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DIFFRACTION RADIATION OF PARTICLE PASSING
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V.M. Ostroushko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: ostroushko-vwkipt.kharkov.ua

The diffraction radiation field generated by the charged particle passing by the perfectly conductive or imped-
ance wedge is considered. With perfect conductivity, the wedge rotation around the edge fixed along with the
straight particle motion line, does not change the total radiated energy. When the motion to the edge is almost paral-
lel to a face of wedge then an increase of impedance from zero increases the radiated energy.

PACS: 41.60.-m

INTRODUCTION

When bunches of the charged particles formed in
accelerator pass by metal or dielectric structures then a
diffraction radiation is emitted. It may be wide-band [1],
and the structure plays a role of antenna. To get effec-
tive emission in the wide wavelength range, it is pref-
erably for the antenna to have no characteristic length.
In the paper [2], the diffraction radiation is studied,
which arises when the charged particle passes by per-
fectly conductive half-plane in the direction perpendicu-
lar to the edge of the half-plane. In the manual [3], the
case of arbitrary direction is considered. In the present
work, an impedance wedge plays a role of antenna, and
the charged particle is moving uniformly along a line,
which does not cross the wedge faces and is not parallel
to any of them.

1. PROBLEM FORMULATION

In the following study, some frames of reference are
used (Fig.1). The Cartesian coordinates (x,y,z), with
the axis z directed along the edge of wedge, are con-

nected with the coordinates », 6, p, and ¢,
z=rcos@, p=rsinf, x=pcosp, y=psing,
0e(0,7), and the sector ¢e(—D,®d), with

® e (n/2,7), is free space. In the Cartesian coordinates
(&¢,n,¢), the axis ¢ 1is the line of particle’s motion, the
axis & is directed to the edge of wedge along the short-

est line segment between two points, at the motion line
and at the edge, and £, denotes the segment length. In

the planes perpendicular to the edge of wedge, the Car-
tesian coordinate system (x’,»") has an origin at the

edge and the axis x' is parallel to the projection of the
motion line on the planes. The angle between the direc-
tions of the axes { and z is denoted 6,, 6, €(0,7),
and the angle between the axes x and x’ is denoted ¢, .
It is assumed that the particle moves with y value in-
crease, and so, the wedge is in the half-space y' >0,
and ¢, € (xr —®,®P) . The defined coordinates are con-
nected, z=¢cosO, +nsinf,,

V'=£-¢&,, X'=pcos(p-9,), y' = psin(g-9,).

x'=¢sinf, —ncoso,,
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Fig. 1. The views from z =+ (a) and & =-w (b)

It is considered the radiation caused by the straight-
line and uniform motion of the particle, so that £ =0,
n=0, {=pct, where ¢t is time, c is the speed of
light, B €(0,1). In free space, the electromagnetic field
obeys Maxwell’s equations, and it may be given by the

sum of E- and H-waves. The space-time dependence of
electric and magnetic field strength components of these

waves has the form Re[F(x,y)exp(ik.z —iot)], where
F stands for £ or H . The amplitudes of the longitu-
dinal components obey the equations V. F, + k. F, =0,
k, ==k, k=o/c, &
with index is unit vector in relevant direction, and 0
with index is derivative with respect to relevant vari-

able. The transverse component amplitudes are deter-
mined by the longitudinal ones,

2 = . - .

k E, =+ik[VH e 1+ikV _E._,
2 17 . — .

k. H, =—ik[VE é. ]+ik V_H_.

It is assumed that impedance Z for both faces is
identical and depends on frequency, Z=(-ikd,),

where V, =¢€0, +¢0,,

()

where &, is skin layer depth and the power index @ is
skin effect type. That is,
Z =(k8,)” exp(—ia,), where a,=w /2. If one pro-

ceeds from the equality Z={l- [o(o+iv,)]"} ",

connected with the

where @, and v, are plasma and collision frequencies,

then the cases of normal and anomalous skin effect (re-
lated to the frequency ranges <<v,6 <<wm, and

v, << << ®,) correspond to {@ =1/2, 8, =cv, /o] }
and {@ =1, 8, =c/w, }, respectively, and dependence
of Z on k is near to power one at kd, <<1 (and then
|Z|<<1).

