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ATTAINABLE ELECTRON ENERGY IN DIODE WITH PLASMA 
CATHODE AT THE GIVEN VOLTAGE 
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It is considered an acceleration of electrons in a one-dimensional interval, part of which is filled by ions initially 

compensated by electrons. For the stages of forward motion and backward motion of a part of electrons, the problem 
is reduced to a numerical solution of ordinary differential equations for some set of time-dependent quantities. The 
ratio of attainable energy to the energy corresponding to the voltage is maximum and near to 1.87475 for relatively 
small values of the width of the space without ions when applying a certain voltage, which, as the width is reduced, 
has to be reduced as a width cube.  

PACS: 41.85.Ar 
 

INTRODUCTION 
When large amount of electrons accelerates in diode 

the part of them can obtain the energy greater then one 
corresponding to the applied voltage. Such effect is 
shown in the paper [1] for the diode with plasma cath-
ode. The question arises about the attainable value of 
the ratio η  of the maximum energy obtained by some 
electrons to the product of elementary charge by volt-
age. This ratio may be called the coefficient of the ener-
gy increase. It is always greater than 1, because elec-
trons in diode increase the acceleration of the electrons 
ahead of themselves and decrease the acceleration of the 
electrons behind, in comparing with acceleration of sin-
gle electron under the given voltage. In absence of the 
external circuit, the discharge of cathode and the 
movement of electrons to anode are accompanied with 
decrease of the potential difference between electrodes, 
though the electric field strength near anode remains 
constant up to going out of the first electrons to anode. 
And vice versa, the keeping up of the potential differ-
ence through the external circuit leads to the field 
strength increase in the leading point of electron flow. 
In the model somewhat different from one considered in 
[1], it may be formally obtained an infinite value of the 
mentioned coefficient. Namely, let the plane anode is 
immobilized and the infinitely thin plane cathode is ac-
celerated to anode under the force corresponding to the 
electric field strength in the cathode-anode gap. To keep 
the voltage U  when the distance x  between electrodes 
is decreased and the capacity depends on x  as 1 x , one 
has to ensure the increase of electrode charges as 1 x , 
and then the electric field strength, which is equal to 
U x , gives the acceleration force increase as 21 x , and 
the cathode kinetic energy increase as const 1 x+ . But 
in the diode with the plasma cathode, the space filled by 
electrons is expanded, and the ratio η  is finite. In the 
present work the search for the maximum attainable 
value of η  in the frames of the model considered in [1] 
is carried out.  

1. PROBLEM FORMULATION  
The considered one-dimensional structure between 

cathode and anode consists of a few layers. The near-
cathode interval is filled by the immobilized positive 
ions with the uniform density (‘ion space’ below, hori-

zontal lines in the Fig. 1), and the near-anode interval is 
free from ions (‘vacuum space’). At the initial time in-
stant (see Fig. 1,a), at the motion start, the ion space is 
also filled by the electrons (vertical lines), which have 
the same density and zero velocity. It is convenient to 
take the distance between cathode and anode and the 
reciprocal plasma frequency determined by the men-
tioned uniform density for the units of distance and 
time, respectively, and to use the relevant dimensionless 
variables and quantities. Below, the letters x , b , and 
ζ  are used for coordinates, t  and τ  are used for time, 
υ  is velocity, n  is electron density, E  is the electric 
field strength (more precisely, the acceleration of the 
elementary positive charge with electron mass in the 
field with the corresponding strength), ϕ  and U  are 
used for potential and voltage.  

 
Fig. 1. Ion and electron disposition, initial  

and at some stages of electron motion  
The electron motion at 0t >  obeys to the equations  

e e( , ) ( , )t x t tζ υ ζ∂ = ,   (1) 

e e( , ) ( , )t t E tυ ζ ζ∂ = − .   (2)  
Here ∂  is derivative, its index indicates the variable, 

with respect to which the derivative is taken, e ( , )x tζ  
and e ( , )tυ ζ  are, respectively, coordinate and velocity at 
the time t  of the electron, which has the coordinate ζ  
at 0t = , e ( , )E tζ  is the strength in the point 

e ( , )x x tζ=  at the time t . The variables ( , )tζ  are La-
grange ones. Also, it is expedient to use the function 

e ( , )n tζ  for the electron density in the point e ( , )x x tζ=  
at the time t  and the functions ( , )x tυ , ( , )n x t , and 

