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The diffusion fluxes of radiation point defects onto a circular base edge loop of zirconium in a toroidal reservoir 

are calculated numerically (by the finite difference method). Elastic interaction of point defects and elastic 

anisotropy of the hexagonal crystal were taken into account. The toroidal geometry of the reservoir seems more 

acceptable for the loop than spherical or cylindrical since it allows calculations for the loop of any size and without 

any correction of the elastic field in its influence region. The dependences of the absorption efficiencies and the loop 

bias on the radius and its nature are obtained. The essential role of the boundary condition on the external surface of 

the reservoir in the symmetry breaking in the absorption of point defects by loops of different nature is shown.   

PACS: 62.20.Dc; 62.20.Fe 

 

INTRODUCTION 

Network dislocations and dislocation loops (DL) are 

usually considered as main extended microstructure 

defects in metals at the initial phases of irradiation. 

Their nucleation, diffusion growth, or dissolution 

directly reflects the processes of generation, migration, 

and subsequent absorption by various sinks of point 

defects (PD) caused by irradiation. Understanding the 

mechanisms controlling the evolution of such objects as 

dislocation loops is extremely important for describing 

the phenomena of radiation swelling and growth of 

structural reactors materials of the modern and future 

generations [1-3]. Since their main function is that they 

are sinks for radiation PDs, the problem of correct 

calculations the diffusion fluxes of the PDs for a 

specific loop appears. Generally accepted that 

dislocation loops preferentially absorb their interstitial 

atoms (ISA) than vacancies, because of their stronger 

elastic interaction with the ISA. The quantitative 

expression of this preference is the integral value, called 

the absorption efficiency of the PD given by the sink, or 

rather the relative difference between the absorption 

efficiencies of its interstitial atoms and vacancies, 

known as bias. As a result, loops absorb more ISA, and 

vacancies remaining in excess diffuse into other (with a 

smaller preference factor) sinks: grain boundaries and 

pores. This is the possible explanation of the 

phenomenon of vacancy swelling of stainless steel 

under irradiation. There is a separation of the diffusion 

fluxes of PD between various types of effluents (loops 

and pores), which ultimately causes macrodeformation 

of the material. In this case, interstitial loops should 

grow, and vacancy loops should dissolve. For steel this 

conclusion is confirmed by numerous experiments [4]. 

As for HCP metals, under irradiation, along with 

interstitial ones, vacancy loops of sufficiently large 

dimensions are also observed [5]. In particular, in 

zirconium interstitial loops mainly grow on prismatic 

planes and vacancy loops in the basal plane. Such 

distribution of loops is usually considered as a reason 

for radiation growth. Radiation growth is accompanied 

by a change in the shape of the material without external 

load and a noticeable change in volume. Thus, 

zirconium in the process of growth expands in the <a> 

direction and narrows along the <c> axe [6]. This means 

that the diffusion fluxes of radiation PDs are separated, 

but between the sinks of the same type, but of a 

different nature: interstitial and vacancy loops. The 

mechanism of this separation is not completely clear. 

The fact is that if a crystal, as usual, is modeled 

elastically with an isotropic medium, it turns out that the 

loop bias does not depend on its nature, it is determined 

by its radius and the sinks concentration [8]. This makes 

impossible for the existence of macroscopic vacancy 

loops. Therefore, another option was proposed which is 

associated with the anisotropy of the diffusion 

coefficients of the PD [8]. However, the conclusions of 

the authors are based on solving the simplest diffusion-

anisotropic problem for a straight-line dislocation and 

the degree of adequacy of generalization to loops is not 

clear. The dependence on the radius, the nature of the 

loop and any of its quantitative characteristics are also 

unclear. Since there are no works including the elastic 

anisotropy of HCP metals in the diffusion problem, this 

option is considered as the best way for a qualitative 

explanation of the phenomenon of radiation growth. In 

this paper, the specified gap is eliminated. Diffusion 

flows of PDs onto a circular basic edge loop of 

zirconium were calculated numerically (by the finite-

difference method) taking into account their elastic 

interaction and the elastic anisotropy of the crystal. The 

dependences of the efficiency of capturing PD and the 

bias on the radius and nature of the loop are obtained. 

The role of the boundary conditions in the formulation 

of the corresponding diffusion problem is analyzed.  

