
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 106 

https://doi.org/10.46813/2021-134-106 
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The diffraction radiation field generated by the charged particle passing by the perfectly conductive or imped-
ance wedge is considered. With perfect conductivity, the wedge rotation around the edge fixed along with the 
straight particle motion line, does not change the total radiated energy. When the motion to the edge is almost paral-
lel to a face of wedge then an increase of impedance from zero increases the radiated energy.  

PACS: 41.60.-m 
 

INTRODUCTION 
When bunches of the charged particles formed in 

accelerator pass by metal or dielectric structures then a 
diffraction radiation is emitted. It may be wide-band [1], 
and the structure plays a role of antenna. To get effec-
tive emission in the wide wavelength range, it is pref-
erably for the antenna to have no characteristic length. 
In the paper [2], the diffraction radiation is studied, 
which arises when the charged particle passes by per-
fectly conductive half-plane in the direction perpendicu-
lar to the edge of the half-plane. In the manual [3], the 
case of arbitrary direction is considered. In the present 
work, an impedance wedge plays a role of antenna, and 
the charged particle is moving uniformly along a line, 
which does not cross the wedge faces and is not parallel 
to any of them.  

1. PROBLEM FORMULATION  
In the following study, some frames of reference are 

used (Fig.1). The Cartesian coordinates ( , , )x y z , with 
the axis z  directed along the edge of wedge, are con-
nected with the coordinates r ,  ,  , and  , 

cosz r  , sinr  , cosx   , siny   , 
(0, )  , and the sector ( , )    , with 
( 2, )  , is free space. In the Cartesian coordinates 

( , , )   , the axis   is the line of particle’s motion, the 
axis   is directed to the edge of wedge along the short-
est line segment between two points, at the motion line 
and at the edge, and e  denotes the segment length. In 
the planes perpendicular to the edge of wedge, the Car-
tesian coordinate system ( , )x y   has an origin at the 
edge and the axis x  is parallel to the projection of the 
motion line on the planes. The angle between the direc-
tions of the axes   and z  is denoted e , e (0, )  , 
and the angle between the axes x  and x  is denoted e . 
It is assumed that the particle moves with y  value in-
crease, and so, the wedge is in the half-space 0y  , 
and e ( , )    . The defined coordinates are con-
nected, e ecos sinz      , e esin cosx       , 

ey     , ecos( )x      , esin( )y      .  

 a    b 
Fig. 1. The views from z    (a) and     (b)  

It is considered the radiation caused by the straight-
line and uniform motion of the particle, so that 0  , 

0  , ct  , where t  is time, c  is the speed of 
light, (0,1)  . In free space, the electromagnetic field 
obeys Maxwell’s equations, and it may be given by the 
sum of E- and H-waves. The space-time dependence of 
electric and magnetic field strength components of these 
waves has the form Re[ ( , )exp( )]zF x y ik z i t


, where 

F  stands for E  or H . The amplitudes of the longitu-
dinal components obey the equations 2 2 0xy z xy zF k F   , 
where xy x x y ye e      , 2 2 1 2( )xy zk k k  , k c , e  
with index is unit vector in relevant direction, and   
with index is derivative with respect to relevant vari-
able. The transverse component amplitudes are deter-
mined by the longitudinal ones,  

2

2

[ ] ,

[ ] .
xy xy z z z xy z

xy xy z z z xy z

k E ik H e ik E

k H ik E e ik H

    

    

 
     (1) 

It is assumed that impedance   for both faces is 
identical and depends on frequency, s( )ik    , 
where s  is skin layer depth and the power index   is 
connected with the skin effect type. That is, 

s s( ) exp( )k i    , where s 2   . If one pro-
ceeds from the equality 2 1 1 2

e c{1 [ ( )] }i         , 
where e  and c  are plasma and collision frequencies, 
then the cases of normal and anomalous skin effect (re-
lated to the frequency ranges c e     and 

c e    ) correspond to { 1 2  , 2
s c ec   } 

and { 1  , s ec  }, respectively, and dependence 
of Z on k is near to power one at s 1k   (and then 
| | 1  ).  