( , )E x t , for the electron velocity and density, and the 
field strength, at the time t  in the point x . The variable 
x  may be considered as Euler one. If e ( , )x x tζ=  then 

e( , ) ( , )f x t f tζ= , where f  stands for υ , n , or E . The 
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functions ( , )x tυ , ( , )n x t , and ( , )E x t  should be contin-
uous. The initial conditions for the equations (1) and (2) 
are  

e ( ,0)x ζ ζ= , e ( ,0) 0υ ζ = .  (3) 
The potential counted off from the cathode potential,  

0
( , ) ( , )

x
x t E x t dxϕ ′ ′= −∫ ,   (4) 

at the anode has to be equal to the applied voltage value, 
which is assumed constant,  

(1, )t Uϕ = .   (5) 

2. INITIAL STAGE OF MOTION  
At first, it should be considered the initial stage, 

when all electrons are moving to anode, the inequality 
ζ ζ′′ ′>  implies the inequality e e( , ) ( , )x t x tζ ζ′′ ′> , and 
the boundary coordinates of the electron space, 

1 e( ) (0, )b t x t= , 3 e( ) ( , )b t x b t= , obey to the inequalities 

1 30 ( ) ( ) 1b t b b t< < < <  (Fig. 1,b).  
The strength derivative in the different spatial inter-

vals obeys to the equations  
( , ) 1x E x t∂ =  ( 10 ( )x b t< < ),                     (6) 

e e e( , ) [1 ( , )] ( , )E t n t D tζ ζ ζ ζ∂ = − .  
( 1 e( ) ( , )b t x t bζ< < ),                                 (7) 

e e e( , ) ( , ) ( , )E t n t D tζ ζ ζ ζ∂ = − .  
( e 3( , ) ( )b x t b tζ< < ),                                 (8) 

( , ) 0x E x t∂ =  ( 3 ( ) 1b t x< < ),                     (9) 
where e e( , ) ( , )D t x tζζ ζ= ∂ .  

Let e ( )ζ τ  be the initial coordinate of the electron, 
which passes the boundary b  at the time τ , and e ( )τ ζ  
be the time, at which the electron with the initial coor-
dinate ζ  passes the boundary b , and so, 

e e( ( ), )x bζ τ τ = , e e( , ( ))x bζ τ ζ = , e e( ( ))τ ζ τ τ= , 

e e( ( ))ζ τ ζ ζ= . During the considered motion stage, the 
condition e 1( , ) ( ( ), )x t b t bζ ∈  implies the conditions 

e(0, ( ))tζ ζ∈  and e(0, ( ))t τ ζ∈ , and the condition 

e 3( , ) ( , ( ))x t b b tζ ∈  implies the conditions e( ( ), )t bζ ζ∈  
and e ( ) tτ ζ < . For the electron density, the continuity 
equation in Lagrange variables has the form  

e e[ ( , ) ( , )] 0t n t D tζ ζ∂ =  ( 0 bζ< < ).  (10) 
As e ( ,0)x ζ ζ= , the integration of (10) gives  

e e( , ) ( , ) 1n t D tζ ζ =  ( 0 bζ< < ),  
and the equalities (7) and (8) take the form  

e e( , ) ( , ) 1E t D tζ ζ ζ∂ = −  ( e0 ( )tζ ζ< < ),  (11) 

e ( , ) 1E tζ ζ∂ = −  ( e ( )t bζ ζ< < ).  (12) 
From (6), (9), (11), and (12) it follows that for the 

given electron distribution, the field strength values in 
the different points are connected with the equation  

( , ) (0, ) min( , )E x t E t x b dζ− = − ∫ ,  (13) 
with the integral taken over such ζ , for which 

e ( , )x t xζ < .  
In the interval 1( ( ), )x b t b∈ , from (1), (2), and (3) 

one gets  

e e( , ) ( , )t D t tζζ υ ζ∂ = ∂ ,   (14) 

e e( , ) 1 ( , )t t D tζυ ζ ζ∂ ∂ = − ,  (15) 

e ( ,0) 1D ζ = , e ( ,0) 0ζυ ζ∂ = .  (16) 
The equations (14) and (15), with the initial condi-

tions (16), have unique solution, for which  
e ( , ) 1D tζ = , e ( , ) 0tζυ ζ∂ = , e ( , ) 0E tζ ζ∂ = .   (17) 

So, for e(0, ( ))tζ ζ∈ , the functions e ( , )x tζ ζ− , 

e ( , )tυ ζ , e ( , )E tζ  do not depend on ζ ; in particular,   

e e 1( , ) ( ) ( )x t b t b tζ ζ ζ− = − = ,  (18) 

e ( , ) ( , )E t E b tζ = ,   (19) 
and from (4), for the interval 1( ( ), )x b t b∈ , one gets  

