is

the Boltzmann constant, 7' is the temperature of elec-
trons, m, is the mass of the electrons.
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Next, we take the o values for the ionization cross-
section of the hydrogen atom from review [4] and ap-
proximate with columns (piecewise constant elements)
which defined on finite number of subdomains (Fig. 1).
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Fig. 1. Function approximation using piecewise
constant elements for electron impact ionization
cross-section [4]

The required function Sv depends on the electron
temperature. Next, we introduce a temperature data grid
with equidistant nodes i. We make the following
change of variable: u=v"/v;, .

At each grid interval, we represent the o as a con-
stant value and analytically calculate the integral. The
number of such integrals is equal to the number of in-
tervals; therefore, we can represent equation (1) as a
sum by the number of nodal points ; .

Su-= 2‘:A{(1+ui)exp(—u )= (144, )exp(-u..)} . 3)

where N is the number of points, 4 =2v,0,/ Jr,

u, and u,,, is the lower and upper integration.

i+l
It is also of interest to calculate the first and second
derivatives of the function Sv with respect to tempera-

ture:
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d*(Sv)/dr?

T

A program has been written that makes it possible
using equations (3) - (5) to calculate the Suv for any
value of temperature of electrons. Sv is the continuous
in temperature and all derivatives exist and this is the
advantage of this program. But the main disadvantage
is that the program calculates slowly, since (3) - (5)
contains summation over the number of intervals and it
takes time.

The task is to simplify the Sv calculation, we will
approximate the results using Hermitian finite elements
with a polynomial of the fifth degree. Next, we intro-
duce a new grid of temperature data.
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M is the number of intervals, k is the discrete
variable which enumerates of mesh nodes and varies
from 1to M .

SOl rn =4 (£) S0, mz(g)(ﬂ) +/13(§)(d Suj .

dT dT?

dr’

Below are the finite elements for the fifth degree
polynomial [5]:

A (E)=1-10&" +15&* —6&°,

+z4(g)sl),ﬂ+a(g)(‘;s—;) A, (5)[51 Suj ©

% (E)=A,(&-6" +85% -3¢7),
h(§)=583 (£ -3(8-¢)-¢),
2 (E)=1-10(1-&) +15(1-&)" —6(1-¢&)’,
75(8) =4, [(1-8)-6(1-£) +8(1-¢)' -3(1-¢)" .
h(8)=5 8 (-6 -3((1-¢) -1-¢))-(1-¢)'
where

A =T, T, s=% ™

NUMERICAL RESULTS OF MODELLING

The next step is to write a Fortran program. In order
to calculate Sv using formula (6) in Fortran, we need

(dSv/dT)., and
(d2 (Sv)/dT? )i which are calculated at each nodal

point. Since these constants are required, at the prepara-
tory stage, our program launches a program that calcu-
lates the equations (3) - (5) and fills with these values at
the nodes of its own mesh. When this stage is passed
our program is ready to work.

to know the constants, namely Sv,,
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Fig. 2. Sv values which are calculated by direct
and approximation method at each temperature value

Ay, is the deviation values of the direct method

900 1000

from the approximation method

For numerical experiments, we chose a temperature
range from 0 to 1000 eV and chose 100000 temperature
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values in which we will calculate Sv. Next, we made
the calculation using the new program (we will call the
approximation method) and using the old program
(direct method) and compared the time of their calcula-
tion, the results are shown below:

t, =0.109201s is the approximation method,

appr

t . =3.08882 s is the direct method.

cycle
Numerical simulation results are presented in Fig. 2.
The figure shows that the result for one function calcu-
lated in two different method is the same.

CONCLUSIONS

At the first stage, a method was developed for cal-
culating Sv for electronic collisions using tabular val-
ues of o . The calculation of Sv as a function of tem-
perature is proposed. A distinctive feature is that Sv
function is quickly calculated, and also the result of the
approximation of Sv is a smooth function and the
values of this function have no jumps. The application
of polynomials in finite elements of the fifth order
made it possible to speed up the process of calculating

t. .
Sv by about 30 times 2% =28.27 . These advantages

tapp,.
will be used in future tasks.

. Y.S. Kulyk,
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KOMIIBIOTEPHBIN PACUET BEPOSAITHOCTH ITAPHBIX CTOJIKHOBEHMI JIEKTPOHOB
C HOHAMHU 1 MOJIEKYJIAMU

FO.M. Mapuyk, 1O.C. Kynuk, B.E. Mouceenko

Hpez[,nomeH KOMHLIOTepHHﬁ pacyeT BEPOATHOCTU IMAPHBIX CTOJIKHOBEHHH < oV > Kak (l)yHKHI/II/I OT TeMIICpa-
TYPHI. BLIGpaHa MaKCBCJIJIOBCKas (1)yHKHI/IH pacnpeaciacHus 3JICKTPOHOB 11O CKOPOCTAM. Koneunrie 311eMeHTHI TIATO-
T'0 IOopsiiKa MO3BOJIUIIN 3HAYUTCIIBHO YCKOPHUTH IIPOLECC pacyera <o 4 > PeSyJ'H)TaTOM alIrpOKCUMallU ABJISACTCA

riajkas GyHKIHs. 3HaUCHHS 3TOW (DYHKIIMH, €€ TIEPBOM M BTOPOM IMPOM3BOIHBIX HE UMEIOT CKAYKOB B y3JIaX CETKH,
a TOYHOCTh pacueTa HaXOMUTCS B IMpeeiiaX CTaTHCTUYCCKHUX ONIMOOK HUCXOMHBIX JAHHBIX. DTH MPEUMYIIECTBA U
Pe3yABTATHI OYAYT MCIIOIH30BAHBI B OYAYINUX 3a1a4ax.

KOMIT'FOTEPHUI PO3PAXYHOK MMOBIPHOCTI ITAPHUX 3ITKHEHb EJIEKTPOHIB
3 1I0HAMU TA MOJIEKYJIAMUA

HO.M. Mapuyk, 1O.C. Kyauk, B.€E. Moicecnko

, N L . . .

3anpornoHOBaHO KOMIT' IOTEpHUH pO3paXyHOK BipOTifHOCTI MapHUX 3iTKHEHb < O,V > K QyHKIII BiA Temmepa-
Typu. Bubpana makcBeniBchbka (PyHKINSI PO3IIOALTY €NEKTPOHIB 3a MIBUAKOCTSIMU. CKiHUEHHI €JIEMEHTH IT'SITOrO
HOPSIAKY JO3BOJNUIN 3HAYHO NPUCKOPUTH NPOLeC 00UUCIEHHs < o,V > . PesynbpraTom ampokcumariii € riaaxa ¢yH-

Kuist. 3HaueHHs wiel (yHKHIT, i mepriroi Ta Apyroi MOXiHUX HE MalOTh CTPUOKIB Y BY3J1axX CiTKH, a TOYHICTh 3HAXO-
JIUTHCSI B MEXKaX CTATHCTHYHUX ITOMWJIOK BXIAHUX AaHuX. [lepeBaru qaHoro Merony OyAyTh BUKOPHCTaHI B MaiOy-
THIX 3a7a4ax.
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