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In this paper, the elastic state of a sphere is studied, inside which there is a spherical cavity (spherical pore) at an 

arbitrary distance from the center of the sphere. Expressions for the displacement components, strain, and stress 

tensors depending on the geometrical parameters of the problem and the pressure values on the surfaces of the outer 

and inner spheres were obtained. 
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INTRODUCTION 

The classical problem of the theory of elasticity 

associated with the deformation of an elastic hollow 

sphere (the Lame problem) has been considered in many 

papers (see, for example, [1–3]). Interest in this problem 

has not weakened for several decades due to the wide 

aspect of applying the results of the theory of hollow 

elastic spheres to various problems in materials science, 

biomechanics, nanophysics, etc. In articles [4–6], 

mathematical models of the sclera of the eyeball and 

glaucoma based on the classical (linear) theory of 

elasticity were developed. Good agreement with the 

experimental data [7] was shown by the nonlinear theory 

of hollow sphere deformation as a mechanical model of 

the sclera of the eyeball [8]. Another critical task is to 

model the processes that occur in the vicinity of a 

micropore in a metal under high pressure. This problem 

is important since the operational qualities of the metal 

grow with the «healing» of continuous micro defects [9]. 

In [10] dealt with the problem of spherically symmetric 

compression of a ball having a micropore in the center. 

In [10], a technique for estimating the loading force that 

creates a particular deformed condition was provided 

based on the stated laws of change in the displacement 

field. 

In [11] symmetric deformation of a hollow ball made 

of a two-component composite under the action of 

uniformly distributed internal and external pressures was 

considered. In the same place, a numerical calculation of 

microstrains in the viscoelastic components of the 

structure of the ball under consideration was carried out. 

The results of the classical theory of the deformation of 

an elastic hollow ball were applied in [12] to study the 

deformation of a gas-filled pore of radius R  located at 

the center of a spherical body of radius BR . 

Micropores or spherical cavities can be formed at any 

distance from the center of a spherical body. The 

situation gets considerably more problematic from a 

mathematical point of view. A bispherical coordinate 

system is useful for solving it. The boundary conditions 

are specified on spheres with centers on the same straight 

line. The use of a bispherical coordinate system in [13–

14] allowed the description of the diffusion evolution of 

vacancy and gas-filled pores in spherical nanoparticles. 

The elastic sphere is looked at in this research for the 

case of an arbitrary position of a spherical cavity 

(spherical pore) under the impact of a uniform 

distribution of external and internal pressures. 
 

FORMULATION OF THE PROBLEM 

Let's consider an elastic sphere of radius 2R  inside 

which there is a spherical cavity (pore) of radius 1R , and 

1 2<R R . The center of the cavity 1O  is displaced by a 

distance l  from the center of the sphere 2O . The 

condition that the cavity is located inside the sphere leads 

to a purely geometric inequality: 

1 2 2/ / <1R R l R+  .                               (1) 

Pressure 1P  acts inside the cavity, and pressure 2P  

acts outside the sphere (Figure, a). The purpose of the 

work is to determine the elastic state of a hollow sphere 

with a displaced center of the cavity. For this, it is 

convenient to use a bispherical coordinate system. In it, 

each point A  in space is assigned a triple of numbers 

( , , )   , where 1

2

| |
= ln( )

| |

AB

AB
 , 1 2= B AB  ,   is 

the polar angle (see Figure, b). 
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A spherical cavity (pore) of radius 

1R  in an elastic sphere of radius 
2R  is displaced from the center of sphere by a 

distance l  (a); the surfaces of the cavity and sphere in the bispherical coordinate system are coordinate planes:

= const  (b) 
 

The relationship between bispherical and Cartesian 

coordinates has the form [15]:  

sin cos
=

cosh cos

a
x

 

−

 

 
;      

sin sin
=

cosh cos

a
y

 

−

 

 
; 

 

            
sinh
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cosh cos

a
z



 



−
                                (2) 

and surfaces of the cavity and sphere are given by the 

following relations:  

1

1

=
a

arsinh
R

 
 
 

 ,           2

2

=
a

arsinh
R

 
 
 

 ,        (3) 

where the parameter a  is determined through the values 

of their radii 1R , 2R , and the distance between their 

centers l : 

2 2 2 2

1 2 1 2[( ) ][( ) ]
=

2

l R R l R R
a

l

− − + −


.  

The deformations caused by forces applied to the 

body surface are described by the equilibrium equation in 

vector form [1, 2]: 

2(1 ) (1 2 ) = 0grad div u rot rot u− − −  ,   (4) 

where u  is the displacement vector of the deformed 

body,  is Poisson's ratio. The general solution of 

equation (4) was found by Papkovich (see, for example, 

[16]) 

0

1
= ( )

4(1 )
u grad r− +

−
,         (5) 

where   is any harmonic vector satisfying the equation 

= = 0grad div rot rot −  , 

0  is an arbitrary harmonic scalar whose equation 

0 0= = 0div grad   

is satisfied. 