Both for E-waves, and for H-waves the problem is 
reduced to the plane one: for the given field of an exter-
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nal source e
zF , it should be found the scattered field 

s
zF , which should obeys the equation 
2 s 2 s 0xy z xy zF k F   , inside the sector ( , )    , the 

radiation condition, s s 2| | 0z xy zd F ik F
    , at 

  , the condition of the functions s 2| |zF  and 
s 2| |xy zF  integrability over any bounded area (Meix-

ner’s condition), and the full field, f s eF F F 
  

, 
should obey, at    , the impedance boundary con-
ditions, f f f f

z zE H E H      , which, with taking 
(1) into account, may be written in the form  

f 1 f( ) sinz z xy FF F ik     ,       (2) 
where ,E H  are determined by the equations,  

sin ( )E xyk k   , sin ( )H xyk k   ,  (3) 
and the conditions ,0 Re 2E H   .  

2. ONE WAVE SCATTERING  
The solving of the problem of one plane wave scat-

tering on impedance wedge is described circumstan-
tially in the original papers and books [4, 5]. The result 
is briefly described below. Let the incident scalar plane 
wave with unit amplitude in the 2D space has the spatial 
dependence exp( )x yik x ik y    , where xk   is real and 

2 2 1 2( )y xy xk k k   . Then the sum of the wave and the 
scattered field may be given in the form of Sommerfeld 
integral,  

1( , , ) (2 )

exp( cos ) ( , ).
z

C xy z

f i
dw ik w s w

   

  

 

  
  (4) 

Here 0 i( , ) ( ) ( , ) ( , )zs w s w w w      ,  

0 i i( ) cos( ) [sin( ) sin( )]s w k k w k w k w     ,  
(2 )k    , { } 2( , ) (( 2) )w w          ,  

0
1

( ) exp{ [cosh( ) 1]

[2 cosh( 2 )sinh(2 )] },

w d w  

   






    

    

i e arcosh( )x xyw i k k     .                (5) 
The integration path C  in (4) consists of two parts: 

C , in the half-plane Im 0w  , and C , symmetrical to 
C  with respect to the point 0w  . The path C  goes 
along the parts of three straight lines, from i     to 

i      , passing through the points i    and 
i      , consecutively, where    and    should 

obey the inequalities 0 2    and i| Im |w   . The 
form of (4), in particular, ensure, that 

1[ ( , , )] ( , , ) sinz z xyf f ik           , for    , 
and so, the quantity   should be taken from (2). The 
quantity iRe w  corresponds to the angle (with respect to 
x  axis) of the wave incidence direction. The function 

0 ( )s w  has the pole at iw w , corresponding to the in-
cident wave. Also, it can have the poles at i2w w    
(if iRe ( , )w    ) and at i2w w     (if 

iRe ( , )w    ), corresponding to the waves re-
flected from top and bottom faces.  

3. MOVING PARTICLE FIELD  
To use the relations written above for the considered 

problem solving, one has to present the field connected 
with the moving charge 0e  by integral Fourier over the 
plane waves coming to the line 0y   in 2D problem. 
The time-dependent Liénard-Wiechert potentials are: 

e 2 2 2 2 1 2
0[( ) (1 )( )]t e ct           , e e

t tA e
  . 