1 1( , ) ( ( ), ) ( , )[ ( )]b t b t t E b t b b tϕ ϕ− = − − .  (20) 
In the interval 3( , ( ))x b b t∈  electrons moves in vac-

uum, integration of (12) gives the equality  
e e( , ) ( , ) ( )E t E b t tζ ζ ζ= + − ,  (21) 

and from (2) and (12) it follows  
e ( , ) 1t tζυ ζ∂ ∂ = .    (22) 

The equations e e( , ) ( , )t t E tζ ζυ ζ ζ∂ ∂ = −∂  and  

e e( , ) ( , )t D t tζζ υ ζ∂ = ∂    (23) 
are valid both at e(0, ( ))t τ ζ∈ , and at e ( )t τ ζ> . At 

e(0, ( ))t τ ζ∈  (when the relevant electron moves in the 
ion space), for the corresponding solution, the equalities 
(17) hold. Then the integration of (22) and (23) with 
respect to t  at e ( )t τ ζ>  gives  

e e( , ) ( )t tζυ ζ τ ζ∂ = − ,   (24) 
2

e e( , ) 1 [ ( )] 2D t tζ τ ζ= + − .  (25) 
Using the substitution e e( ( ), )x x tζ τ′ =  for (4) and 

integrating by parts, with taking into account (21), (25), 
and (18), for the interval 3( , ( ))x b b t∈  one gets  

3 1 1 2
2

1 3

( ( ), ) ( , ) ( ) ( ) ( )

( ) 2 ( , )[ ( ) ],

b t t b t b t B t B t

b t E b t b t b

ϕ ϕ− = − +

+ − −   (26) 
where  

10
( ) ( ) ( )

t j
jB t d t b jτ τ τ= −∫  ( 1, 2j = ).  (27) 

Considering the interval 1(0, ( ))x b t∈ , leaved by 
electrons, from (4), with use of (6) and (19), one comes 
to the equalities 1( , ) ( , ) ( )E x t E b t x b t= + −  and  

2
1 1 1( ( ), ) ( , ) ( ) ( ) 2b t t E b t b t b tϕ = − + .  (28) 

In the interval 3( ( ),1)x b t∈ , the field is uniform, and 
from (4), with use of (9), (21), and (18) one gets  

3 1( , ) ( ( ), ) ( , ) ( )E x t E b t t E b t b t= = − ,  (29) 

3 1 3(1, ) ( ( ), ) [ ( ) ( , )][1 ( )]t b t t b t E b t b tϕ ϕ− = − − . (30) 
From the equations (1) and (2) and the initial condi-

tions (3), taking into account (29), one comes to the 
equation 2

3 1 1[ ( ) ( )] ( )t b t b t b t∂ − =  with the initial condi-
tions 0 3 1lim [ ( ) ( )] 0t t b t b t→ ∂ − = , 3 (0)b b= , and 

1(0) 0b = , from which it is followed the equality  

3 1 1( ) ( ) ( )b t b t b B t= + + .   (31) 
Using (20), (26), (28), (30), (5), and (31), one gets  

1 2( , ) (1 ) ( ) ( )E b t b b t B t U= − − − .  (32) 
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The equation 2
1( ) ( , )t b t E b t∂ = − , with the equalities 

(32), (31), and (27), gives the possibility to obtain the 
functions 1( )b t  and 3 ( )b t  at the considered initial stage 
of motion. They also may be obtained with use of (31) 
and integration of the ordinary differential equations,  

( ) ( )t j jB t F t∂ = , 1( ) ( )j
t jF t b t j∂ = ,  (33) 

2
1 2 1( ) ( ) (1 ) ( )t b t U B t b b t∂ = + − − ,   (34) 

where 10
( ) ( )

t j
jF t d b jτ τ= ∫ , 1, 2j = .  

3. REVERSE MOTION  
If the voltage is sufficiently small then at some time 

instant Rt  the electrons in the ion space stop, 

e R( , ) 0tυ ζ =  for e R(0, ( ))tζ ζ∈ , and then they begin 
the reverse movement. The part of electrons come back 
to the ion space from the vacuum space, and they are 
moving in the interval R( ( ), )b t b  (see Fig. 1,c), where 

R ( )b t  is coordinate of the electron, which has stopped 
for a moment just at the boundary b , 

