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Drift and diffusion of ions in a cavity having the shape of oblate ellipsoid of revolution are considered. The ob-

tained approximate relationship, between the time of drift and diffusion filling of deep cavity with ions, contains the 
applied voltage and the ratio of cavity size to the distance between electrodes. It shows that in the performed ex-
periments with the device for water capacitive deionization the filling of electrodes by ions was carried out, mainly, 
due to diffusion.  

PACS: 82.47.Uv 
 

INTRODUCTION  
Capacitive deionization is one of the ways to reduce 

a salt concentration in water. In contrast to the methods, 
in which all salt water is pumped through filters (pres-
sure-driven membrane processes), in capacitive deioni-
zation, mainly, dissolved salt ions are drawn inside the 
porous electrodes (for the following removing away), 
whereas a flow of salt water passes by electrodes, and 
the role of the filter, with respect to the flow, to a certain 
extent, in a certain sense, is played by the electric field 
transverse to the flow, which does not require additional 
pressure to pump the flow.  

At present, various studies of the processes that take 
place in devices for water capacitive deionization have 
been performed. In [1 - 3], the characteristics of the de-
vice based on carbon material SAUT-1S are studied 
when working with water containing salts of NaCl and 
NaNO. In [4], the characteristics of the equilibrium 
state are experimentally investigated (in particular, the 
value of the amount of adsorbed substance in the elec-
trodes, achievable for solutions with different contents 
of different salts under the long-time use of different 
voltage is measured) and the theoretical model is devel-
oped, which describes the process with use of small 
number of thermodynamic parameters related to the 
electrical double layers in the cavities inside the elec-
trodes.  

An important characteristic of devices for water ca-
pacitive deionization is the time of filling the cavities in 
the electrodes with ions formed due to the dissociation 
of salt molecules in aqueous solution, and the time of 
release of cavities from ions. This time is determined by 
ion drift in the electric field and diffusion, and depends 
on the shape of the cavities, in particular, on the ratio of 
the cavity depth to the outlet size. In the present work, 
to estimate the dependence parameters, it is considered 
a cavity that has the shape of oblate ellipsoid of revolu-
tion, for which the drift and diffusion problems can be 
solved by the method of separation of variables.  

1. DRIFT  
The descriptions of ion drift into and out of the cav-

ity in the given stationary field may be obtained from 
each other by change of time direction. The characteris-
tic time of entrance or exit is determined by the field 
strength distribution. It may be obtained from the 

Laplace equation for the potential, 2 0   , in which 
( ) ( )S T   ,   and   are ellipsoidal coordinates 

connected with the longitudinal coordinate z  and the 
distance   from the ellipsoid symmetry axis by the 
equalities 2 2 1 2[(1 )(1 )]      and z   (here, as 
a unit of length, it is taken half of the distance between 
foci of co-focal ellipses and hyperbole in the planes 
containing the symmetry axis). Also, it is expedient to 
use the variables arccos   and ar sinhu  , for 
which sinh cosz u   and cosh sinu  . The value 

0   ( 1  ) with real   corresponds to the symmetry 
axis 0  , the value 2   ( 0  ) with real   
corresponds to the part of the plane 0z   external to 
the circle 1  , the value 0u   with 0 2    cor-
responds to the part of the plane 0z   internal to the 
circle 1  . The cavity boundaries are characterized by 
some values, 0u  and 0  ( 0 0u  , 00 2   ), and by 
the related values 0 0sinh u   and 0 0cos  .  



z
 

Cavities (oblate ellipsoids of revolution around z  axis); 
dashed boundaries correspond  

to the limit case 0 2   

Writing the Laplace operator in ellipsoidal coordi-
nates [5] and using the method of separation of vari-
ables, one comes to the equations,  

2( )[(1 ) ] ( 1) 0d d dT d T        ,  
2( )[(1 ) ] ( 1) 0d d dS d S        ,  

in which   does not depend on   and  . The second 
equation transforms to the first one with replacement of 
S  by T  and   by i , where i  is an imaginary unit.  
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To write the solutions of the equations inside the 
cavity, one can use the Legendre functions [6],  

( ) P ( )T   , ( ) Q ( ) ( 2) P ( )S B i i A i      ,  
where A  and B  are unknown constants, and P ( )w  
and Q ( )w  (with the direct font for P  and Q ) are 
functions of the complex variable w , defined on the 
interval ( 1,1)  of real axis and analytically extended 
from there to the half-plane Im 0w   [6, Section 3.4]. 
Below, it is used, also, the function ( )Q w  (with italics 
for Q ) other than Q ( )w  and decreasing when w   
[6, Section 3.2].  