For { 0k  , 0  }, performing the Fourier transform, 
e 1 e€ (2 ) exp( ) tdt ikct   

  , one gets  
e 1

0 0

e

€ ( ) K ( )exp( )

exp( )

e c ik

dk ik ik
 

   

    

    






 

     ,  

where e 1
0(2 )e c    

 , 2 2 1 2( )    , k   ,  
2 1 2(1 )    , k k  , 2 2 1 2( )k     , (6) 

0K  is McDonald’s function. For the relevant transforms 

of the strength components, denoting e eE  
  , 

e eE ik  
  , e 2 e(1 )E ik     

  , one gets 
e e
, , , ,

€ exp( ) ( )E dk ik ik E k             
   


. For z-

components, replacing the integration variable k  with 

zk , e esin coszk k k    , one comes to the equalities 
e e€ exp( ) ( , )z z z x z zF dk ik z ik x F k 

      , where  
e 1 e

e e( , ) (sin ) ( cos ) exp( )z z zE k i k k          ,  
e e( , ) exp( )z zH k        ,  

e e( cos ) sinx zk k k     .                  (7) 
That is, for the given zk , the wedge is illuminated by 

one E-wave and one H-wave with the amplitudes 
e

e( , )z zE k   and e
e( , )z zH k  , respectively. If zk  is real 

and xk   is given by (7) then 2 2 2( ) ( ) 1z xk k k k     , 
so that these plane waves decrease exponentially in the 
direction y  (same as direction  ). The amplitudes 
depend on e  through the factor eexp( )  , where   
is defined in (6) with e e( cos ) sinzk k k     .  

4. DIFFRACTION RADIATION FIELD  
The longitudinal field strength components for the 

sum of the incident and scattered waves are given by 2D 
distributions e

e( , ) ( , , )z z z FF k f    . Due to the prob-
lem linearity, the 2D distribution of the scattered field 
depends on e  through the factor eexp( )  , which is 
independent on   and  .  

The 3D distributions for the set of waves are given 
by the equality € ( , , ) exp( ) ( )z z z z zF r dk ik z F k  

  , 

where e
e( ) ( , ) ( , , )z z z z z FF k F k f     , and the quanti-

ties E , H , and iw  are dependent on the ratio 

z zc k k  (through (3), (5), and (7)).  
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In the wave zone of 2D space (where 1xyk   ) the 
angular distribution of amplitude is obtained in [5], by 
the stationary phase method: the contribution of the 
points   and   to the integral in (4) gives  

( , , )z Ff      1 2[ (2 )] exp( ) ( , )xy xy F zi k ik c    ,  
where { }( , ) [ ( , )]F z z Fc s         (the dependence 
on zc  is determined through (3), (5), and (7)). The inci-
dent and reflected waves related to the uniform charge 
motion are exponentially decreased in relevant direc-
tions, and they do not contribute to the radiation field.  

By the same method, in the wave zone of 3D space, 
where 1kr  , one can get the relation  

€ ( , , )zF r     1 e
eexp( ) ( cos , ) (cos , )z Fikr r F k      . (8) 

For the components of E- and H-waves, respec-
tively, there are the relations *

zE H   2| |z xyE k k  and 
*
zE H   2| |z xyH k k , with asterisk denoting the com-

plex conjugate. The substitution coszk k  , corre-
sponding to the arguments of the functions in (8), im-
plies coszc  ,  

1 2
e( ) sink D    , i e ( )w i      ,  

where e e( ) arcosh[(1 cos cos ) ( sin sin )]         , 
2 2 2

e e( ) (1 ) sin ( cos cos )D          . The radia-
tion field distribution depends on e  through the factor 

1 2
e eexp[ ( ) sin ]k D   , independent on  . As a 

result, if the particle motion line is translated parallel to 
itself then relative distribution of the radiation field with 
respect to azimuth angle  , at the given frequency, for 
the given polar angle  , is not changed, the power flux 
density for the different   is changed in accordance 
with the same factor written just above. Such azimuthal 
invariance of the radiation field takes place for the arbi-
trary z-uniform structure, but under the condition of the 
plane existence, with respect to which the structure and 
the particle motion line are in the different half-spaces. 
In such conditions the scattered field distribution is fully 
determined by the field of external source at the men-
tioned plane, and the Fourier transforms of the external 
field components depend on e  exponentially, with in-
crement dependent on zk .  