Both for E-waves, and for H-waves the problem is
reduced to the plane one: for the given field of an exter-
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nal source F., it should be found the scattered field
F’,  which  should
V2 F +k.F’ =0, inside the sector ¢ €(-®,®), the

obeys the  equation

radiation condition, ['y dgp|0,F’ ik F:[—0, at
p —> o, the condition of the functions |F°[ and
|V [ integrability over any bounded area (Meix-
ner’s condition), and the full field, F'=F'+F°,
should obey, at ¢ = +® , the impedance boundary con-
ditions, +E!/H} =Z=%E}/H!, which, with taking
(1) into account, may be written in the form

(PF) "0, F) =ik, siny,, )
where ., are determined by the equations,
sin g, =k, [(kZ), sin g, =(k,,2) [k, 3)

and the conditions 0<Rey, , <7/2.

2. ONE WAVE SCATTERING

The solving of the problem of one plane wave scat-
tering on impedance wedge is described circumstan-
tially in the original papers and books [4, 5]. The result
is briefly described below. Let the incident scalar plane
wave with unit amplitude in the 2D space has the spatial
dependence exp(ik x'+ik}y"), where k| is real and
k! =(k2,—k*)"*. Then the sum of the wave and the

scattered field may be given in the form of Sommerfeld
integral,

f.(x,p.p) = 27i) '
X IC dwexp(—ik,,p cosw)s_(x,p+w).
Here s.(y,w) = s,(W)I1, (2, w)/T,, (2, W),

8, (W) = kg, cos(kgw,)/[sin(kqy,w) —sin(k, w))],
ky = 77/(2(1)) s My (x,w) = H{i} Yaop ((”/2) —-xEIw)),
W, (W) =exp{- If; dr[cosh(tw)—1]x
x[2rcosh(z 7/2)sinh(2d7)] '},

w, =@, - +iarcosh(k] /k,,) . 5
The integration path C in (4) consists of two parts:
C, , in the half-plane Imw >0, and C_, symmetrical to

(4)

C, with respect to the point w=0. The path C, goes
along the parts of three straight lines, from &'+jo to
-1 — &' +ioo, passing through the points &'+ig” and
- —¢&'+ig", consecutively, where ¢’ and &" should
obey the inequalities 0< &' < 7/2 and &" >/ Imw, |. The
foom of (4), in that
(of.Cx 00170, f.(x, p,) = £ik,, sin i , for ¢ =+,
and so, the quantity y should be taken from (2). The

particular,  ensure,

quantity Rew, corresponds to the angle (with respect to

x' axis) of the wave incidence direction. The function
s,(w) has the pole at w=w;, corresponding to the in-

cident wave. Also, it can have the poles at w =20 —w,
(if Rew, e(@®-7,0)) and at w=-20-w (if
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Rew, € (-®,7 —®) ), corresponding to the waves re-
flected from top and bottom faces.

3. MOVING PARTICLE FIELD

To use the relations written above for the considered
problem solving, one has to present the field connected
with the moving charge ¢, by integral Fourier over the

plane waves coming to the line y'=0 in 2D problem.
The time-dependent Liénard-Wiechert potentials are:

¢ = el = Bery’ + (=N +n ", 4 = pore..
For {k>0, &>0}, performing the Fourier transform,
& =(2n) " [*7 drexp(ikct)gS , one gets
€ = e, (nfc) " K (x,,0)exp(ik.g) =
= [ dk, exp(ik,n +ik.& —Kk.£)p°

where ¢° =¢,(2Bex.) ", o = (2 +n™)"?, k., =k, |7,

y=(U=p)", k. =k/B, k. = (x5, +k)", (6)
K, is McDonald’s function. For the relevant transforms
of the strength components, denoting Eg =K.0°,
E; =-ik,¢°,  Ef=-ik,(1-B*)p°,
£ . =17 dk, exp(ik,n +ik ¢ —x.E)ES, , (k,) . For z-