R e e R( ) ( ( ), )b t x t tζ= . The stage considered now is re-
stricted in time by the conditions Rt t>  and 

e e( ( ), ) 0t tυ ζ < , where the designation e ( )ζ τ  is extend-
ed on the electron passing the boundary x b=  in any 
direction. Also, this stage is restricted in time by the 
assumption that relative disposition of electrons in space 
is not violated, so that the inequality e ( , ) 0D tζ >  is 
held, for any ζ . Let eR ( )τ ζ  be the time, when the elec-
tron with the initial coordinate ζ  passes the boundary 
b , coming back to the ion space from vacuum, so that 

e eR( , ( ))x bζ τ ζ = . The designation e ( )τ ζ  is kept for the 
time of going out from the ion space. At Rt t> , during 
the considered stage, the relationships 

e e R eR e( ( )) ( ( ))t t t tτ ζ τ ζ< < =  take place. The equalities 
(11) and (12) remain valid. Their integration for 

e R e( ( ), ( ))t tζ ζ ζ∈  gives  

e e e( , ) ( , ) ( ) ( , )E t E b t t x t bζ ζ ζ ζ= + − + − ,  (35) 
and for e( ( ), )t bζ ζ∈  gives  

e e( , ) ( , ) ( )E t E b t tζ ζ ζ= + − .   (36) 
Using (36) and integrating by parts, one gets  

{ }
3 3

2 2
R e

e R1 R 2

( ( ), ) ( , ) ( , )[ ( )]

1 [ ( )] 2 [ ( )] 2

[ ( )] ( ) ( ).

b t t b t E b t b b t

t T t b t

b t B t B t

ϕ ϕ

ζ

ζ

− = − +

+ + − − +

+ − −   (37) 
Here R ( )T t  is the time of going out from the ion 

space of the electron, which comes back to it at the time 
t , R e e( ) ( ( ))T t tτ ζ= , R R R( )T t t= , R R( ) (0, )T t t∈  for 

Rt t> , R R R R( ) [ ( )] ( ) ( ( ))j j jB t t T t F t B T t= − +  ( 1, 2j = ), 
with R R( ) ( ( ))j jF t F T t= , and for the time derivatives one 
has the equalities  

R R R R( ) ( ) [ ( )] ( )t j j t jB t F t t T t F t∂ = + − ∂ ,  (38) 
1

R 1 R R( ) ( ( )) ( )j
t j tF t j b T t T t−∂ = ∂ .   (39) 

Using (35) and integrating by parts, one gets  

2
R R

e R e R R

( , ) ( ( ), ) [ ( )] 2
[ ( ) ( ) ( , )][ ( )] ( )

b t b t t b b t
t t E b t b b t S t

ϕ ϕ
ζ ζ

− = − +
+ − − − + ,  

where R e( ) [ ( , )]S t d b x tζ ζ= −∫ , with integral over 

e R e( ( ), ( ))t tζ ζ ζ∈ . The integration of the equations (1) 
and (2) with e ( , )E tζ  from (35) gives  

e e eR eR

e

( , ) ( , ( ))sin( ( ))

sin( )[ ( ) ( , )],

x t b t

d t E b

ζ υ ζ τ ζ τ ζ

τ τ ζ ζ τ τ

− = − +

+ − − −∫     (40) 

where integral is taken over eR( ( ), )tτ τ ζ∈ . Substituting 

e ( )ζ ζ τ=  into the definition of R ( )S t  and integrating 
by parts, one gets  

R c R s R( ) ( )sin( ) ( ) cos( )S t H t t t H t t t= − − − , where 

s R( ) sin( ) ( )H t d t Hτ τ τ= −∫ ,   (41) 

c R( ) cos( ) ( )H t d t Hτ τ τ= −∫ ,   (42) 

{ } 12 2
R e e

2
e e R e e R

( ) 1 [ ( )] 2 [ ( ( ), )]

( , )[ ( ) ( )] [ ( ) ( )] 2

H t t T t t t

E b t t t t t

υ ζ

ζ ζ ζ ζ

−
= + − +

+ − + − ,  
with integrals in (41), (42) taken over R( , )t tτ ∈ . From 
(41) and (42), it follows  

s R( ) sin( ) ( )t H t t t H t∂ = − ,  (43) 

c R( ) cos( ) ( )t H t t t H t∂ = − .  (44) 
Consideration of the intervals 1(0, ( ))b t , 

1 R( ( ), ( ))b t b t , and 3( ( ),1)b t  is similar to consideration 
of the relevant intervals at the initial stage of motion 
and, with use of (18), (35), and (36), gives the equalities  