The boundary conditions have the form  
0( ) 0T   , 0( ) 0S   , (0) 1S   ,  

where a prime indicates a derivative. The last condition, 
neglecting the sign, corresponds to the unit dimen-
sionless field strength (or to the unit dimensionless drift 
velocity) at the outlet of the cavity.  

The first boundary condition gives the equation to 
find  , 0P (cos ) 0   . In the cavity, the slowest de-
crease in field strength with depth (and hence the fastest 
exit from the cavity) corresponds to the smallest posi-
tive value of  . Assuming that  denotes just such 
value, in the limit case 0 2   (when the wall of the 
cavity is infinitely thin, as it is shown in Figure), one 
gets 1  . The value of   increases with 0  decrease, 
and in the case 0 1   (when the cavity is a thin chan-
nel), taking into account the equality 

0lim P (cos( )) J ( )w w    , in which J  denotes Bes-
sel function, one comes to the relations 
   0 0 1w   , where 0w  is the first positive zero of 
the function 0J ( )w .  

Using the equalities from [6] for derivatives at zero,  
1 2 1P (0) 2sin( 2) (( 2) 2)[ (( 1) 2)]           , 

1 2 1Q (0) cos( 2) (( 2) 2)[ (( 1) 2)]           ,  
where   is gamma-function, for A  and B  one comes 
to the equalities  

0 0

1 2

0 0

P ( ) (2 ) Q ( )

[ (( 2) 2) (( 1) 2)]
[Q ( ) sin( 2) P ( ) cos( 2) 2]

i i B i A

i i

 

 

  

  
    

  

     
  .  

In particular, in the case 0 2   one gets 
2A   , 0 0 0(1 arctg )B     .  

The distribution of dimensionless field strength (or 
dimensionless drift velocity) in the cavity along the axis 
of symmetry is described by a function ( )S  . For 

00     it may be written in the form  

0 0( ) ( , ) [2Q ( )]S AW i      ,  
where 0 0 0( , ) P ( )Q ( ) P ( )Q ( )W i i i i           .  

For the dimensionless field strength (and ion drift 
velocity) in a deep ( 0 1  ) and sufficiently wide 
( 0   1 ) cavity, using the equalities  

( ) Q ( ) P ( ) 2Q w w i w     ( Im 0w  ),  
1 2lim [P ( )(2 ) ] ((2 1) 2) ( 1)w i w w 

    
       , 

1 1 2lim [ ( )(2 ) ] ( 1) ((2 3) 2)w i Q w w 
   

       ,  

given in [6], at 0 1   , one comes to the relation  
( )S    (2 1) 2 (2 1) 2

0 0[ ( ) ( 1)( ) ]           
3 1 2 1 2

0 0( ) [(2 1) ((2 1) 2)] (( 1) 2)             ,  
from which, in order of magnitude, it follows the rela-
tion ( )S    2   .  

Integral ( )d S   over the interval 0(0, )  gives 
the time of ion exit from the cavity along the symmetry 
axis, which may be considered as the characteristic time 

driftt  of ion exit from the cavity due to drift. In the case 
of a deep ( 0 1  ) and sufficiently wide ( 0   1 ) cav-
ity the integration gives the estimate  

driftt   3
0 dr1t  ,  

where dr1 1 1( )t h bE , 1h  is half of the inter-focal dis-
tance (in co-focal ellipses and hyperbole), 1E  is field 
strength in the center of outlet, b  is ion mobility, and 
the exponent   is the smallest positive root of the equa-
tion 0P (cos ) 0   . For a thin channel ( 0 1  ), the 
relation 1   holds, and so, the field is almost absent 
and the characteristic time of ion exit is very large. In 
[4], cavities with field are called macropores, and cavi-
ties without field are called micropores.  

In addition to the considered ion drift in a cavity 
with field, a significant role in the capacitive deioniza-
tion process is played by ion drift under the field action 
in the space between electrodes. As a result of this drift, 
the concentration of corresponding ions near relevant 
electrodes increases or decreases, leading to increase of 
the diffusion ion fluxes into the electrode or away from 
it. In the case when the relationship 3

g 1 0h h    takes 
place, the time of drift over the inter-electrode gap gh  is 
much greater than the time of drift into the cavity or 
from the cavity and, in this case, just the time of drift 
over the inter-electrode gap determines the time re-
quired to realize the deionization process.  