components, replacing the integration variable &, with

one gets

k., k. =k, sin6, +k, cos6,, one comes to the equalities
E° = [ dk_ exp(ik.z +ik!x")E* (k.,&) , where
E:(k,,§) =i(sin0,)" (kB cos, —k,)¢" exp(—x,&).
H: (k,,&) = Pre, 0" exp(—x,8).
k; = (k, —k_cos@,)/sin@, . 7
That is, for the given £_, the wedge is illuminated by
one E-wave and one H-wave with the amplitudes
ES (k,,&,) and He (k.,&,), respectively. If k& is real
and k! is given by (7) then (k. /k)* +(k./k)* > B >1,
so that these plane waves decrease exponentially in the
direction y' (same as direction &). The amplitudes

depend on &, through the factor exp(—«.&,) , where «,
is defined in (6) with k, = (k. —k, cos He)/sin 0, .

4. DIFFRACTION RADIATION FIELD

The longitudinal field strength components for the
sum of the incident and scattered waves are given by 2D
distributions I:“f (k,,¢.)f.(xr>Pp>®) . Due to the prob-
lem linearity, the 2D distribution of the scattered field
depends on &, through the factor exp(—«.&,), which is

independenton p and ¢.

The 3D distributions for the set of waves are given
by the equality Iez(r,e,go) = ffz dk_ exp(ik_z)F.(k.),
where F,(k,) =Iie(kz,§e)fz(;(F,p,go), and the quanti-
ties x,, Xy, and w, are dependent on the ratio
¢, =k, [k (through (3), (5), and (7)).

107



In the wave zone of 2D space (where ko >>1) the

angular distribution of amplitude is obtained in [5], by
the stationary phase method: the contribution of the
points —7 and 7 to the integral in (4) gives

[ p50) = [i/Qrk,,p)]” explik,, p)A,(c..9) ,
where A.(c,,p) :Zm[isz (x7»@Fm)] (the dependence
on c, is determined through (3), (5), and (7)). The inci-
dent and reflected waves related to the uniform charge
motion are exponentially decreased in relevant direc-
tions, and they do not contribute to the radiation field.

By the same method, in the wave zone of 3D space,
where kr >>1, one can get the relation

E(r,0,0) ~ exp(ikr)r™ F* (k cos0,&,)A,.(cos 0,9) . (8)

For the components of E- and H-waves, respec-
tively, there are the relations ~E.H, ~ |E. | k/k,, and
E,H. ~|H_[ k/k,, with asterisk denoting the com-
plex conjugate. The substitution k, =kcosf, corre-
sponding to the arguments of the functions in (8), im-
plies ¢, =cos@,

K, =k, D"*(0)/sin6, , w, =, - +iA(0),

where A(6) = arcosh[(1- S cosOcosb,)/(SsinOsinb,)],
D(0)=(1-B*)sin’ @, +(BcosO—cosh,)’. The radia-
tion field distribution depends on &, through the factor
exp[-k.& D'?(0)/sin6,], independent on . As a
result, if the particle motion line is translated parallel to
itself then relative distribution of the radiation field with
respect to azimuth angle ¢, at the given frequency, for
the given polar angle 0, is not changed, the power flux
density for the different ¢ is changed in accordance
with the same factor written just above. Such azimuthal
invariance of the radiation field takes place for the arbi-
trary z-uniform structure, but under the condition of the
plane existence, with respect to which the structure and
the particle motion line are in the different half-spaces.
In such conditions the scattered field distribution is fully
determined by the field of external source at the men-
tioned plane, and the Fourier transforms of the external
field components depend on &, exponentially, with in-
crement dependent on £_.
Proceeding from the equality
W, =(@4n)"cl'y dop |2 dz(E,H,1,)

for the power flux through the cylinder with radius p ,
performing integration by time, transition to Fourier
transforms, the limit transition p — o, and denoting