2
1 1 1 1( ( ), ) ( ( ), ) ( ) ( ) 2b t t E b t t b t b tϕ = − + ,  

R 1 R R 1( ( ), ) ( ( ), ) ( ( ), )[ ( ) ( )]b t t b t t E b t t b t b tϕ ϕ− = − − ,  

3 3 3(1, ) ( ( ), ) ( ( ), )[1 ( )]t b t t E b t t b tϕ ϕ− = − − ,  (45) 

R e R 1( ) ( ) ( )b t t b tζ= + ,   (46) 

R 1 1( ( ), ) ( ( ), ) (0, ) ( )E b t t E b t t E t b t= = + ,  

1 e 1( ( ), ) ( , ) ( ) ( )E b t t E b t t b t bζ= + + − ,  (47) 

3 e e( ( ), ) ( , ) ( , ) ( ) (0, )E b t t E b t E b t t b E tζ= = + − = .   (48) 
Substitution of the sum of potential differences over 

the different intervals into (5) gives the equality  

{ }

2 2
R 1 1 R

R e R e R 2 R

e R1 R 3

2 2
R e

( , ) [ ( )] 2 ( ) 2 ( ) ( )
[ ( )][ ( ) ( )] ( ) ( )

[ ( )][ ( ) 1 ( ) ( )]

1 [ ( )] 2 [ ( )] 2 .

E b t b b t b t b t b t
b b t t t B t S t

b t B t b t b t

t T t b t U

ζ ζ
ζ

ζ

= − + − +
+ − − − + +

+ − + + − +

+ + − − −    (49) 

The determination of the functions 1( )b t  and 3 ( )b t  
may be reduced to the solving of the ordinary differen-
tial equations for a few quantities (in addition to 1( )b t  
and 3 ( )b t ), which are used in the strength calculations 
(with aid of (47), (48), and (49)) for the equations 

2
1 1( ) ( ( ), )t b t E b t t∂ = −  and 2

3 3( ) ( ( ), )t b t E b t t∂ = − . Some 
of them (with the references to the equalities for their 
derivatives, above and below) are the following: R ( )jB t  
(38), R ( )jF t  (39), s ( )H t  (43), c ( )H t  (44), e ( )tζ  (50), 

R ( )T t  (51), e e( ( ), )t tυ ζ  (52), e e R( ( ), ( ))t T tυ ζ  (53). Use 
of the equality (25), which is valid at 
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e eR( ( ), ( ))t τ ζ τ ζ∈ , and taking of the time derivative of 
the equality e e( ( ), )x t t bζ =  at Rt t>  gives  

{ } 12
e R e e( ) 1 [ ( )] 2 ( ( ), )t t t T t t tζ υ ζ

−
∂ = − + − ,     (50) 

e ( ) 0t tζ∂ > , at the considered stage. Differentiation of 
the equality e e( ( ))ζ τ ζ ζ=  with use of (50) gives 

1
e e e( ) [ ( , ( ))]ζτ ζ υ ζ τ ζ −∂ = − , and for Rt t>  one gets  

1
R e e R e( ) [ ( ( ), ( ))] ( )t tT t t T t tυ ζ ζ−∂ = − ∂ .  (51) 

Taking into account the equality (24), which is valid 
at e eR( ( ), ( ))t τ ζ τ ζ∈ , for Rt t>  one gets  

e e R e( ( ), ) [ ( )] ( ) ( , )t tt t t T t t E b tυ ζ ζ∂ = − ∂ − ,  (52) 

e e R R R( ( ), ( )) ( , ( )) ( )t tt T t E b T t T tυ ζ∂ = − ∂ .  (53) 
The quantity R ( )b t  is given by (46). As 

R R( ) (0, )T t t∈ , the quantities e e R( ( ), ( ))t T tυ ζ  and 

R( , ( ))E b T t  are related to the initial stage of motion, 
which has been described above. The characteristics of 
that stage may be obtained with integration of the equa-
tions (33), (34) all over again (in opposite time direc-
tion, as R ( ) 0tT t∂ < , for Rt t> ), along with the integra-
tion of the equations for the mentioned few quantities 
related to the considered reverse motion stage.  

