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The process of wakefields excitation by the relativistic electron bunch in dielectric media with ion type of chem-
ical bond is studied. The spatio-temporal structure of the excited wakefield in ion dielectric waveguide is obtained
and investigated. It is shown that the excited wakefield in the infrared and longer wavelength ranges consists of the
field of longitudinal optical phonons and Cherenkov radiation as a set of eigen electromagnetic waves of the dielec-

tric waveguide.
PACS: 41.75.Lx, 41.85.Ja, 41.69.Bq

INTRODUCTION

The Cherenkov radiation effect of charged particles
(bunches of charged particles) moving in a dielectric
medium can be used for realization of the wakefield
method of charged particles acceleration [1 - 3]. Moreo-
ver, as a rule, the wakefield excitation process was con-
sidered without taking into account the frequency dis-
persion of the dielectric constant of the medium
&(w) = g, = Const . Meanwhile, taking into account the

dependence of the dielectric constant on frequency leads
to a number of qualitative features of the picture of
wakefield excitation in dielectric structures. First of all,
it is possible to excite longitudinal potential oscillations
of a crystal dielectric, for example, longitudinal optical
phonons in dielectric crystal media with ion bond. In
addition, in an ion dielectric in the infrared frequency
range there is an additional branch of transverse elec-
tromagnetic waves. The Cherenkov excitation of elec-
tromagnetic waves belonging to this branch is also of
interest.

In the present work, the process of excitation of
wake electromagnetic fields in an ion dielectric medium
by a relativistic electron bunch (REB) is investigated.
For definiteness, we will consider ion alkali-halide die-

lectrics with the formula 4,B,,, where 4,is any ele-

ment of the periodic table belonging to the first group
(alkali metals, for example, Na, K, etc.), B, is any sev-

enth group halide element, for example F, Cl, etc. The
choice of alkaline-halide crystal dielectrics is primarily
due to their relatively simple internal structure and, ac-
cordingly, a simple dependence &(w), which allows us

to study the process of wakefields excitation by REB
with analytical methods. Our aim is to study the fre-
quency spectrum of excited wakefields and their spatio-
temporal structures.

We restrict ourselves to the study of wake fields in
the infrared and lower frequency ranges. This is due to
the fact that for efficient excitation of the wavefield by
an electron bunch, it is necessary to achieve coherence
of electromagnetic waves excitation. For this, it is nec-
essary that the longitudinal and transverse dimensions
of the electron bunch should be less (substantially less)
than the length of the excited wave. For optical and es-
pecially ultraviolet frequency ranges, this requirement is
very problematic. And if this requirement is not satis-
fied, the amplitude of the wake wave will be insignifi-
cant.
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1. STATEMENT OF THE PROBLEM.
BASIC EQUATIONS

Let's consider the homogeneous dielectric cylinder
of radius b, the side surface of which is covered with a
perfectly conductive metal film. Along the axis of the
dielectric waveguide, an axisymmetric REB moves uni-
formly and rectilinearly. The initial system of equations
contains Maxwell's equations

rotE:———, rotI:I:la—D+4—”]b
c ot cot ¢
divD = 4np, divH =0, )

p,»J, are charge density and current of an electron

bunch, D = é&E is electric displacement field, & is die-
lectric constant operator of an ion dielectric.

The system of Maxwell equations (1) describes the
excitation of an electromagnetic field by external charg-
es and currents in a condensed dielectric medium.

2. DETERMINATION OF THE GREEN
FUNCTION

We will solve the problem of wake field excitation
by an axisymmetric electron bunch in a dielectric wave-
guide as follows. First, we determine the field (Green's
function) of a moving charge in the form of an infinitely
thin ring with a charge density

1 o(r—ry)
2

dp=-dQ—=—25(-=~1), ()

VO 0 VO
where r is radial coordinate, 7, is ring radius, ¢, is
time of entry of an elementary ring bunch into the
waveguide, v, is bunch velocity, dQ(7,,t,) is the ele-
mentary charge of the ring connected with the current
density of the bunch at the entrance to the dielectric
waveguide (z=0) j,(¢,,7,) by the relation
dQ = j,(t,,%,)2rr,drdt,.
The current density of an elementary ring charge is
determined by the expression
dj =vyd pe., (3)
€. is unit vector in longitudinal direction.
Let’s consider a bunch of electrons with the current
density

