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CONTRIBUTION OF DRIFT AND DIFFUSION
TO WATER CAPACITY DEIONIZATION
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Drift and diffusion of ions in a cavity having the shape of oblate ellipsoid of revolution are considered. The ob-
tained approximate relationship, between the time of drift and diffusion filling of deep cavity with ions, contains the
applied voltage and the ratio of cavity size to the distance between electrodes. It shows that in the performed ex-
periments with the device for water capacitive deionization the filling of electrodes by ions was carried out, mainly,

due to diffusion.
PACS: 82.47.Uv

INTRODUCTION

Capacitive deionization is one of the ways to reduce
a salt concentration in water. In contrast to the methods,
in which all salt water is pumped through filters (pres-
sure-driven membrane processes), in capacitive deioni-
zation, mainly, dissolved salt ions are drawn inside the
porous electrodes (for the following removing away),
whereas a flow of salt water passes by electrodes, and
the role of the filter, with respect to the flow, to a certain
extent, in a certain sense, is played by the electric field
transverse to the flow, which does not require additional
pressure to pump the flow.

At present, various studies of the processes that take
place in devices for water capacitive deionization have
been performed. In [1 - 3], the characteristics of the de-
vice based on carbon material SAUT-1S are studied
when working with water containing salts of NaCl and
NaNO;. In [4], the characteristics of the equilibrium
state are experimentally investigated (in particular, the
value of the amount of adsorbed substance in the elec-
trodes, achievable for solutions with different contents
of different salts under the long-time use of different
voltage is measured) and the theoretical model is devel-
oped, which describes the process with use of small
number of thermodynamic parameters related to the
electrical double layers in the cavities inside the elec-
trodes.

An important characteristic of devices for water ca-
pacitive deionization is the time of filling the cavities in
the electrodes with ions formed due to the dissociation
of salt molecules in aqueous solution, and the time of
release of cavities from ions. This time is determined by
ion drift in the electric field and diffusion, and depends
on the shape of the cavities, in particular, on the ratio of
the cavity depth to the outlet size. In the present work,
to estimate the dependence parameters, it is considered
a cavity that has the shape of oblate ellipsoid of revolu-
tion, for which the drift and diffusion problems can be
solved by the method of separation of variables.

1. DRIFT

The descriptions of ion drift into and out of the cav-
ity in the given stationary field may be obtained from
each other by change of time direction. The characteris-
tic time of entrance or exit is determined by the field
strength distribution. It may be obtained from the
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Laplace equation for the potential, V>® =0, in which
®=S(0)I(r), o and 7 are ellipsoidal coordinates
connected with the longitudinal coordinate z and the
distance p from the ellipsoid symmetry axis by the

12

equalities p =[(1+c>)(1-1%)]
a unit of length, it is taken half of the distance between
foci of co-focal ellipses and hyperbole in the planes
containing the symmetry axis). Also, it is expedient to
use the variables v =arccost and u =arsinho , for
which z =sinhucosv and p =coshusinv . The value

and z=o7 (here, as

v=0 (z =1) withreal o corresponds to the symmetry
axis p=0, the value v=7/2 (r=0) with real o
corresponds to the part of the plane z=0 external to
the circle p =1, the value u =0 with 0<v <7/2 cor-
responds to the part of the plane z =0 internal to the
circle p =1. The cavity boundaries are characterized by
some values, u, and v, (u, >0, 0<v, <7/2), and by
the related values o, =sinhu, and 7, = cosv, .

Cavities (oblate ellipsoids of revolution around z axis);
dashed boundaries correspond
to the limit case v, = 7|2

Writing the Laplace operator in ellipsoidal coordi-
nates [5] and using the method of separation of vari-
ables, one comes to the equations,

(d/do)[(1-7*)dT/dt]+v(v+1)T =0,
(d/do)[(1+c%)dS/do]-v(v+1)S =0,
in which v does not depend on o and 7 . The second

equation transforms to the first one with replacement of
S by T and o by =iz, where i is an imaginary unit.
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To write the solutions of the equations inside the
cavity, one can use the Legendre functions [6],

T(r)=P (1), S(o)=BQ,(ic)+i(x/2)AP,(ic),
where 4 and B are unknown constants, and P,(w)
and Q, (w) (with the direct font for P and Q) are
functions of the complex variable w, defined on the
interval (—1,1) of real axis and analytically extended
from there to the half-plane Imw >0 [6, Section 3.4].
Below, it is used, also, the function O, (w) (with italics
for Q) other than Q,(w) and decreasing when w — o

[6, Section 3.2].
The boundary conditions have the form
T(TO)=O, S(O'O)=O, S'(O)=l,
where a prime indicates a derivative. The last condition,
neglecting the sign, corresponds to the unit dimen-
sionless field strength (or to the unit dimensionless drift
velocity) at the outlet of the cavity.