The equations for the field strength determination 
written in this section are valid only if the relative dis-
position of electrons in space is not violated, so that the 
inequality e ( , ) 0D tζ >  is held. The conditions, which 
give the time of the inequality violation, may be got 
from (40). For { e R e( ( ), ( ))t tζ ζ ζ∈ , Rt t> }, using (24) 
and (25), one comes to the equalities  

e eR

eR e eR eR

( , ( ))
( ) ( ) ( , ( )) ( )E b

ζ

ζ

υ ζ τ ζ

τ ζ τ ζ τ ζ τ ζ

∂ =

= − − ∂ .  

e eR eR

e eR e eR

2
eR e

( , ( )) ( )
( , ( )) ( , ( ))

1 [ ( ) ( )] 2,

x D
ζ

ζ

υ ζ τ ζ τ ζ

ζ τ ζ ζ τ ζ

τ ζ τ ζ

∂ =

= ∂ − =

= − − −   
and with taking them into account, from (40) one gets  

e e eR e( , ) 1 ( ) cos[ ( ) ( )]D t A tζ ζ τ ζ ζ= + − −Φ ,        (54) 
where e eR e( ) arctan{2 [ ( ) ( )]}ζ τ ζ τ ζΦ = − , 

2
e e e( ) 2cos ( ) sin ( )A ζ ζ ζ= Φ Φ , so that e ( ) 0A ζ > , 

e ( ) (0, 2)ζ πΦ ∈ , e ( ) 0Aζ ζ∂ > , e ( ) 0ζ ζ∂ Φ < . As it 
follows from (54), if e ( ) 1A ζ <  then e ( , ) 0D tζ > , for 
any t . But if e e( ( )) 1A ζ τ > , for some Rtτ > , then there 
is such t , for which the inequality e e( ( ), ) 0D tζ τ <  
takes place, that is, the order of electrons disposition is 
violated, near the electron with the initial coordinate 

e ( )ζ τ , which comes back to the ion space at the time 
τ . The violation of the electron relative disposition is 
connected with their decreased density when they come 
back to the ion space, and with the consequent excess of 
positive charge in the interval R( ( ), )b t b , which causes 
some acceleration of electrons towards one another.  

4. MOTION WITH INTERMEDIATE GAP  

If 1 2b <  and the applied voltage is sufficiently 
large then the initial stage of the process, which has 

been considered above, is followed by going out of all 
electrons from the ion space with gap appearing be-
tween the ion and electron spaces (see Fig. 1,d). Let Gt  
be the time of transition to this stage, so that 

e G(0, )x t b= , e G( ) 0tζ = . At Gt t>  all electrons are 
situated in the interval 1 3( ( ), ( ))b t b t  with 1( )b t b> . The 
field strength boundary values obey to the equalities  

3 1( ( ), ) ( , ) ( ( ), )E b t t b E b t E b t t+ = = .  
Consideration of the intervals 3( ( ),1)b t , 

1 3( ( ), ( ))b t b t , 1( , ( ))b b t , and (0, )b  gives (45) and the 
equalities  

3 1 1 3

G 1 G 2 G 1 G 2 G
2 2

G

( ( ), ) ( ( ), ) ( , )[ ( ) ( )]
( )[ ( ) ( )] ( ) ( )

[2 ( ) ] 4

b t t b t t E b t b t b t
t t bF t F t bB t B t

t t b

ϕ ϕ− = − +
+ − − + − +

+ + − ,  

1 1( ( ), ) ( , ) ( , )[ ( ) ]b t t b t E b t b t bϕ ϕ− = − − ,  
2( , ) ( , ) 2b t E b t b bϕ = − + .  

Their substitution into (5) gives the equality  
2 2

G 3

G 1 G 2 G 1 G 2 G

( , ) [1 ( ) 4] [1 ( )]
( )[ ( ) ( )] ( ) ( )

E b t b t t b b t U
t t bF t F t bB t B t

= + − + − − +
+ − − + − ,  

use of which on the integration of the equations 
2

1( ) ( , )t b t E b t∂ = −  and 2
3 ( ) ( , )t b t E b t b∂ = − +  gives the 

functions 1( )b t  and 3 ( )b t .  
If 1 2b <  and the applied voltage is not too large 

then the gap may disappear, with coming back to the ion 
space by the part of electrons. Let Bt  be the time of the 
first electron arriving at the boundary b  in the opposite 
direction, so that B Gt t> , e B(0, )x t b= , e B( ) 0tζ = , 

e B(0, ) 0tυ < . To describe the electron motion at Bt t> , 
one may take the equalities obtained above for such 
reverse motion, which arises without the intermediate 
gap appearing, put R 1( ) ( )b t b t= , and replace Rt  with Bt  
or Gt , in the relevant places (in particular, there should 
be e e B G( ( ))t tτ ζ = , instead of e e R R( ( ))t tτ ζ = ).  

The both considered types of the reverse motion 
stages are restricted in time by violation of the condi-
tions e e( ( ), ) 0t tυ ζ <  or e ( , ) 0D tζ >  (at any ζ ). The 
calculations for the electron motion after the violation 
were carried out with use of one-dimensional mesh 
along the initial electron coordinate and with use of the 
equation (13) for the field strength determination. 