Joyst) = joR(ry 11)T (1, /1,), 4)
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where the function R(r,/r,) describes dependence of
the bunch density on radius (transverse profile), #, is
characteristic transverse bunch size, function T(z,/1,)
describes the longitudinal density profile of a bunch, 7,
is characteristic duration of the bunch. The value j, is
connected with a full charge @ by the relation
Jo =0/ (s,1,), where s, is effective cross section of
the bunch

Sy =716, & :2IR(p)pdp ,
0

and ¢, is effective bunch duration
ty =, = [ T(r,)dz,.
We expand the quantities in the Maxwell equations
(1) into the Fourier integrals over frequencies

(E,u1,)= [ (B, do, 5)
H o(r - Lo, 1 —ior
(djb,dpb)=—dQ(2rTr:“E I (ez,g} do, (6)

E, H, is field
(Green's function) of elementary current and charge (6).
The system of Maxwell equations (1), taking into
account relations (5), (6), can be transformed to the
equation for the longitudinal Fourier component of the
electric field
1d dE ik S5(r—
_ir Gzw +kJZ_EGm) :L L dQ (l" VO)
rdr dr 1 ws(w) 7
kI =kje(@)-kK, k=w/v,, k,=w/c, &)
is dielectric constant of an ion dielectric. On the perfect-
ly conducting side surface of the dielectric waveguide
r =b , the longitudinal component of the electric field
vanishes

T=t-z/v,—t,, electromagnetic

., (D

E _(r=b)=0.
We will search the longitudinal Fourier component
of the electric field E , in the form of a series of Bes-

sel functions

Ep = Co(@)Jy(Ar/b). ®)

n=1
where A, are the roots of the Bessel functionJ,(x).
Using the orthogonality of the Bessel functions
J,(A,7/b), from equation (7) we find the expansion

coefficients
. ) s
Cn(a;):L o) i k: : JO(/lnrO/b)Jo(/lnr/b).(g)
4 wg(w) 2 /,Ln Nﬂ
ki——%
b

b? . .
Here N, = ?le (4,) 1S wave norm. Accordingly,

for the longitudinal component of the electric field we
have the following expression

A Ar/
nro/b]\)]Jo( e b)Sn(r), (10)

n

. o0 J
E,.(r,r)=—d0Y = (
v n=1
where
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_ T —iwrd_a) kJZ_(a))
S0 [ oD @

—0

(11

2

D,(w)=kie(w)—k* - ;}; ) (12)

The dielectric constant of an ion alkali — halide die-
lectric can be represented in the form [4]

(a)z - a)gi )(a}z - a)ze— )(a)2 - a)zeJr )
(0" -op)(@ ~ a7, )( -e7.)
The characteristic frequencies in relation (13) are ar-

ranged in magnitude as follows
wTi < wLi < wTef < a)Lef < a)Te+ < a)Le+

e(w) =

(13)

Frequencies w,;, w,,,, are zeros of dielectric per-
mittivity &(w) =0. Frequency ,, is the frequency of
longitudinal optical phonons and lies in the infrared

frequency range. Frequencies @, ., are the frequencies

of longitudinal polarized electron oscillations and lie in
the optical or even ultraviolet frequency range. We also
note that the frequencies @, , @,,., are also cutoff fre-

quencies for normal incidence of electromagnetic waves
on a plane dielectric layer. In turn, the frequencies

@y, O, ., are the poles of the dielectric constant and

determine the absorption lines of the electromagnetic
waves of the ion crystal. In the vicinity of these fre-
quencies, the imaginary part of the dielectric constant
and, accordingly, the energy loss of electromagnetic
waves increases abnormally.

The absorption frequency of ion subsystems «;, is

the frequency of transverse optical phonons. We note
that the optical longitudinal and transverse acoustic
branches of the oscillations are characterized by the fact
that in the unit cell of the ion crystal, oppositely charged
ions are shifted towards each other. In this case, the cen-
ter of mass of the unit cell remains motionless. As in the
case of longitudinal optical phonons, the frequencies of
transverse optical phonons lie in the infrared range.
Electronic resonance absorption frequencies are in the
optical range.

For the infrared range, the expression for the dielec-
tric constant (13) takes the form [5 - 7]

2 2
(CO - wLe+ )
g(a)) gopl 2 2 > ( 1 4)
( - a)Te+ )
2 2
w,, @
where Epp =52
a)TL— a)Ts'+

&, 1s optical dielectric permittivity.