The first boundary condition gives the equation to
find v, P,(cosv,)=0. In the cavity, the slowest de-
crease in field strength with depth (and hence the fastest
exit from the cavity) corresponds to the smallest posi-
tive value of v. Assuming that v denotes just such
value, in the limit case v, =7/2 (when the wall of the
cavity is infinitely thin, as it is shown in Figure), one
gets v =1. The value of v increases with v, decrease,
and in the case v, <<1 (when the cavity is a thin chan-
nel), taking into account  the equality
lim (cos(w/v))=1J,(w), in which J denotes Bes-
sel function, one comes to the relations
v = w, /v, >>1, where w, is the first positive zero of
the function J,(w).

Using the equalities from [6] for derivatives at zero,

P/ (0) = 2sin(zv/2)L((v +2)/2)[z"°T((v +1)/2)]",

Q.(0) = 7" cos(zv/2)T((v +2) /)T ((v +1)/2)] ",
where I' is gamma-function, for 4 and B one comes
to the equalities

inP,(ic,)/(2B) = -Q, (ic,)/ 4 =
= 22 [D((v +2)/2)/T((v +1)/2)] x
x[Q, (io,)sin(nv/2) - P, (ic,) cos(nv/2)/2] .
In particular, in the case v,=7x/2 one gets
A=-2/n, B=o,/(1+0,arctgo,) .
The distribution of dimensionless field strength (or
dimensionless drift velocity) in the cavity along the axis
of symmetry is described by a function S'(c). For

Vo0 PV

0 <o <o, it may be written in the form
§'(0) = 1AW (0,06,)/[2Q, (io,)],
where W(o,0,) =P, (ic,)Q.(ic)-P!(i0)Q, (ic,) .
For the dimensionless field strength (and ion drift
velocity) in a deep (o, >>1) and sufficiently wide

(v, ~ 1) cavity, using the equalities
0,(w)=Q,(w)—inP,(w)/2 (Imw>0),
lim, . [P,(w)2w) " 1=z T(Q2v +1)/2)/T(v +1),
lim,_, [0, (W)2w)"*']= "> T(v +1)/T((2v +3)/2)
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given in [6], at o, > o >>1, one comes to the relation
S'(0) = [v(c/a) ™" + (v +1)(o, /o)> ™ ]x
xa," (n5’c,) P[(2v + DI(Qv +1)/2)1' T (v +1)/2) ,
from which, in order of magnitude, it follows the rela-
tion S'(c) ~ o2,
Integral | do/S'(c) over the interval (0,0,) gives

the time of ion exit from the cavity along the symmetry
axis, which may be considered as the characteristic time
t.in Of ion exit from the cavity due to drift. In the case

of a deep (o, >>1) and sufficiently wide (v, ~ 1) cav-

ity the integration gives the estimate

v+3
lin ~ Oo las

=h/(bE,), h is half of the inter-focal dis-
tance (in co-focal ellipses and hyperbole), E, is field

where £,

strength in the center of outlet, 5 is ion mobility, and
the exponent v is the smallest positive root of the equa-
tion P,(cosv,)=0. For a thin channel (v, <<1), the

relation v >>1 holds, and so, the field is almost absent
and the characteristic time of ion exit is very large. In
[4], cavities with field are called macropores, and cavi-
ties without field are called micropores.

In addition to the considered ion drift in a cavity
with field, a significant role in the capacitive deioniza-
tion process is played by ion drift under the field action
in the space between electrodes. As a result of this drift,
the concentration of corresponding ions near relevant
electrodes increases or decreases, leading to increase of
the diffusion ion fluxes into the electrode or away from

v+3

it. In the case when the relationship A, /i >> o, takes
place, the time of drift over the inter-electrode gap 4, is

much greater than the time of drift into the cavity or
from the cavity and, in this case, just the time of drift
over the inter-clectrode gap determines the time re-
quired to realize the deionization process.

If the flow is turbulent, through its excessive speed,
or if the time of motion of the flow segment past the
electrode is so small that most of ions do not have time
to drift through the gap to the corresponding electrode,
and on the further way to another gap between the pair
of electrodes the flow mixes, then the efficiency of us-
ing of ion drift in the inter-electrode gap to achieve a
high concentration of the corresponding ions near the
relevant electrodes and to compensate the oppositely
directed diffusion flux is low, as if the electrical resis-
tance of the gap is large. It should be noted, however,
that existence of cavities with field but without water
flow (macropores) leads to some increase of ion drift
contribution to the capacitive deionization process.