5. RESULTS  
The calculations for electron motion during the time 

up to the time 3t  of the first electron arriving at anode 
(so that 3 3( ) 1b t = ) were carried out.  

In the Fig. 2 the dependences of the ratio η  of the 
attained energy and one corresponding to voltage on the 
voltage U  for the different values of the relative width 
b  of the ion space are shown. It is also used the quanti-
ty 3U U δ= , where 1 bδ = − . The dashed curve is 
related to the limit, when 1b → , but the value of U  is 
kept constant, and U  is accordingly decreases.  
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To get the equations for this limit case, it should be 
taken into account that if the relatively small charge is 
moving in the ionized medium then the corresponding 
field perturbation is dispersed during the time reciprocal 
to the plasma frequency and at the distance equal to the 
product of the mentioned time and the charge velocity. 
That is, the voltage decrease and the consequent de-
crease of the velocity of the electrons, which come back 
to the ion space, leads to vanishing of the perturbation 
of the potential difference over the ion space caused by 
these electrons, and so, the field strength in the vacuum 
space (and the electron motion there) become independ-
ent on the details of the electron motion in the ion space.  

From the equations (31), (33), and (34), taking 
1 2tτ δ= , 3 3( ) [ ( ) ]b b t bτ δ= − , 3

2 2( ) ( )B B tτ δ= , 

1 1( ) ( )B B tτ δ= , and 2
1 1( ) ( )b b tτ δ= , after the limit 

transition 1b →  one gets the equality 1 3( ) ( )B bτ τ=  and 

the equations 2
3 1( ) ( )b bτ τ τ∂ = , 2 2

2 1( ) ( ) 2B bτ τ τ∂ = , and 
2

1 2 1( ) ( ) ( )b U B bτ τ τ τ∂ = + − , integration of which gives 
the mentioned dashed curve. The calculations give the 
value of η  near to 1.87475 for U  near to 0.165.  
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Fig. 2. Dependence of the coefficient of energy increase 
η  on the voltage U  for different values of relative 

width b  of ion space (0.3, 0.4, 0.5, 0.7, 0.9, 0.97, 0.99, 
in ascending order for η  maximums; the dashed curve 

is related to the limit 1b → )  
The Fig. 3, in the different scales, gives the ranges of 

the voltage U  values, for the given value of the relative 
width b  of the ion space, which correspond to presence 
or absence of the considered above electron motion 
stages during the time 3(0, )t t∈ . The points O, D, and F 
on the plane ( , )b U  have the coordinates (0,0) , (1,0) , 

and (1 2, )∞ , the points A, B, C, and E are near to the 
points (0.01841, 0.01353), (0.01854, 0.01352), 
(0.06732, 0.03117), and (0.2329, 0.08567), respectively.  

The highest of the curves, connecting the points A 
and E, which is designated {AE}+ below, and the curve 
ED give the voltage values for the beginning of the re-
verse motion just at the time 3t , after the intermediate 
gap appearing ({AE}+) or in the process without its ap-
pearing (ED). The next (in descending order) of the 
curves, connecting the points A and E, which is desig-
nated {AE}− below, corresponds to the intermediate gap 
disappearing (after the preceding appearing) just at the 
time 3t .  
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Fig. 3. The areas on the ( , )b U  plane, related  

to presence of the different motion stages (in text)  
The curve EF gives the voltage values, at which the 

initial stage of motion continues up to the time 3t  end-
ing by the gap appearing. The curve CE corresponds to 
stopping of the electron space boundary 1( )b t  just at the 
ion space boundary b  (before the following reverse 
motion beginning), so that { 1( )b t b= , 1( ) 0tb t∂ = } at 

R 3(0, )t t t= ∈ . The curves BC and CD correspond to 
the violation of electron order just at the time 3t , after 
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the preceding gap appearing and disappearing (BC) or 
in the process without gap appearing (CD). The curve 
OA corresponds to the gap appearing, and later, at some 

3(0, )t t∈ , the gap disappearing for a moment, so that 
{ 1( )b t b= , 1( ) 0tb t∂ = } at this t ; for the point A such 
disappearing occurs at the time 3t . For the voltage val-
ues at the curve AB, the second change of the motion 
direction at the boundary b  (after the gap appearing and 
disappearing) occurs at the time 3t .  