L=y do| A (r.0) ©)
W=@n) ekl dh k] S,y | F.(E)F (e,
for the total radiated energy W one gets

W =drcl? dkW . (10)

Replacing of integration variable, k =/kcos$,
gives

W =(167c) "¢ [[ d9(sin9) " exp(-2x,&,) x an

(1, (cos )+ I, (cos 9) (cos & — B cosB,)’ / D(9)].
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5. PERFECTLY CONDUCTIVE WEDGE
In the case of perfect conductivity, Imy, =+,

X =0, one gets s_(x;,0) =5,(0), 5.(2,.0) =5(9),
where  s,(9) = kg, cos(k,@)/[sin(ky,p) —sin(k,w,)]. In
(9), the integrand is rational function of the variable
exp(ik, @) , and the integration gives

1, (cos ) = 2mk, coth[k,A(F)]x

12
xsin’ (k, )/{sinh’ [k, A(9)]+sin’ (zk,)}. )
As it follows from (10), (11), and (12), in the case of
the perfect conductivity, the total radiated energy does
not depend on the angle ¢, . As a result, if the particle
motion line and the edge of wedge are fixed and the
wedge is rotated around the edge then the total radiated
energy is not changed.
After the next limit transition, to the perfectly con-
ductive half-plane, for which ® =7, from (10), (11),
and (12), changing the order of integration, one gets

I, ,(cos9) =2x Bsin9sin6,/D"*(9),
W =3ely B*sin” 6, [[8&,(1- B> cos’6,)] ,
in agreement with [2] and [3].
Invariance of the radiated energy with respect to the
mentioned wedge rotation is connected with the possi-

bility to continue the full field, F', to the space unlim-
ited at an angle ¢, with aid of mirror reflection in the

wedge faces, correspondingly to relevant boundary con-
dition. Somewhat similar invariance takes place for the
field from a set of point radiation sources. Let, in two
2D problems with the same wave number &, the ex-
ternal source is given by the same distribution
g°(p,p), but shifted at different
g;(p.p)=g"(p,o—¢;) (j=12), with all points, in
which the Helmholtz equation is not held,
nyg; (o,p)+ kfygj (0,9)# 0, remaining in the main

angles,

sector, @ € (—®, D), for both ; values. For the relevant
full field, g;f =gy, t &y, the boundary conditions
have the form g}, (p,£®) =0, 8,g},(ps@), 0 = 0.
Let the functions g; .(p,¢) and g, .(p,@) be con-
tinued out of the main sector, (—®,®), with keeping of
the equalities g, (p,+®+¢)=—-g, (p,2®-¢) and
g, (P, x®+¢) = +g, ,(p,+P—¢). The obtained field
is 4® -periodical in the space unlimited at an angle ¢
and it obeys the Helmholtz equation there, except of the
points, which are the mirror reflections of the external
source. For the functions
g, (0.9) =gz, (P.0) £ g1, (p,9)]/2, in the sectors
¢o—(4n+1£1)® e (—D,D), respectively, for any inte-
ger n, there are no such points. The power radiated in
the main sector is half of one radiated in the period.
Change of location of the sources in the main sector
by simple translation with respect to angle ¢ gives

similar translation of the sources related to the functions
g]i‘ (p, ) in the space unlimited at an angle ¢ , without
change of radiation powers associated with these
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sources. The functions g;f(p,go) and gﬁ,j(p,go), for
the given j, have opposite parity with respect to mirror

reflection in faces, and relevant products give zero con-
tribution to radiation power in one period by angle. As a
result, the radiation powers per period for the distribu-

tions g_f (p,p) have some value F,, the same for all
four of them, and it is connected with the values P, of
such powers for the distributions g;f (p,p) by the
equality 4F =F,,+F,,. And if the
cp; =P, /(P; +P,;) (connected with the ratios of the

powers radiated with E- and H-waves) are identical for
both locations of sources, ¢, =c;,, then the powers

quantities

P, and P, also are identical for the different j. In

particular, in the case of the set of sources correspond-
ing to the uniform charge motion, one has ¢, =1/2,
P, =P, =2F,, at arbitrary ¢, value.
The equality P, = P, , taking place for the incident
wave
fo (p, @) = exp[-ik,,pcos(p—w,)], (13)
is connected with some symmetry between the solutions
of 2D Helmbholtz equation with the Dirichlet and Neu-
mann boundary conditions. To reveal the symmetry
more clearly, it is expedient to solve 2D problem with

use of the Kontorovich-Lebedev transforms [6], in the
form

F)={ dpp™ 1,60 f (), (14)