Proceeding from the equality  
1(4 ) ([ ] )t t tW c d dz E H e   

   
   ,  

for the power flux through the cylinder with radius  , 
performing integration by time, transition to Fourier 
transforms, the limit transition   , and denoting  

2( ) | ( , ) |F FI d   
   ,   (9) 

1 2 2
,(4 ) | ( ) | ( )k

k z xy F E H z z F zW ck dk k F k I c   
    ,  

for the total radiated energy W  one gets  

04W c dkW    .   (10) 
Replacing of integration variable, coszk k  , 

gives  
3 1 2 1

0 0 e

2
e

(16 ) (sin ) exp( 2 )

[ (cos ) (cos ) (cos cos ) ( )].H E

W c e d

I I D


    

     

    

  


   (11) 

5. PERFECTLY CONDUCTIVE WEDGE  
In the case of perfect conductivity, Im E   , 

0H  , one gets 0( , ) ( )z Es s   , 1( , ) ( )z Hs s   , 
where 1 i( ) cos( ) [sin( ) sin( )]s k k k k w       . In 
(9), the integrand is rational function of the variable 
exp( )ik  , and the integration gives  

,

2 2 2

(cos ) 2 coth[ ( )]

sin ( ) {sinh [ ( )] sin ( )}.
E HI k k

k k k

  

  
 

  

  

  
  (12) 

As it follows from (10), (11), and (12), in the case of 
the perfect conductivity, the total radiated energy does 
not depend on the angle e . As a result, if the particle 
motion line and the edge of wedge are fixed and the 
wedge is rotated around the edge then the total radiated 
energy is not changed.  

After the next limit transition, to the perfectly con-
ductive half-plane, for which   , from (10), (11), 
and (12), changing the order of integration, one gets  

1 2
, e(cos ) 2 sin sin ( )E HI D      ,  

2 2 2 2 2
0 e e e3 sin [8 (1 cos )]W e        ,  

in agreement with [2] and [3].  
Invariance of the radiated energy with respect to the 

mentioned wedge rotation is connected with the possi-
bility to continue the full field, fF


, to the space unlim-

ited at an angle  , with aid of mirror reflection in the 
wedge faces, correspondingly to relevant boundary con-
dition. Somewhat similar invariance takes place for the 
field from a set of point radiation sources. Let, in two 
2D problems with the same wave number xyk , the ex-
ternal source is given by the same distribution 

e ( , )g   , but shifted at different angles, 
e e( , ) ( , )j jg g       ( 1,2j  ), with all points, in 

which the Helmholtz equation is not held, 
2 e 2 e( , ) ( , ) 0xy j xy jg k g      , remaining in the main 

sector, ( , )    , for both j  values. For the relevant 
full field, f s e

F j F j F jg g g  , the boundary conditions 
have the form f ( , ) 0E jg    , f ( , ) 0H jg     .  

Let the functions f ( , )E jg    and f ( , )H jg    be con-
tinued out of the main sector, ( , )  , with keeping of 
the equalities f f( , ) ( , )E j E jg g          and 

f f( , ) ( , )H j H jg g         . The obtained field 
is 4 -periodical in the space unlimited at an angle   
and it obeys the Helmholtz equation there, except of the 
points, which are the mirror reflections of the external 
source. For the functions 

f f( , ) [ ( , ) ( , )] 2j E j H jg g g        , in the sectors 
(4 1 1) ( , )n       , respectively, for any inte-

ger n , there are no such points. The power radiated in 
the main sector is half of one radiated in the period.  