The zeros of the dielectric constant are the poles of
the integrand (12). Calculating the residues at the poles
o =*w,, —i0, we find the potential part of the Green's

function
a)z
() — Li
EGz (r, T) - 2dQ 2 I G(kLir’ kLiro)‘g(T) coswy, T, (15)
Voo

2

£ &€ .

_ _ UstZopt _ L

kLi =y, /VO’ ge[f _A—g’ Eu = gopt 2’ ’

Ti

& is static dielectric constant,

st
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1, (k1)

A,k r,k,b), r>r1,,
](kb)(r ), ¥>r,

G(k,r k1) = (16)

MAO(karo,kab), r<r,
I, (k,b)
Ay (k,r,k,b)=1,(k,b)K,(k,r)—1,(k,r)K,(k,b),

k,=k,.
Note that the above relation for dielectric constant

(14) implies the well-known Liddein-Sachs-Teller rela-
tion [5, 6]

a)Ti g{)pt
which determines the relationship between the frequen-
cies of longitudinal and transverse phonons through the
values of static and optical permittivities.
The integrand also has poles that are the roots of the

equation
2 2 2

D, (o) =“’—zg(w)—“’—z—/1—;=o. (17)
c v, b

Equation (17) determines the frequency spectrum of
the radial harmonic with the number n of electromag-
netic waves excited by the REB in ion dielectric wave-
guide. With respect to the square of the frequency w’,
the spectrum equation (17) reduces to determining the
roots of the quadratic equation. The frequencies .,

corresponding to the roots of this equation lie in the

low-frequency microwave and infrared ranges. The
spectrum equation (17) can be written as follows
2 2
2 (0) O ) 1 2
o\E, 5 | =0, (18)
{ P! (a)z_aﬁ[) ﬂoz

where S, =v,/c, o, =A,c/b is cutoff frequency of a

vacuum waveguide of radius b . The roots of this equa-
tion are of the form

1 ﬁ
2 2
wﬂ[f(I) = E(a)nl' + - 4a)ﬂg )

(19)

Here

ng n >
opt opt

_ 2 _ . p2
d t_gopt_ﬁ() ’dst_gst 0o -

For the frequency w,, it is always @, , >@®,,, and

1 1
2 2 2 4 2 2
Dyr __(a)Tidst +a)n )’ @, _d_a)Tia)

for the frequency @, we have @, <. In the most

interesting limiting case

] <<} (20)
expressions for frequencies (19) are simplified
2 2 02
wﬂ a)n ﬂ
a)nz‘,,.f =—ft=_—23 | 21
d.\'t ﬂO gsr - 1
@, =, + A, (22)
2 2 dt 2 2
Q =0, ——, Ao, =0 , Ae=¢,—¢,,
1 1 n n d d S opi
opt st opt

Frequency ®,, (21) is well known in the theory of

wakefields excitation by REB in dielectric waveguides
and resonators [1 - 3] and is in the microwave (te-
rahertz) range. The frequency ®,,, lies in the infrared
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range and the process of wakefields excitation at this
frequency, as it seems to us, has not been previously
studied. For further analysis, the Fourier integral (11) is
conveniently represented as

2 —ioT
1 7k(0)o o — @y Je
Sn(T):d_ kz( ) ( P T)z 2 do .
opt —o 8(0)) ( nlf )(a) _a)nlf+)
By calculating the residues in the poles
o=t0, -i0, o=to, —i0, wefind
Al 1 RON
S,(t)=-2mi—> 5 2L ” d(r)cosw,, 7+
b d()pt ﬂ' a)n/f+ - nl/—
b nlf —
2 2
1 a)n o
5 - 9(r)cos @ 127 |
/1 @y — n/f—
bz nlf +
where k. =, /v,. Accordingly, for the low-

frequency (infrared) part of the electromagnetic Green
function, we obtain the following expression