Foy=Gny ' [ awK, o) f0), (15
where x>0, I is modified Bessel function. The
transformation is used below for x =k, / i, with ana-
Iytical continuation to ix > 0, in results.

Let g;(p,go) (p=0.1) be the solutions of the fol-
lowing equation and boundary conditions:
V3,&,(p.0)+k, g, (p,9)=0,
2 (P.FP)=0, 3,8 (P, 9), 0 =0, (16)
2, (P, £ Q) + 15 (p) =0, 0,8 (0,9) 0 + /7 (P) =0.
Here f;(p)=f,(p,2®), f°(p,0)=0,f;(p,p). The

transforms fp S (v) for the functions /7 (p) may be ob-

tained with use of representation of the Bessel function
by the Sommerfeld integral [7], in the form

271, (k) = jdgexp(xcosaf —ivE) (Rex >0), (17)
where the integration path goes from —jco—7 to
—ioo+ 7z through the points —z and 7 . With change of
integration order, by p in (14) and & in (17), for
Rev >0, one gets
fiw) =explivw, £iv(z -®)/v, fV)=-ivfi(V).

If the functions g; (v,) are taken as following,
2o (v,0) = — ;" (v)sin(v® £ve)/sin(2vd),
&' (v,0) =Fif;" (v)cos(vD £ v) /sin(2vD) ,
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and the functions g; (p,9) (p=0,1) are determined by
them through (15), with &, /i instead of k, then the
equation and boundary conditions (16) are held. And
then, for the functions g, (p,9)=g,(p,9)+g,(p,9),
the boundary conditions g;(p,£®)+ f;(p,£P)=0
and 0,[g;(p,@)+ f5 (P,0)],_. =0 are held, just as it
should be for the scattered field caused by the incident
wave (13) and relevant boundary condition. Moving the

integration path in (15) to the half-plane Rev >0 and
taking the residues in poles, one gets

2, (p,0)=2_,(-1)"B, (nky, ) , (18)
B,(v,p,0)=B"(v,p,0)+(-1)’ B* (v, p,0) ,

B(v,p.0) =K, (~ik,, p)expliv(w, £ 9)]s* (v)/® ,

s (v) =sin[® v(r—®)]. In connection with the

equality B (nk,,p,p+2®)=(-1)"B*(nk,,p,p), the

power calculated for the angle interval ¢ € (—®,®) is

half of one calculated for the interval ¢ € (—2®,20),

the power is given by the sum of contributions of differ-
ent summands in (18), and the power values in the cases
of Dirichlet and Neumann boundary conditions are
equal.

6. RADIATED ENERGY AND IMPEDANCE

In the Fig. 2, the examples of directional radiation
patterns  are  presented by  the quantity

chexp(2K§§e)dW/(e§dwsin 0d0de) for the case
B =09, a,=45°, ® =150°, @, ,=45°, 0,=60°, at 6=30°
(see Fig. 2,a) and 0 =60° (see Fig. 2,b). Sloped straight
lines correspond to the angles +® and ¢, . The curves

where

correspond to the frequencies, at which |Z|=0, 0.03,
0.3. At the angles ¢ near to 0 and =@, in both fig-
ures, the curves with larger | Z| values give smaller w

values. At the angles between 45 and 90°, in the
Fig. 2,b, on the contrary, the curves with larger |Z|
give larger w .