Change of location of the sources in the main sector 
by simple translation with respect to angle   gives 
similar translation of the sources related to the functions 

( , )jg    in the space unlimited at an angle  , without 
change of radiation powers associated with these 
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sources. The functions f ( , )E jg    and f ( , )H jg   , for 
the given j , have opposite parity with respect to mirror 
reflection in faces, and relevant products give zero con-
tribution to radiation power in one period by angle. As a 
result, the radiation powers per period for the distribu-
tions ( , )jg    have some value 0P , the same for all 
four of them, and it is connected with the values F jP  of 

such powers for the distributions f ( , )F jg    by the 
equality 04 E j H jP P P  . And if the quantities 

( )E j E j E j H jc P P P   (connected with the ratios of the 
powers radiated with E- and H-waves) are identical for 
both locations of sources, 1 2E Ec c , then the powers 

E jP  and H jP  also are identical for the different j . In 
particular, in the case of the set of sources correspond-
ing to the uniform charge motion, one has 1 2Ec  , 

02E HP P P  , at arbitrary e  value.  
The equality E HP P , taking place for the incident 

wave  
e

0 i( , ) exp[ cos( )]xyf ik w      ,  (13) 
is connected with some symmetry between the solutions 
of 2D Helmholtz equation with the Dirichlet and Neu-
mann boundary conditions. To reveal the symmetry 
more clearly, it is expedient to solve 2D problem with 
use of the Kontorovich-Lebedev transforms [6], in the 
form  

1

0
( ) I ( ) ( )f d f   

  


,   (14) 
01

0
( ) ( ) K ( ) ( )

i

i
f i d f    

 

 
 


,  (15) 

where 0  , I  is modified Bessel function. The 
transformation is used below for xyk i  , with ana-
lytical continuation to 0i  , in results.  

Let ( , )pg    ( 0.1p  ) be the solutions of the fol-
lowing equation and boundary conditions:  

2 2( , ) ( , ) 0xy p xy pg k g       ,  

0 ( , ) 0g    , 1 ( , ) 0g  
   ,  (16) 

0 0( , ) ( ) 0g f     , 1 1( , ) ( ) 0g f    
   .  

Here e( ) ( , )p pf f    , e e
1 0( , ) ( , )f f     . The 

transforms ( )pf 


 for the functions ( )pf   may be ob-
tained with use of representation of the Bessel function 
by the Sommerfeld integral [7], in the form  

2 I ( ) exp( cos )d i        ( Re 0  ),   (17) 
where the integration path goes from i    to 

i    through the points   and  . With change of 
integration order, by   in (14) and   in (17), for 
Re 0  , one gets  

0 i( ) exp[ ( )]f i w i       


, 1 0( ) ( )f i f    
 

.  
If the functions ( , )pg    are taken as following,  

0 0( , ) ( )sin( ) sin(2 )g f          
 , 

1 0( , ) ( ) cos( ) sin(2 )g if         
  ,  

and the functions ( , )pg    ( 0,1p  ) are determined by 
them through (15), with xyk i  instead of  , then the 
equation and boundary conditions (16) are held. And 
then, for the functions s ( , ) ( , ) ( , )p p pg g g        , 

the boundary conditions s e
0 0( , ) ( , ) 0g f      

and s e
1 0[ ( , ) ( , )] 0g f         are held, just as it 

should be for the scattered field caused by the incident 
wave (13) and relevant boundary condition. Moving the 
integration path in (15) to the half-plane Re 0   and 
taking the residues in poles, one gets  

s
1( , ) ( 1) ( , , )n

p n pg B nk   
    ,  (18) 

where ( , , ) ( , , ) ( 1) ( , , )p
pB B B            , 

i( , , ) K ( )exp[ ( )] ( )xyB ik i w s           , 

( ) sin[ ( )]s         . In connection with the 
equality ( , , 2 ) ( 1) ( , , )nB nk B nk    

     , the 
power calculated for the angle interval ( , )     is 
half of one calculated for the interval ( 2 ,2 )    , 
the power is given by the sum of contributions of differ-
ent summands in (18), and the power values in the cases 
of Dirichlet and Neumann boundary conditions are 
equal.  