1. BIAS OF STRAIGHT LOOP 
 

This classic example, analytically precisely solved 

problem is given here for two reasons. Firstly, to show 

how the form of the boundary conditions affects the 

result. And secondly, for formal testing of the numerical 

solution of the diffusion equation by the finite 

difference method [9]. So, in the case of diffusion 

ik ikD D  and elastic isotropy of the medium, the 

flow of point defects per unit length of a straight edge 

dislocation is found by solving the following diffusion 

problem in the quasistationary approximation: 
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Here int

strE  – energy (measured in 
Bk T ) of the elastic 

interaction of the dislocation with the PD in the model 

of the dilatation center; V  – dilatation volume of PD; 

G  – shear modulus;   – volume per atom of the 

crystal;   – the angle between the radius vector of the 

defect location point r  and the Burgers vector b  in a 

plane perpendicular to the dislocation line (the axis "z" 

is directed along the dislocation line, and the Burgers 

vector is along the "z" axis, so xb b , 0y zb b  ); 

  – Poisson's ratio; ( )C r  – PD concentration. 

Equation (1) should be supplemented with boundary 

conditions, which are proposed to be formulated in the 

form:  
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Here 
eC  – thermally equilibrium concentration of PD 

in a crystal in the absence of a stress field; 
cr  – 

dislocation core radius; extR  – the external radius of the 

diffusion problem (the radius of its influence region). 

The first condition on the core is standard and 

corresponds to the value of the chemical potential of the 

PD for a free flat surface ( ) 0cr   . The second is 

less obvious. Usually [7] it is formulated as 

( ) |
extr RC C r , where C  – average concentration of 

PD in an effective medium simulating the influence of 

the entire ensemble of effluents. In this paper, the point 

of view is different. The boundary condition is 

formulated for the chemical potential at the external 

boundary, namely: ( ) ln( / )e

extR C C   . This is the 

standard type of chemical potential of TD in an 

effective environment where the influence of a specific 

sink is leveled by the entire ensemble. For the desired 

flow in a cylindrical coordinate system, we have:  
2

0

( ) ( ( , ))str c c str cJ r r r d



    n j ,              (3) 

Here is the unit vector of the external normal to the 

boundary of the dislocation core (coincides with the unit 

radius vector of the cylindrical coordinate system). The 

technical details of the solution of the system (1-3) are 

described in detail in [10, 11]. The result is as follows:  
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Here ( )nI z  and ( )nK z  – modified Bessel functions. 

The flow is proportional to the difference ( )eC C , 

and strZ  is the absorption efficiency of PD by 

dislocation. It is invariant under the transformation 

L L , so in (4) one can formally consider 

/ 2z L r . Thus, the absorption efficiency is sensitive 

only to the absolute value of L, and not to the sign of the 

relaxation volume of the PD or the sign of the projection 

of the Burgers vector onto the “x” axis. In the week 

interaction limit ( 0cz  ; 0extz  ) 

ln(/ )2 /str c extZ z z , In the strong interaction limit 

( 1cz  ; 0extz  )  l2 / n 1/str extZ z . It is 

significant that, in both cases, the sum in (4) makes a 

small (to the extent of smallness zext) contribution to the 

absorption efficiency of the TD by the dislocation, 

which is mainly determined by the first term.  

Another approach is related to the formulation of the 

second boundary condition in (2) in the form 

( ) |
extr RC C r . Then, for the desired PD flow per unit 

dislocation length, we have: 
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Two efficiencies of PD appear in this approach. 

Absorption efficiency
a

strZ  and emission efficiency 
e

strZ  

[10]. 
e

strZ  exactly coincide with strZ  in (4). Sum in (5) 

is negative value, therefore 
a e

str strZ Z , that is, a 

dislocation should emit PDs more easily than absorb. In 

our approach, the absorption and emission processes 

have the same efficiency. From (4), (5) one can see, that 

the desired absorption efficiency depends on the size of 

the influence area of the sink extR , which is determined 

by the total power of the drains in the system 
2

totk , 

2cm
 [7] by the equation:  
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Substitution of (6) to (4) gives the transcendental 

equation for 
2( )str totZ k . Solving it numerically one can 

obtain bias 
2

, ,( ) 1 /str tot str v str iB k Z Z  , here indexes 

“ i ” and “ v ” correspond to CIA vacancy respectively. 

Dependence of straight dislocation bias on sinks density 

is shown on Fig. 1. There are three lines. Solid one 

corresponds to exact solution, dotted one to 

Margvelashvili-Saralidze approximation, [12], 

0strZ Z , (
0 ( ) 1extI z  ), and dashed one corresponds 

to strong interaction approximation 

 l2 / n 1/str extZ z . One can see that exact solution is 

between two approximations.  

 

  

   

 

Fig. 1. Dependence of the bias factor of rectilinear 

dislocation on the density of drains. 