Appearance of nonzero impedance Z  with
a, €(0,7/2), can lead both to decrease of the total ra-

diated energy and to its increase. The radiation field is
determined by the charge and current distributions on
the wedge faces. The increase of impedance corre-
sponds to the resistance increase and can lead to de-
crease of the currents, and so, to the radiated power de-
crease. On the other hand, near the surface with nonzero
impedance, the surface wave exists (Zenneck's wave)
[8]. At | Z|<<1, its speed is near to the speed of light.

When a particle moves to the edge almost parallel to a
face of wedge then it effectively generates the waves,
which speed projection on the particle motion direction
is near to the particle speed. At the edge of wedge, a
part of wave field transforms into a radiation field. In
some conditions, an appearance and increase of imped-
ance can yield an increase of the radiated energy.
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Fig. 2. Dzrectzonal radiation patterns

To obtain simple approximate relations, it is expedi-
ent to consider the case when particle is relativistic,
y >>1, the distance between the motion line and edge

is so large, that &, >> ¥, the value of sinf, is not

small, and the motion line is almost parallel to the lower
wedge face, so that the angle ¢, = ¢, —7 +® is small,

@; << 1. Then the main part of energy is radiated within
the angle 1/y near the motion directions of the particle

and its mirror reflection in the lower wedge face, and
for |0-0, |<<1 one gets the  relations

AO) ~(1+7°) [(ysin@,), D) ~sin”>6, (1+7%)/y*,
~ k(1+7%)" Jy, where 7=y(0-6,). Due to the
relation &, >>y5, the factor exp(-2x.§,) in (11) may

be not small only at the frequencies, which obey the
relation k9, <<1, and so, give |Z|<<1. That is, the

relation &, >> yd, implies that the main contribution to

the integral by £ in (10) is given by the frequencies, at
which impedance is small. With use of the equality
[, vo (7/2) £ w) =g (m/2)cos(k, w/2) ((4.16) in
[5]), for {|p—0, |<<1, |0-6,|<<1} one gets
S. (X 0 —7) = 2 +iA(0)] x
x [+ 2y +iA(9)]_l (p-m+D+y,) X
x {lp—o, + 20, +iNO)][p—¢, —iAO)]}
and relevant integration gives /,(cos0) ~ 27/A(0),
I,,(cos0)/1,(cosO) = 1-2[A(O)Im y,, + ¢, Re ;] x
x {(¢; +Re ;)" +[AO) +Im y, T}
Denoting 7, =¢@,ysin6,, t,=|Z|ysin’0,, using

the variable 7 = y(6—6,) , and assuming that 7, and 7,
are not very large, from (11) one gets
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W-W, ~ (4r°c)'elt, x
x [ drexp[-2k&, (1+77)" [y] x
x cosa [tana, —7, /(1+7°)?1/G(),

where G(r)=[(1+7°)"” —1,sina, ] +(z, +7,cosa,)’

(19)

and WO is the value of W in the perfect conductivity
case. From (10) and (19), change of integration order,
by 7 and k, and change of variable, 7 =cot¢, gives

W—W, ~ (78,) " e [(¥5,)](2E)]” "y sin® 0, x

x [(@ +1)cosa,S(w +1,7})[tan, — R(@ +1,7,)], (20)
where W, is related to the perfect conductivity case, I is
gamma-function, S(p,q)=[7 dé(sing)” /(1+¢sin® ),
R(p,7)=1S(p+1,77)/S(p,7*) . If the faces are resis-
tive (8, >0, cosa, > 0) then the right hand side of (20)
may be both positive and negative. In the case of normal
skin effect it is zero at 7, = 1.194. For smaller ¢, val-
ues, it is positive and appearance of resistance leads to
increase of the total radiated energy.

Considering another problem, for the same particle
motion and the unbounded impedance plane at £ =&,
one can get the equalities for the field strength compo-
nents in the form of integrals over k and k, of the

product of the factor explik, & -k, (§, —&)+ik,n —ikct]
(& <&, ) with amplitudes dependent on k and £, . For

k >0, these amplitudes are inversely proportional to the
difference D, =k, —ikZ with k, defined by (6), since

the dispersion equation for Zenneck's wave has the form
D, =0. From the relations k; >0, ImZ<0, and

| D, = (k, +kIm Z)’ + (kReZ)?, it follows that for the

sufficiently small value of |Z|, its increase leads to

decrease of | D, |, and, consequently, to increase of the
mentioned amplitudes, and to field amplification.