If the flow is turbulent, through its excessive speed, 
or if the time of motion of the flow segment past the 
electrode is so small that most of ions do not have time 
to drift through the gap to the corresponding electrode, 
and on the further way to another gap between the pair 
of electrodes the flow mixes, then the efficiency of us-
ing of ion drift in the inter-electrode gap to achieve a 
high concentration of the corresponding ions near the 
relevant electrodes and to compensate the oppositely 
directed diffusion flux is low, as if the electrical resis-
tance of the gap is large. It should be noted, however, 
that existence of cavities with field but without water 
flow (macropores) leads to some increase of ion drift 
contribution to the capacitive deionization process.  

2. DIFFUSION  
The processes of component diffusion into and out 

of the cavity for the density difference between the cur-
rent and final state are described in the same way. To 
estimate the time during which the component concen-
tration in the cavity changes significantly, it is expedient 
to proceed from the equation 2N t N    , in which 

( ) ( ) ( )N t V    , t  is dimensionless time, 
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arccos   (as above), and arccot  , so that the 
values { ,0, }     correspond to the values 

{ , 2,0}   , respectively.  
Writing the Laplace operator in ellipsoidal coordi-

nates and using the method of separation of variables, 
one comes to the equations  

d dt     ,  
2 2 4 2( sin sin ) 0d d         ,  

3( )(sin ) ( sin sin ) 0d d dV d V         ,  
in which the parameters   and   do not depend on t , 
 , and  , but are interconnected.  

The initial and boundary conditions have the form  
(0) 0V   , 0( ) 0V   , 0( ) 0  , ( 2) 0  , 

(0) 1  , (0) 1V  , ( 2) 1   ,  
where 0 0arccot  . The conditions correspond to 
continuity of density at the symmetry axis, the absence 
of flows at the cavity boundary, zero density at the out-
let, and the unit axial density gradient at the center of 
the outlet at the initial time.  

The density evolution for any initial distribution can 
be given by the sum, ( ) ( ) ( )A t V        , 
where ( )t , ( )  , and ( )V   are the eigenfunc-
tions of relevant problems, corresponding to the pairs of 
eigenvalues of the parameters   and  , and the coeffi-
cients A  depend on the initial distribution.  

The equation for ( )t  with the initial condition 
gives ( ) exp( )t t   . The distributions corresponding 
to eigenfunctions with larger   values decrease faster, 
and some time after the start the exit of the component 
from the cavity is described by a decrease (exponen-
tially) of the distribution corresponding to eigenfunc-
tions with the smallest   value.  

In the case of a deep ( 0 1  , and, consequently, 

0   1
0 1   ) cavity, the differential equations and 

the boundary conditions for ( )V   and ( )  imply the 
impossibility of existence of pairs of eigenvalues with 
small   but not small  . But if both 1   and 

1  , then, from the equation and boundary condi-
tions for ( )V  , one comes to the relations  

( )V    1 ,  
( ) ( )d d V     

 2tan( 2)[2sin ( 2)(2 cos ) 3 ] 3      ,  
   2

0 02sin ( 2)(2 cos ) 3   ,  
and then, from the equation and boundary conditions for 

( ) , in the interval 0 2    , at    1 , one 
gets d d   1  and     2 , and at 1  , 
one gets 2 2d d   4   ,    2 , and 
d d   3 3

0( ) 6     , and to reconcile the rela-
tions for d d  at   between    1  and 1  , 
the relation    3

06   should be held.  

That is, the characteristic time of diffusion of the 
component significant part from a deep cavity is given 
by the relationship  

diffust   3
0 df1t ,  

where 2
df1 1t h D , D  is diffusion coefficient, and so, 

df1t  is relevant time for a shallow cavity with the charac-
teristic size 1h . It should be emphasized that the charac-
teristic time of diffusion exit from a cavity is almost 
independent on the cavity width. And it is natural to 
assume that for thin channels, possibly curved and 
multi-connected, their characteristic diffusion emptying 
time is determined by the maximum, over the points in 
the given channel, of the path length (inside the chan-
nel) from the current point to the nearest outlet.  