2. DIFFUSION

The processes of component diffusion into and out
of the cavity for the density difference between the cur-
rent and final state are described in the same way. To
estimate the time during which the component concen-
tration in the cavity changes significantly, it is expedient

to proceed from the equation ON/ot=V>N, in which
N=QOYw)V(v), t is

dimensionless  time,
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v =arccost (as above), and y =arccoto, so that the

values o ={-,0,+0} correspond to the values
v ={r,n/2,0}, respectively.

Writing the Laplace operator in ellipsoidal coordi-
nates and using the method of separation of variables,
one comes to the equations

dQ/dt =-2Q,
dz‘ll/dt;/2 + (i/sin4 V- y/sin2 V)Y =0,
(d/dv)(sinvdV/dv)+ (usinv—Asin’v) V=0,
in which the parameters A and g do not depend on ¢,
v , and v, but are interconnected.

The initial and boundary conditions have the form
V'(0)=0, V'(5,)=0, ¥y,) =0, ¥(r/2) =0,
Q0)=1, V(0)=1, ¥'(z/2)=-1,
where w, =arccoto,. The conditions correspond to

continuity of density at the symmetry axis, the absence
of flows at the cavity boundary, zero density at the out-
let, and the unit axial density gradient at the center of
the outlet at the initial time.

The density evolution for any initial distribution can
be given by the sum, X, 4, Q, (O¥, W)V, (),

where Q,(1),¥,,(y), and V,

W
tions of relevant problems, corresponding to the pairs of
eigenvalues of the parameters A and u , and the coeffi-

(v) are the eigenfunc-

cients 4,, depend on the initial distribution.

The equation for Q(z) with the initial condition
gives Q(t) = exp(—At) . The distributions corresponding
to eigenfunctions with larger A values decrease faster,
and some time after the start the exit of the component
from the cavity is described by a decrease (exponen-
tially) of the distribution corresponding to eigenfunc-
tions with the smallest 4 value.

In the case of a deep (o, >>1, and, consequently,
v, & 0, <<1) cavity, the differential equations and
the boundary conditions for V'(v) and W(y) imply the

impossibility of existence of pairs of eigenvalues with
small A but not small g . But if both 1<<1 and

i <<1, then, from the equation and boundary condi-
tions for V' (v), one comes to the relations
V) =1,
(d/dv)V (v) ~
~ tan(v/2)[2sin’ (v/2)(2 +cosv)A —3u]/3,
g~ 2sin® (v, /2)(2 +cosv,)A /3,
and then, from the equation and boundary conditions for
W(w), in the interval y, <y <z/2, at w ~1, one

gets d¥/dy ~ -1 and ¥ +y ~ /2, and at y <<1,
one gets d’¥/dy’ ~ -A¥[/y*, ¥ ~z/2, and
d¥/dy ~ -7 (y," —w)/6, and to reconcile the rela-
tions for d¥/dy at y between y ~ 1 and y <<1,
the relation 4 ~ 6y, /7 should be held.
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That is, the characteristic time of diffusion of the
component significant part from a deep cavity is given
by the relationship

3
Liitrus ~ Ol

where ., =h’ /D, D is diffusion coefficient, and so,

t is relevant time for a shallow cavity with the charac-

df1 >

teristic size 4, . It should be emphasized that the charac-
teristic time of diffusion exit from a cavity is almost
independent on the cavity width. And it is natural to
assume that for thin channels, possibly curved and
multi-connected, their characteristic diffusion emptying
time is determined by the maximum, over the points in
the given channel, of the path length (inside the chan-
nel) from the current point to the nearest outlet.

3. RELATIVE CONTRIBUTION OF DRIFT
AND DIFFUSION

Using the equality o, =k, /h, , where A, is the cav-
ity depth (the distance, along the symmetry axis, from
the boundary of the cavity to the outlet), for the charac-
teristic time of drift and diffusion exit, in the case
o,>>1, one comes to the relationships

Ly ~ (o [y ) h/(bE) and 4, ~ (hy/h, ) hlz/D’
respectively. The drift time increases, with the cavity
relative depth o, increase, faster than the diffusion
time, through the decrease of the field strength with
depth. Taking into account Einstein’s relationship be-
tween the mobility and diffusion coefficient, D =bU,

ab *

where U,, is the average ion energy under the experi-

lab
mental conditions divided by the elementary charge, one
can obtain the relationships,

tdriﬂ/tdiﬁhs ~ (hO/hl ) tdrl/tdﬂ >
o [t ~ U,abhg/(Ug}H) ,
tdriﬂ/tdiﬁhs ~ (ho/hl)v Ulabhg/(Ughl)’
where U, = E\h, (the applied voltage that corresponds
to the field strength E, for the distance A, between

electrodes).