We assume the sphere is isotropic, i.e., the symmetry 

is retained along the coordinate  , and the displacement 

vector of the sphere and spherical hollow has only the   

component: 

= ( , )u u    ;           = = 0u u 
.            (6) 

In the case of a coaxial (central) location of the 

spherical hollow, the displacements = ( , )u u e     

satisfy the following equation: 

= 0rot u .                                (7) 

Therefore, taking into account the vector identity 

=u grad div u rot rot u −  and relation (7), from 

(4) we obtain the equation for the displacement vector 

= = 0u grad divu   

or its components ( , )u    

1 1 sin
= 0

ch cos sin ch cos

u u     
+   

 −   −    

 

        
   

(8) 

with boundary conditions 

=
1 1

( , ) | = Ru u    ,         =
2 2

( , ) | = Ru u    .       (9) 

The general solution (8) in the bispherical coordinate 

system has the form: 
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                     (10) 

where ( )kP x  are the Legendre polynomials, 
1

Ru  and 
2

Ru  the constant coefficients and are to be determined from the 

boundary conditions on the surfaces of the inner and outer spheres: 

= 1
1

| = P−   ,                
= 2

2
| = P−   .                                                      (11) 

Here   is the component of the stress tensor ik  (see Appendix (A.2)): 

(2 ) 2
= (ch cos ) sh

u
u

a a

+
−  − 





 

  
   


 .                                                 (12) 
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Substituting (12) into the boundary conditions (11), we obtain equations for required coefficients 
1

Ru  and 
2

Ru : 

= = 1
1 1

(2 ) 2
(ch cos ) | sh | =

u
u P

a a

+
−  −  −





    

  
  


,                                          (13) 

= = 2
2 2

(2 ) 2
(ch cos ) | sh | =

u
u P

a a

+
−  −  −





    

  
  


.  

The order of further calculations is as follows. Using the general solution (10), we calculate the derivative 

/u    and the displacement component u  at 1=   and 2=  . Then we substitute the notation = cost   

in (13) and integrate the resulting equations with respect to the variable t . The calculations, although not complicated, 

are cumbersome. The result is given by the following expressions: 
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where notations are introduced 
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The functions  ,   and G , G  are infinite series 

containing exponents ( see Appendix A. (3)). 

Thus, the coefficients 
1

Ru  and 
2

Ru  depend on the 

elastic moduli of the material ( , )  , geometric 

dimensions (radii 
1,2R  and parameter a ), as well as on 

internal 1P  and external pressure 2P . 

STRESS TENSOR OF ELASTIC SPHERE 

WITH CAVITY 
 

Using a solution to the equilibrium equation (10) and 

Hooke's law (see Appendix), we give explicit 

expressions for non-zero components of the stress tensor 

of an elastic sphere with a cavity: 

3/2
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and the coefficients 
1

Ru  and 
2

Ru  are given by 

expressions (14). In contrast to the coaxial position of 

spherical pore [3], we found the stress state of sphere (15) 

depends on the elastic moduli of the material.  

Similar calculations for the case 0l = , when the 

hollow sphere is located in the center of the elastic sphere 

but already in spherical symmetry, are given by: 

2 2
2 2

2 1 2 1
2 1 1 2 1 2

3 3 3 3 2

2 1 2 1

( )
( ) =

R R R R

r

u R u R u R u R R R
u r r

R R R R r

− −
+

− −
;     

2
= 2r r r

rr

du u du

dr r dr

 
+ + 
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( )3 3 3

1 1 2 2 2 1
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=

2
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3 32
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3(1 ) 2(1 2 ) (1 )
=

2
R

P R P R R R
u
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where E  – Young's modulus,   – Poisson's coefficient. 
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CONCLUSIONS 

1. The problem of the elastic state of a sphere with a 

spherical cavity (spherical pore) at an arbitrary distance 

from its center is exactly solved. It is assumed that the 

sphere is elastically isotropic. 

2. Expressions for the displacement components, 

strain and stress tensors depending on the geometric 

parameters of the problem and the pressure values on the 

surfaces of the outer and inner spheres are obtained. 

3. Similar calculations were performed when the 

spherical hole was located in the center of the elastic 

sphere. 

APPENDIX 
 

Strain tensor components in a bispherical coordinate system (BCS) 
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Hooke's law has the following form in the isotropic approximation = 2ik ik ll ik+    : 
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ЗАДАЧА ТЕОРІЇ ПРУЖНОСТІ ДЛЯ ПОРОЖНЬОЇ СФЕРИ  

ЗІ ЗМІЩЕНИМ ЦЕНТРОМ ПОРОЖНИНИ  

М.І. Копп, П.М. Остапчук, В.В. Яновський 

Досліджується пружній стан кулі, усередині якої знаходиться сферична порожнина (куляста пора) на 

довільній відстані від центрa кулі. Отримано вирази для компонентів зсувів, тензорів деформацій та напруг 

залежно від геометричних параметрів задачі та значень тиску на поверхнях зовнішньої та внутрішньої сфер.  

 

 