The area on the plane ( , )b U  between the curves 
{AE}+ and {AE}− corresponds to the case when the 
reverse motion begins after the intermediate gap appear-
ing and, at least, up to the time 3t  the gap does not dis-
appear. The area bounded by the curves AB, BC, CE, 
and {AE}− corresponds to the case when the reverse 
motion begins after the gap appearing, later, at some 

3(0, )t t∈ , the gap disappears, but, at least, up to the 
time 3t  there are neither the second change of the mo-
tion direction at the boundary b , no the violation of 
electron order. The area bounded by the curves CE, CD, 
and DE corresponds to the case when the reverse mo-
tion happens without gap appearing and the electron 
order does not violate. The area below the curves OA, 
AB, BC, and CD corresponds to the case when at some 

3(0, )t t∈  the process comes either to the second change 
of the motion direction at the boundary b , or to the 
electron order violation. The area above the curves OA, 
{AE}+, and EF corresponds to the motion of all elec-
trons without change of direction and with the gap ap-
pearing at some 3(0, )t t∈ . The area on the right of the 
curves DE and EF corresponds to continuing of the ini-
tial stage of motion, at least, up to the time 3t .  

Some change of the model gives the limit value 2  
for the ratio η . Namely, let electrons become immobi-
lized when stop in the ion space (for example, through 

intensive recombination). Then, in the case of 1 1b− <<  
with application of a very small voltage U , the field 
strength in the ion space after the electron stopping is 
near to U−  (as the acceleration-deceleration process is 
approximately symmetric, due to the dependence of the 
strength on the 1( )b t  value near to linear one), and so, 
the potential difference over the vacuum space is near to 
2U . And the part of the electrons having gone out of 
the ion space are accelerated by the field strength near 
to 22Uδ  giving the η  value near to 2 . In the model 
considered above, electrons do not become immobilized 
when stopping in the ion space. Their movement to 
cathode leads to decrease of the field strength in the 
point 3 ( )b t , and to decrease of the attainable η  value.  

CONCLUSIONS 

In absence of the external circuit the movement of 
electrons to anode leads to decrease of the potential dif-
ference between electrodes. The keeping up of the po-
tential difference through the external circuit leads to 
the field strength increase in the leading point of elec-
tron flow, and so, to the increase of the final energy of 
some electrons (at their going out to anode), in compar-
ing with one corresponding to the given potential differ-
ence. For the diode with the near cathode layer of the 
immobilized ions compensated by electrons at the start, 
the maximum value of the coefficient of the mentioned 
energy increase is near to 1.87475.  
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ЭНЕРГИЯ ЭЛЕКТРОНОВ, ДОСТИЖИМАЯ В ДИОДЕ С ПЛАЗМЕННЫМ КАТОДОМ  
ПРИ ДАННОМ НАПРЯЖЕНИИ 

В. Остроушко, А. Пащенко, И. Пащенко  
Рассмотрено ускорение электронов в одномерном промежутке, часть которого заполняют ионы, в 

начальный момент компенсированные электронами. Для стадий прямого и обратного движения части элек-
тронов задача сведена к численному решению обыкновенных дифференциальных уравнений для некоторой 
совокупности величин, зависящих от времени. Отношение достижимой энергии к энергии, соответствую-
щей напряжению, максимально, и близко к 1,87475 для относительно малых значений ширины пространства 
без ионов и при применении определенного напряжения, которое при уменьшении этой ширины надо 
уменьшать как куб ширины.  

ЕНЕРГІЯ ЕЛЕКТРОНІВ, ДОСЯЖНА В ДІОДІ З ПЛАЗМОВИМ КАТОДОМ  
ПРИ ДАНІЙ НАПРУЗІ 

В. Остроушко, А. Пащенко, І. Пащенко  
Розглянуто прискорення електронів в одновимірному проміжку, частину якого заповнюють іони, у поча-

тковий момент компенсовані електронами. Для стадій прямого та зворотного руху частини електронів зада-
чу зведено до числового розв'язання звичайних диференційних рівнянь для певної сукупності величин, за-
лежних від часу. Відношення досяжної енергії до енергії, що відповідна напрузі, максимальне, та близьке до 
1,87475 для відносно малих значень ширини простору без іонів та при застосуванні певної напруги, яку при 
зменшенні тієї ширини треба зменшувати як куб ширини.  


	E-mail: ostroushko-v@kipt.kharkov.ua
	INTRODUCTION
	1. PROBLEM FORMULATION
	2. INITIAL STAGE OF MOTION
	3. REVERSE MOTION
	4. MOTION WITH INTERMEDIATE GAP
	5. RESULTS
	CONCLUSIONS

	REFERENCES