For the experiments performed at room temperature
with use of voltage of the order of 1V, one can put
U,y /U, ~0.03. For the characteristic distance 4, be-

tween electrodes of the order of 1 mm, in the tested de-
vice, the relation 4, / h, <0.03 takes place for the outlet
size h <30 pum, and then, as the cavity is deep
(hy/h >>1), the time of drift exit from the cavity sig-

nificantly exceeds the time of diffusion exit. The diffu-
sion exit time does not depend on the applied voltage
and on the distance between the electrodes. For the dif-
fusion coefficient, at the room temperature, one can take
the value of the order of 10~ cm? / s [7, p. 30]. Then, for
h ~10nm, one gets f,, ~10"s, and the value of

tums ~ 1000 s (obtained in the experiment [1]) corre-
sponds to the relative depth of the cavity #,/h ~ 2000.

The shape of real cavities is not so simple as one
considered in the present study. In particular, the en-
trance to a cavity may be located on the boundary of
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another cavity, and if the entrance to a deep cavity is
located on the boundary of a shallow wide cavity then
the shallow wide cavity may be filled, mainly, due to
drift, and the deep cavity is filled, mainly, due to diffu-
sion.

CONCLUSIONS

To estimate the time required to reach equilibrium in
the process of water capacitive deionization, the drift
under the action of an electric field and diffusion of ions
in a cavity having the shape of oblate ellipsoid of revo-
Iution are considered. Such shape makes it possible to
solve the problems by the method of separation of vari-
ables. For a deep cavity, using Einstein's relationship
between the diffusion coefficient and the ion mobility,
estimates are obtained (in order of magnitude) for the
time of the cavity filling with ions (or emptying of ions)
by drift and diffusion. These estimates, along with the
relative depth of the cavity, contain the ratio of the cav-
ity outlet size to the distance between electrodes and the
ratio of temperature to the applied voltage. From the
estimates, it follows that in the performed experiments
with the device for the water capacitive deionization,
the filling of the carbon electrode with ions (and its
emptying from ions) was mainly due to diffusion.
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BKJIAJl IPEU®A U TUPDPY3UH B EMKOCTHYIO JJEMOHU3ALIMIO BO/IbI
.B. Kyoun, B.H. Ocmpoywko, A.B. Ilawenko, C.B. Poouonoe, M.A. Ezopos, /1. M. 3aeaoa

Paccmotpens! apeiid u nuddy3us HOHOB B MOJIOCTH, KOTOPask IMeeT (OPMY CILTFOCHYTOTO JJUTHIICOU/IA Bpallie-
uust. [TomydeHHoe pUOIMKEHHOE COOTHOIIICHHE, MEXKITY BpeMeHaMu JpeiidoBoro u mud(y3noHHOrO 3arONTHEHHSI
ryOOKOM TIOJIOCTH HOHAMH, COAEPYKUT MPUI0KEHHOE HATPSHKCHHE M OTHOIIICHHE Pa3MEPOB MOIIOCTH K PACCTOSHHIO
MEX]Ty 3JIEKTPOJAMH U YKa3bIBAET, YTO B BHIMOIHEHHBIX SKCIIEPUMEHTAX C YCTPOHCTBOM JIJIsi EMKOCTHO#H JeHOHM3a-
IIMH BOJIBI 3aII0JIHCHUE JIEKTPOIOB HOHAMH OCYIIECTBIISUIOCH, B OCHOBHOM, depe3 auddy3uro.

BHECOK JIPEM®Y TA JJU®Y3Ii B EMHICHY JIEIOHIZALIIIO BOJIU
/.B. Kyoin, B.M. Ocmpoywiko, A.B. Ilawenko, C.B. Podionos, M.O. Ezopos, JI. M. 3asada

PosrmsinyTo apeiid Ta mudysito ioHIB y NOPOXKHHHI, sika Mae opMYy CILTIOCHYTOrO enirncoiny odoepranns. Orpu-
MaHe HaOJMKeHe CIiBBiTHOIIEHHS MK 4YacoM JpeiidoBoro ta mudy3idHOro 3armoBHEHHS! ITMOOKOI MOPOKHHHU
i0HAMH MICTUTD JIOKJIaJIeHy Hamlpyry Ta BiJHOIIEHHS PO3MipiB MOPOXKHUHU JIO BIICTaHI MiX €JIEKTPOAaMH Ta BKa-
3ye€, 110 Y BUKOHAHUX EKCIIEPUMEHTAX 3 MPUCTPOEM JIJIsl EMHICHOI JIe10HI3a1lii BOJHM 3aIIOBHEHHS €JIEKTPOIB 10HAMHU
3[11CHIOBAIIOCA, TIEPEBAXKHO, Yepe3 AUPY3ito.
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