EQ(r,7) = dE® (r,0) +dE (r,7) ,

dE" (r,7) = @Z LO1 (r,1,)9(z) cos @, T, (23)

opt n=l

2 —
o) _ A, Wy~

L
n 2 2 2 4
b ﬂ, wnz/‘+ - n[f—
bZ nlf -

nlf —

dE") (r,t dQ ZL(”H" (r,1) (1) cos @, 7, (24)
2 B—
L) = 2’1"2 ‘wa - a;;,. ,
g (;; + Koy, j Oy = Oni -
(v = JoCar (DGt 1)
N

n

In the limiting case (20), the Green functions (23),
(24) are simplified and take the form

dEz(t,) (r,7)= EV('T)ZP: (r,)9(r)cosm,, v, (25)
n=1
J(Ar/b)J (Ar/b
PH(I’,I"O — 0( er 2) 0( nrO )’
']1 (j’n)
' . = 1 II (»,7,
dE) (r,7) = —E\"¥(r)cos QT,rZ /12( ) _
n 2
_% —eeil |, 26)
[ 0 +kij
where
E(*) — 4dQ E(+) 2dQ ﬂo E
vobe, c? d,,

st
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_Qn . o
ng o C2 f
We neglected the dependence (22) of frequency

®,,, on the radial harmonic number, assuming that

Ae ) Ae
+p5, f=—-1.
' By f 7

st~ opt opt

kZ

g

» &=

@, =€, . In this case we can calculate the sums in-

cluded in expression (26). As a result, for the Green
function dE")(r,r) we obtain the approximate expres-
sion
dE") (r,1)=E"G, (r,ry)3(r)cos Q, 7, 27
1 1
G, (r,n,)= 7G(k_/.r, k1) —EG(kgr, k1) .

Expression (25) describes wake electromagnetic
field excited by an infinitely thin electron ring bunch in
ion dielectric waveguide in the microwave frequency
range, in which there is no frequency dispersion of the
dielectric constant. This expression for the wakefield
coincides with that obtained in [1]. The exact expression
(24) and approximate one (26) describe the excitation of
wake electromagnetic waves belonging to a higher-
frequency infrared branch of the electromagnetic waves
of ion dielectric waveguide. In approximation (20), the
frequencies of these waves (22) are practically inde-
pendent on radial harmonic number. In this case, infra-
red electromagnetic radiation is excited much more effi-
ciently than microwave radiation.

Thus, we obtained the Green function, which de-
scribes the longitudinal component of the wake electric
field excited by a ring relativistic electron bunch in ion
dielectric waveguide. The Green function contains the
longitudinal (potential) and electromagnetic (vortex)
parts. In the infrared range, the potential part is a field
of longitudinal optical phonons. As for the electromag-
netic part of the Green function, it contains a set of radi-
al electromagnetic waves whose frequencies are in the
microwave range, as well as electromagnetic radiation
in the infrared frequency range.

3. EXCITATION OF WAKEFIELDS
BY AN ELECTRON BUNCH

The resulting electromagnetic field E(r,z) of the

electron bunch (4) can be found by summing the fields
E, of elementary electron ring charges (2).

We first consider the excitation of longitudinal opti-
cal phonons. Using the potential polarization part of the
Green function (14), we obtain the following expression
for the wakefield of longitudinal optical phonons

EV(r,0)=E,T,(NZ(o,7) , (28)

where

Z(w7) L j T(z,/t,)cos(r —17,)dz,,
eff —»

(29)

27 ¢
r,(= —IR(}"O /n, )G(kur,kL[.rO)rOdrO ,
)
2
E, =204
Vo&.y
The function Z(w7) describes the distribution of the
wake field at a frequency @ in the longitudinal direc-
tion at each moment of time. We will consider an elec-
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(30)

tron bunch with a symmetric longitudinal profile
T(z,)=T(-7,). The wake function Z(wr)is conven-

iently represented as

Z(wr) = %[f(Q)g(z)cos wr-X(7)), (31)
7
where Q=wt,, 7 =1/t,,
X(7T) :signr]ET(s)coquﬂ—s)ds , (32)

5
T(Q) = ij(s) cos(Qs)ds,s =1/t,.  (33)

The first term (31) describes a wake wave propagat-
ing behind the bunch. The amplitude of the wake wave
is equal to the Fourier amplitude (33) of the function
that describes the longitudinal profile of the electron
bunch. The second term in (31) describes the bipolar
antisymmetric pulse of the polarization field, localized
in the region of the bunch. The field of this pulse tends
to zero with distance from the bunch.

Behind a bunch, the wake field (31) of longitudinal
optical phonons has the form of a monochromatic wave
7(Q,)

N

E, (r,t)=ET,(r) cosw,,T,

Q, =aw,t,. (34)

We present the expressions for the Fourier ampli-
tudes 7(Q ;) for two model longitudinal profiles of the
electron bunch: Gaussian and power laws

T(z, /)=, T(@Q=ze ™", (39

T(z,/t,)= 7(Q) = re®.