6. RADIATED ENERGY AND IMPEDANCE  
In the Fig. 2, the examples of directional radiation 

patterns are presented by the quantity 
2

e 0exp(2 ) ( sin )w c dW e d d d       for the case 
 0.9, s ,  150, e 45, e 60, at  30 
(see Fig. 2,a) and  60 (see Fig. 2,b). Sloped straight 
lines correspond to the angles   and e . The curves 
correspond to the frequencies, at which | | , 0.03, 
0.3. At the angles   near to 0  and  , in both fig-
ures, the curves with larger | |  values give smaller w  
values. At the angles between 45 and 90, in the 
Fig. 2,b, on the contrary, the curves with larger | |  
give larger w .  

Appearance of nonzero impedance   with 
s (0, 2)  , can lead both to decrease of the total ra-

diated energy and to its increase. The radiation field is 
determined by the charge and current distributions on 
the wedge faces. The increase of impedance corre-
sponds to the resistance increase and can lead to de-
crease of the currents, and so, to the radiated power de-
crease. On the other hand, near the surface with nonzero 
impedance, the surface wave exists (Zenneck's wave) 
[8]. At | | 1  , its speed is near to the speed of light. 
When a particle moves to the edge almost parallel to a 
face of wedge then it effectively generates the waves, 
which speed projection on the particle motion direction 
is near to the particle speed. At the edge of wedge, a 
part of wave field transforms into a radiation field. In 
some conditions, an appearance and increase of imped-
ance can yield an increase of the radiated energy.  
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 b 
Fig. 2. Directional radiation patterns  

To obtain simple approximate relations, it is expedi-
ent to consider the case when particle is relativistic, 

1  , the distance between the motion line and edge 
is so large, that e s  , the value of esin  is not 
small, and the motion line is almost parallel to the lower 
wedge face, so that the angle f e      is small, 

f 1  . Then the main part of energy is radiated within 
the angle 1   near the motion directions of the particle 
and its mirror reflection in the lower wedge face, and 
for e| | 1    one gets the relations 

( )   2 1 2
e(1 ) ( sin )   , ( )D    2 2 2

esin (1 )   , 

   2 1 2(1 )k   , where e( )     . Due to the 
relation e s   the factor eexp( 2 )   in (11) may 
be not small only at the frequencies, which obey the 
relation s 1k  , and so, give | | 1  . That is, the 
relation e s   implies that the main contribution to 
the integral by k  in (10) is given by the frequencies, at 
which impedance is small. With use of the equality 

2
{ } (( 2) ) ( 2)cos( 2)w k w          ((4.16) in 

[5]), for { e| | 1   , e| | 1   } one gets  
( , )z Hs      f2[ ( )]i     

 1
f[ ( )] ( )H Hi             

 1
e f e{[ 2 ( )][ ( )]}i i              , 

and relevant integration gives (cos )EI    2 ( )  ,  
(cos ) (cos )H EI I    f1 2[ ( ) Im Re ]H H        

 2 2 1
f{( Re ) [ ( ) Im ] }H H        .  

Denoting f f esin    , 2
e| | sinZ Z   , using 

the variable e( )     , and assuming that f  and Z  
are not very large, from (11) one gets  

0W W    2 1 2
0(4 ) Zc e     

 2 1 2
eexp[ 2 (1 ) ]d k   

                (19) 
 2 1 2

s s fcos [tan (1 ) ] ( )G      ,  
where 2 1 2 2 2

s f s( ) [(1 ) sin ] ( cos )Z ZG             

and 0W  is the value of W  in the perfect conductivity 
case. From (10) and (19), change of integration order, 
by   and k , and change of variable, cot  , gives  

0W W   1 2 1 2
s 0 s e e( ) [( ) (2 )] sine          

 2
s f s f( 1)cos ( 1, )[tan ( 1, )]S R           , (20) 

where 0W  is related to the perfect conductivity case,  is 

gamma-function, 2
0( , ) (sin ) (1 sin )pS p q d q      , 

2 2( , ) ( 1, ) ( , )R p S p S p     . If the faces are resis-
tive ( s 0  , scos 0  ) then the right hand side of (20) 
may be both positive and negative. In the case of normal 
skin effect it is zero at f   1.194. For smaller f  val-
ues, it is positive and appearance of resistance leads to 
increase of the total radiated energy.  