Solid line - exact solution (4), 

dotted - approximation [12], 

dashed – strong interaction approximation. 

The calculations are done for zirconium at 573T K , 

material parameters are: 33G GPa ; 0.33v  ; 

103.23 10b m  ; 1.2iV   ; 0.6vV    ; 

29 32.36 10 m   ; 3cr b  

 

2. BIAS PF BASE DISLOCATION LOOP  

IN HCP-METALS 
Let us consider a basic (plane Z=0 of a cylindrical 

coordinate system) vacancy loop of radius R , located 

in a toroidal reservoir which is coaxial to dislocation 

loop [7]. External radius of reservoir is extR , inner is 

cr . The Burgers vector of the loop is perpendicular to 

its plane and has only a Z-component ( 0 , 0 ,
Db ).The 

normal vector to the loop plane coincides with the 

positive axis direction « z », which is also the axis of 

the crystal symmetry. The problem is formulated in 

terms of a variable ( ),r z    

int( , ) ,exp ( ) / ( )D e eC r z E r z C C C     . The 

quasistationary diffusion equation in dimensionless 

cylindrical coordinates has the form:  
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the interaction energy of the loop with the PD in the 

HCP crystal is given by [13]: 
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Here 11C  and so on – crystal elastic moduli; ( )mJ t  – Bessel function,   ( 1,2  ) – roots of the quadratic 

equation  2 2

44 33 3311 13 44 13 11 442 0C C CC C C C C C      . The boundary conditions for (7) are set on 

the inner and outer toroidal surfaces.  
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They correspond to similar conditions for a straight dislocation (2). The desired absorption efficiency of the 

dislocation loop has the form:  
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Here 
DJ  – full PD flow per loop; the integral is taken over an arbitrary surface containing a loop, n  – its external 

normal.  



 

 

The diffusion problem (7)–(10) was solved 

numerically by the finite difference method [7, 9]. Fig. 2 

shows a cross section of a toroidal reservoir containing 

a loop, taking into account the reflection symmetry in 

the plane z=0 and the symmetry about rotation around 

the axis “oz“. 

 
                                                              a                                                             b 

Fig. 2. The coordinate system for the toroidal reservoir: а – extR R ; b – extR R  

 

For extR R  the diffusion field was calculated in 

the region bounded by the surfaces DA, AB, BC, CD, 

for 
extR R  – by the surfaces OA, AB, BC, CD, DO. 

Above indicated symmetry imposes additional boundary 

conditions: / 0z    on DA, BC, OA, corresponding 

to zero flow through the plane 0z  , and / 0r    

on DO (axis of symmetry) 0. Then the absorption 

efficiency of the PD was calculated using equation (10) 

 -type. Arbitrary inner surfase S in (10) was selected 

in the form of a rectangle of rotation in order to simplify 

calcculations. On Fig.2 it is line L . The calculations 

were performed for zirconium, the material parameters 

of which are given in the previous section. 
   

3. RESULTS AND ITS DISCUSSION 
  

Fig. 3 shows the dependence of the absorption 

efficiency of the TD dislocation loop  -type 

 , extZ R R  ( ,v i  ; v  – vacancy, i  – СIA) from it 

radius in units b  (+ – vacancy loop петля, o – 

interstitial loop; 3cr b ). To simplify the calculations, 

the radius of the cross section of the outer torus extR  

was set the same for vacancies and SIA, which 

corresponds to the approximation 
2 21/ extk R . If 

dislocations are the dominant sink in the system, then 

the value 55extR b  corresponds to the density of 

dislocations 
11 210 сm   Fig. 3,а,b), and 125extR b  

– to the density of dislocations 
10 22 10 cm    

Fig. 3,c,d). The numerical estimation of the bias factor 

of a straight dislocation is also simplified, since it is not 

necessary to solve the transcendental equation (4). 

Absorption efficiency , ( , )str c extZ r R  might be found 

just by substitution of extR  to (4).  
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Loop radius, b 
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Loop radius, b 

  

 
Fig. 3. Vacancy and interstitial absorption efficiency Z  (а), (b) and iZ  (c), (d) as lopp radius functions, 

calculated for 55extR b  (а), (b) and 125extR b  (c), (d) ('+' – vacancy loop, 'o' – interstitial loop) 
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By definition bias looks like 1 /v iB Z Z  . The 

result of the corresponding calculations is shown in Fig. 

4. The dashed line corresponds to the bias factor of the 

straight dislocation at a given value 
extR .  