1+ /1

Longitudinal optical phonons are most efficiently
radiated when the coherence condition is fulfilled
w,;t, <1. If the inequality w,t, >>1 takes place, then

the longitudinal optical phonons are not coherently radi-
ated and the amplitude of the wake wave is exponential-
ly small.

Let’s consider an electron bunch with a Gaussian
transverse profile

R(ry=e"". (36)
When the condition k,,b >>1 is satisfied on the axis

r =0 the function I, (») takes on the value

1 . k2l.r)2
FL(O):_EephEZ(_pb)apb =L

4 (37

t

Ei(z):j;%dt

is integral exponential function. For thin p, <<1 and
wide p, >>1 bunches the asymptotic representations

lln[LJ, P, <<1,
2 \p

for function (37) are

rL 0=
L, p, >>1.
Py
Thus, with the full coherence of the Cherenkov radi-
ation of longitudinal optical phonons ¢, <1,

k.., <1 the wakefield of optical phonons on the axis of
the waveguide takes the maximum value
ISSN 1562-6016. BAHT. 2019. Ne6(124)



E (r,0)=E In(2/k,1,)cosw,,7. (38)

2

where E,,(r,7) =20—
Vol
We present the expressions for the amplitude of the

wakefield on the axis of the waveguide E, for two ion

dielectrics of the alkali-halogen group: sodium chloride
NaCl and potassium iodide KI. For sodium chloride, we
have

E, =02N,(V/cm).

Here N, =(Q/e is the number of electrons in the
bunch. The frequency of longitudinal optical phonons is
equal f,, =7.62-10” Hz. For N, =10"" from this for-
mula we obtain the estimation for the electric field
strength E, =2GV/cm. Accordingly, for potassium
iodide we have

E, =0.11N,(V/sm).

The frequency of longitudinal optical phonons and
the electric field strength are equal f,, =4-10" Hz,
E, =1.1GV/cm, lower than in the previous case.

Let us now consider the excitation of wake electro-
magnetic waves by an electron bunch. Using the elec-

tromagnetic Green function, we obtain the wake elec-
tromagnetic ﬁeld as a superposition of radial modes

£ 1o Jor/b)
E (o) =42 EZ “Fn—‘)ﬁ%) Z(7) (39)
27 4 Ty r (+>
r,== [r o Ay [ 27 @) = Z(@,9).
eff 0 b

For a symmetric electron bunch in the “wave zone”

@, 7 >>1, where the quasistatic field of the electron

bunch is small, the wake field (39) is a superposition of
radial modes of the dielectric waveguide
T(i) 1,7 Jy(4,r D)

EY (r,r)=E,Y LFT, COs @
Z(+)( ) Z z_" J12 (i")

> (40)

where E0:4b2§ , T®

=7 (Q,,) is Fourier com-
opt
ponent (35) of the function T'(s) at the dimensionless

frequency Q, . . For an electron bunch with a

r/lf
Gaussian 1ong1tud1na1 (35) and transverse (36) profiles,
the coefficients I', and 7", which are determined by
the specific form of the transverse and longitudinal den-

sity profiles of the bunch, have the form

. 1 ' .
Tn(Jr) = eXp[—ZQi(+)j, Fn = 2 J‘ Jo(ﬂ“y,nbp)e g pdp’
0
n,=nlb.

When the condition 7, <<1 is satisfied, the expres-

sion for the coefficient I', is simplified

I_‘n = exp(_%ﬂ’nznij N

If condition (20) is satisfied, we can use approxi-
mate expressions for the Green functions (25), (26). As
a result, for wakefields excited by electron bunches with
Gaussian longitudinal and transverse profiles, instead of
exact expressions (39), we obtain approximate relations
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o Qz s z JO (/1" Ir)j
Z - +

Ei',)(”,f)— cosm,, 7 ,(41)
g Ji(4,) !
Ag Qity
EY(r,v)= 2Q W@ 4 T,(r)cosQ,7, (42)
npt —Dé&y

r,(r )_—j G (ramy )y,
e/f 0
If k, ,b>>1 on the axis =0 the function I';(r)

takes the value
(1 1
I.(0)=——|—€e"E ——e™E 43
0= ()L a(p)). @)

2
k/gb

Prg = . When p, . <<1 we have instead of (43)

LR [ 2 ]_im[ij.
fo\kb) g \kb

From expression (41) it follows that an electron
bunch excites finite number of radial modes of micro-
wave radiation, for which the coherence condition

ety <1, A1
is satisfied. Slnce the condition Q75 /c” >>1as rule is
fulfilled, then the REB will primarily excite infrared
radiation (42) upon its coherent excitation Q¢ <1.