Considering another problem, for the same particle 
motion and the unbounded impedance plane at e  , 
one can get the equalities for the field strength compo-
nents in the form of integrals over k  and k  of the 
product of the factor eexp[ ( ) ]ik ik ikct           
( e  ) with amplitudes dependent on k  and k . For 

0k  , these amplitudes are inversely proportional to the 
difference ZD ikZ   with   defined by (6), since 
the dispersion equation for Zenneck's wave has the form 

0ZD  . From the relations 0  , Im 0Z  , and 
2 2 2| | ( Im ) ( Re )ZD k Z k Z   , it follows that for the 

sufficiently small value of | |Z , its increase leads to 
decrease of | |ZD , and, consequently, to increase of the 
mentioned amplitudes, and to field amplification.  

In the case of the impedance wedge and a particle 
motion to its edge almost parallel to a face, during the 
motion near the edge, the relevant amplified field trans-
forms into the radiation field, having greater power, 
than one in the perfectly conductive wedge case.  

CONCLUSIONS  
The wide-band electromagnetic pulse may be gener-

ated by particle bunch created in the pulse accelerator 
and passing by antenna. When the bunch is relativistic 
then the main part of radiation is emitted in the direc-
tions near to the motion directions of the bunch and its 
mirror reflections in the wedge faces. The cases of the 
wedge-form antenna with zero and nonzero surface im-
pedance and single particle moving uniformly are con-
sidered. For the perfectly conductive wedge, it is shown 
that if the particle motion line and the edge of wedge are 
fixed and the wedge is rotated around the edge then the 
total radiated energy is not changed. Appearance and 
increase of impedance may lead both to decrease and to 
increase of the total radiated energy. The decrease may 
be caused by decrease of the surface currents, through 
the resistance increase. The increase of the radiated en-
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ergy takes place in the conditions, favorable for the sur-
face wave generation, when the particle moves to the 
edge almost parallel to a face of wedge. Both for per-
fectly conductive wedge and for impedance one, at the 
given frequency, the relative distribution of the radiation 
field in directions that form a fixed angle with the edge 
of wedge is not changed if the particle motion line is 
translated parallel to itself. Such invariance of the radia-
tion field takes place for the arbitrary structure uniform 
in some direction, under the condition of the plane exis-
tence, with respect to which the structure and the parti-
cle motion line are in the different half-spaces.  
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ДИФРАКЦИОННОЕ ИЗЛУЧЕНИЕ ПРИ ДВИЖЕНИИ ЧАСТИЦЫ 
МИМО ИМПЕДАНСНОГО КЛИНА  

В.М. Остроушко 
Рассмотрено поле дифракционного излучения, созданного заряженной частицей при движении мимо 

идеально проводящего или импедансного клина. При идеальной проводимости поворот клина вокруг ребра, 
фиксированного вместе с линией движения частицы, не изменяет полной излученной энергии. При движе-
нии частицы к ребру почти параллельно к грани клина увеличение импеданса от нуля увеличивает упомяну-
тую энергию.  

ДИФРАКЦІЙНЕ ВИПРОМІНЮВАННЯ ПРИ РУСІ ЧАСТИНКИ  
ПОВЗ ІМПЕДАНСНИЙ КЛИН  

В.М. Остроушко 
Розглянуте поле дифракційного випромінювання, утвореного зарядженою частинкою при русі повз ідеа-

льно провідний або імпедансний клин. При ідеальній провідності обертання клину навколо ребра, фіксова-
ного разом з лінією руху частинки, не змінює загальної випроміненої енергії. При русі частинки до ребра 
майже паралельно до грані клину, збільшення імпедансу від нуля збільшує згадану енергію.  
 