In the case of the impedance wedge and a particle
motion to its edge almost parallel to a face, during the
motion near the edge, the relevant amplified field trans-
forms into the radiation field, having greater power,
than one in the perfectly conductive wedge case.

CONCLUSIONS

The wide-band electromagnetic pulse may be gener-
ated by particle bunch created in the pulse accelerator
and passing by antenna. When the bunch is relativistic
then the main part of radiation is emitted in the direc-
tions near to the motion directions of the bunch and its
mirror reflections in the wedge faces. The cases of the
wedge-form antenna with zero and nonzero surface im-
pedance and single particle moving uniformly are con-
sidered. For the perfectly conductive wedge, it is shown
that if the particle motion line and the edge of wedge are
fixed and the wedge is rotated around the edge then the
total radiated energy is not changed. Appearance and
increase of impedance may lead both to decrease and to
increase of the total radiated energy. The decrease may
be caused by decrease of the surface currents, through
the resistance increase. The increase of the radiated en-
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ergy takes place in the conditions, favorable for the sur-
face wave generation, when the particle moves to the
edge almost parallel to a face of wedge. Both for per-
fectly conductive wedge and for impedance one, at the
given frequency, the relative distribution of the radiation
field in directions that form a fixed angle with the edge
of wedge is not changed if the particle motion line is
translated parallel to itself. Such invariance of the radia-
tion field takes place for the arbitrary structure uniform
in some direction, under the condition of the plane exis-
tence, with respect to which the structure and the parti-
cle motion line are in the different half-spaces.
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JANPPAKIIMOHHOE U3JIYYEHUE [TPU JIBUKEHUUN YACTUIIbI
MUMO UMIIEJAHCHOTI'O KJIMHA

B.M. Ocmpoywiko

Paccmotpeno mosie AudpakIOHHOTO H3JTYyYCHUsS, CO3JaHHOTO 3apsHDKCHHON YaCTHIICH MPHU IBHKCHUH MHMO
U/iealIbHO TIPOBOJISILIETO HIIM UMITEIAHCHOTO KiIMHA. [Ipy naeanbHON MPOBOIMMOCTH IIOBOPOT KIIMHA BOKPYT pedpa,
(UKCHPOBAHHOTO BMECTE C JIMHHUEH MBM)KCHUS YACTHIBI, HE M3MEHSCT MOJTHON M3TydeHHOM 3Hepruu. [Ipu nBrke-
HUM YaCTHUIIBI K peOpy MOYTH MapasuIeIbHO K IPaHH KIIMHA YBEIHMYCHUE UMITCAHCa OT HYJISl YBEIMIUBACT YITOMSHY-
TYIO DHEPTHIO.

JUDPAKIIMHE BUITPOMIHIOBAHHS ITPH PYCI YACTUHKH
MOB3 IMIIEJAHCHHUU KJIMH
B.M. Ocmpoywiko

PosrnsinyTe mosne nudpakiifHOro BUNPOMiIHIOBaHHS, YTBOPEHOTO 3apsHKEHOI0 YaCTHHKOIO IIPU PYyCi MOB3 ifea-
JILHO MPOBiTHMI a00 iMnenancHuil KiuH. [Ipy ixeanbHil MPOBITHOCTI 00epTaHHs KIHMHY HABKOJIO pedpa, (ikcora-
HOT'0 Pa3oM 3 JIHIEI0 PYXy YACTHHKH, HE 3MIHIOE 3arajJibHOi BHITPOMiHEHOi eHeprii. [Ipu pyci 4acTHHKH 10 pedpa
Maibke rapaiesbHO JI0 TpaHi KIKHY, 30UIbIIEHHS IMITIEIaHCy BiJl HyIS 30UIBIIYE 3rafiaHy eHeprio.
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