<1 for excitation by an electron bunch

CONCLUSIONS

In this work, the process of the excitation of Che-
renkov wake electromagnetic waves by a relativistic
electron bunch in ion dielectric waveguide is studied.
The ion dielectrics of the alkali-halide group are consid-
ered. In ion dielectrics of this group in the infrared and
microwave frequency ranges, there are three branches of
electromagnetic waves. Two of them correspond to
transverse electromagnetic waves. In the infrared range
there is also a branch corresponding to the optical longi-
tudinal phonons of an ion dielectric. For all these
branches, analytical expressions for the wake electro-
magnetic field excited by a relativistic electron bunch
were obtained and studied. The frequency spectrum and
the spatio-temporal structure of the Cherenkov wake-
field are determined. It is shown that in the infrared
(microwave) frequency range the excited wake electric
field consists of potential field of longitudinal optical
phonons and a set of eigen electromagnetic waves of a
dielectric waveguide.

The frequency spectrum and the spatio-temporal
structure of the Cherenkov wake field are determined. It
is shown that in the infrared (microwave) frequency
range the excited electric field of the wakewaves con-
sists of potential field of longitudinal optical phonons
and the set of eigen electromagnetic waves of an ion
dielectric waveguide.
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YEPEHKOBCKOE U3JIYYEHHUE PEJIATUBUCTCKOI'O
3JEKTPOHHOI'O CI'YCTKA B MOHHOM JIUDJIEKTPUUYECKOM CPEJIE

B.A. banakupes, H.H. Onuuienko

HccnenoBan npouecc Bo30yxaeHHS UepeHKOBCKOTO 3JIEKTPOMATHUTHOTO W3IYyUYCHHS PENSATUBUCTCKUM 3IIEK-
TPOHHBIM CTYCTKOM B HOHHOM JHM3JEKTpHUECKOM BoyHOBoje. [lomydeHa M uccienoBaHa IPOCTPAaHCTBEHHO-
BpPEMEHHas CTPYKTypa KHJIBBATEPHOTO IOJISI B MOHHOM AMAJIEKTpUYECKOM BoJHOBoxe. IlokazaHo, 4To Bo30Oy»xmae-
MO€ KHJIbBAaTEpPHOE TI0JIC B HHPPAKPACHOM AWANa3oHe W OOJBIINX UIMHAX BOJIH COCTOUT M3 MOJIA IMPOAOJIBHBIX OII-
THYECKHX (POHOHOB M HAOOpa COOCTBEHHBIX IEKTPOMATHUTHBIX BOJIH JHAJIEKTPUUECKOTO BOJIHOBOA.

YEPEHKIBCBKE BUITPOMIHIOBAHHA PEJIATUBICTCBKOI'O
EJIEKTPOHHOT O 3I'YCTKA B IOHHOMY AIEJEKTPUYHOMY CEPEJOBHIII

B.A. banakipes, .M. Oniwenxo
HocnimxeHo mnporiec 30ypxkeHHsT YepeHKIBCHKOTO eJIEKTPOMAarHiTHOrO BUIIPOMIHIOBAHHSI PENSTHBICTCHKUM elle-
KTPOHHUM 3I'YCTKOM B IOHHOMY JliefleKTpHuHOMY XBHIIeBoAl. OTprMaHa 1 J0cCiikeHa MpoCTOPOBO-4acoBa CTPYK-
Typa KUTbBaTEpPHOTO MOJISA B 10HHOMY JieNIeKTPUYHOMY XBHiIeBoi. [loka3aHo, 1o 30y/KeHe KilbBaTepHE MOJe B
iH(ppauepBOHOMY Jiana3oHi i OUIBIINX JOBKHHAX XBUJIb CKJIAJA€ThCS 3 MOJIS O3J0BXKHIX ONTHYHUX (POHOHIB 1 Ha-
060py BIIACHUX €JIEKTPOMArHITHUX XBHJIb 1i€IEKTPHYHOTO XBUIICBOIY.
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