3. RELATIVE CONTRIBUTION OF DRIFT 
AND DIFFUSION  

Using the equality 0 0 1h h  , where 0h  is the cav-
ity depth (the distance, along the symmetry axis, from 
the boundary of the cavity to the outlet), for the charac-
teristic time of drift and diffusion exit, in the case 

0 1  , one comes to the relationships 

driftt   3
0 1 1 1( ) ( )h h h bE   and diffust   3 2

0 1 1( )h h h D , 
respectively. The drift time increases, with the cavity 
relative depth 0  increase, faster than the diffusion 
time, through the decrease of the field strength with 
depth. Taking into account Einstein’s relationship be-
tween the mobility and diffusion coefficient, labD bU , 
where labU  is the average ion energy under the experi-
mental conditions divided by the elementary charge, one 
can obtain the relationships,  

drift diffust t   0 1 dr1 df1( )h h t t ,  

dr1 df1t t   lab g g 1( )U h U h , 

drift diffust t   0 1 lab g g 1( ) ( )h h U h U h ,  
where g 1 gU E h  (the applied voltage that corresponds 
to the field strength 1E  for the distance gh  between 
electrodes).  

For the experiments performed at room temperature 
with use of voltage of the order of 1 V, one can put 

lab gU U   0.03. For the characteristic distance gh  be-
tween electrodes of the order of 1 mm, in the tested de-
vice, the relation 1 gh h   0.03 takes place for the outlet 
size 1h   30 m, and then, as the cavity is deep 
( 0 1 1h h  ), the time of drift exit from the cavity sig-
nificantly exceeds the time of diffusion exit. The diffu-
sion exit time does not depend on the applied voltage 
and on the distance between the electrodes. For the dif-
fusion coefficient, at the room temperature, one can take 
the value of the order of 10 cm / s [7, p. 30]. Then, for 

1h   10 nm, one gets df1t   10 s, and the value of 

diffust   1000 s (obtained in the experiment [1]) corre-
sponds to the relative depth of the cavity 0 1h h   2000.  

The shape of real cavities is not so simple as one 
considered in the present study. In particular, the en-
trance to a cavity may be located on the boundary of 
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another cavity, and if the entrance to a deep cavity is 
located on the boundary of a shallow wide cavity then 
the shallow wide cavity may be filled, mainly, due to 
drift, and the deep cavity is filled, mainly, due to diffu-
sion.  

CONCLUSIONS  
To estimate the time required to reach equilibrium in 

the process of water capacitive deionization, the drift 
under the action of an electric field and diffusion of ions 
in a cavity having the shape of oblate ellipsoid of revo-
lution are considered. Such shape makes it possible to 
solve the problems by the method of separation of vari-
ables. For a deep cavity, using Einstein's relationship 
between the diffusion coefficient and the ion mobility, 
estimates are obtained (in order of magnitude) for the 
time of the cavity filling with ions (or emptying of ions) 
by drift and diffusion. These estimates, along with the 
relative depth of the cavity, contain the ratio of the cav-
ity outlet size to the distance between electrodes and the 
ratio of temperature to the applied voltage. From the 
estimates, it follows that in the performed experiments 
with the device for the water capacitive deionization, 
the filling of the carbon electrode with ions (and its 
emptying from ions) was mainly due to diffusion.  
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ВКЛАД ДРЕЙФА И ДИФФУЗИИ В ЕМКОСТНУЮ ДЕИОНИЗАЦИЮ ВОДЫ  
Д.В. Кудин, В.Н. Остроушко, А.В. Пащенко, С.В. Родионов, М.А. Егоров, Л.М. Завада  

Рассмотрены дрейф и диффузия ионов в полости, которая имеет форму сплюснутого эллипсоида враще-
ния. Полученное приближенное соотношение, между временами дрейфового и диффузионного заполнения 
глубокой полости ионами, содержит приложенное напряжение и отношение размеров полости к расстоянию 
между электродами и указывает, что в выполненных экспериментах с устройством для емкостной деиониза-
ции воды заполнение электродов ионами осуществлялось, в основном, через диффузию.  

ВНЕСОК ДРЕЙФУ ТА ДИФУЗІЇ В ЄМНІСНУ ДЕІОНІЗАЦІЮ ВОДИ  
Д.В. Кудін, В.М. Остроушко, А.В. Пащенко, С.В. Родіонов, М.О. Єгоров, Л.М. Завада  

Розглянуто дрейф та дифузію іонів у порожнині, яка має форму сплюснутого еліпсоїду обертання. Отри-
мане наближене співвідношення між часом дрейфового та дифузійного заповнення глибокої порожнини 
іонами містить докладену напругу та відношення розмірів порожнини до відстані між електродами та вка-
зує, що у виконаних експериментах з пристроєм для ємнісної деіонізації води заповнення електродів іонами 
здійснювалося, переважно, через дифузію.  