  

 

Loop radius, b 

 
 

Loop radius, b 
 

 

Fig. 4. Biases of vacancy and interstitial loops as functions of loops radiuses for 55extR b  (а)  

and 125extR b  (b). ('+' – interstitial loop, 'o'– interstitial loop) 

 

In [7], the main results of studies were formulated, 

in which a similar problem was solved numerically, but 

in spherical or cylindrical reservoirs, as well as in the 

approximation of the elastic medium isotropy. Compare 

them with ours. First, it is noted that dislocation loops 

are biased sinks that more effectively absorb SIA than 

vacancies. This conclusion is also confirmed by our 

calculations, since B>0 (see Fig. 4). Secondly, the 

absorption efficiency and the bias depend on the radius 

of the loop and the density of the sinks but do not 

depend on the nature of the loop (vacancy or 

interstitial). In [7], this conclusion remains valid for a 

toroidal reservoir. In our case, the dependence on the 

radius and density of the sinks remains, however, the 

nature of the loops becomes significant. From Figs.3, 4 

one can see that radial dependencies of absorption 

efficiency of sort   PD  , extZ R R
 and bias 

 , extB R R  for interstitial loop with fixed external torus 

radius extR  have minimum and asymptotics which 

correspond to straight dislocations. Last feature is 

typical only for toroid reservoir. Similar dependences 

for the vacancy loop show the presence of a maximum, 

it means that symmetry of PD absorption by loops of 

different nature is broken. This is the main result of the 

paper. Minimum and maximum positions are shifted in 

region of large loop radius while sink density increases 

and extR  decreases correspondingly, their absolute 

values decrease as loop area of influence extR  decrease. 

Numerical analysis of equations (7), (9), (10) has shown 

that taking into account of the elastic anisotropy of the 

crystal (8) for basic edge loops does not play an 

essential role. Another thing is more important, namely 

the boundary condition on the external toroidal surface. 

In our approach on the boundary between the sink 

influence region and the effective medium, the equality 

of PD chemical potentials is assumed. As a result we 

have one absorption efficiency and one flow per loop 

which are proportional to the difference (
eC C ), and 

boundary condition (9) ( 1  ), which does not depend 

on the loop type. In [7], as in some other works, the 

equality of PD concentrations is assumed 

( ( ) |
extr RC r C  ).Then, as in the case of a straight 

dislocation, two efficiencies appear: absorption and 

emission, respectively, two flows, and the boundary 

condition for calculating the absorption flow takes the 

form exp( ( ))extC E R  depending on the loop 

type. As a result presence of symmetry between PD 

absorption by loops of different types. It is still 

impossible to give unequivocal answer to the question 

which approach is correct. It is encouraging that, in our 

version, the basic interstitial loops with the smallest 

biases might be considered as the main sinks for 

vacancies. Therefore, they have no chance of survival, 

which is observed experimentally. As for vacancy 

loops, their fate is ambiguous. Large loops cannot 

survive because of their larger biases compared to 

straight dislocations, but they are observed in 

experiments during crystal growth. Their “accumulation 

point” can be considered the size where However, if the 

average bias of the system as a whole is larger than of 

the straight dislocation, then the “accumulation point” 

can grow, which means that the size of surviving 

vacancy loops can increase. 

It is shown that the form of the boundary condition 

on the outer surface of the toroidal reservoir, used in the 

paper, violates the “traditional” symmetry in the 

absorption of PD by loops of different nature and leaves 

no chance for the survival of interstitial base loops in 

zirconium. But it does not explain the existence of large 

basic vacancy loops. A source of vacancies in the basal 

plane is needed. Such may be the interstitial loops 

nucleating on prismatic planes during the radiation 

growth of zirconium. But this is a different task.  
 

The authors are grateful to A.A. Turkin for 

productive consultations on the method of numerical 

calculations and V.I. Dubinko for participating in the 

discussion of the results.   
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ЧИСЛЕННЫЙ РАСЧЕТ ФАКТОРА ПРЕДПОЧТЕНИЯ БАЗИСНОЙ ДИСЛОКАЦИОННОЙ 

ПЕТЛИ В ГЕКСАГОНАЛЬНОМ КРИСТАЛЛЕ 
 

А.В. Бабич, П.Н. Остапчук  

Численно (методом конечных разностей) посчитаны диффузионные потоки радиационных точечных 

дефектов на круговую базисную краевую петлю циркония в тороидальном резервуаре с учетом их упругого 

взаимодействия и упругой анизотропии гексагонального кристалла. Тороидальная геометрия резервуара 

представляется более приемлемой для петли, чем сферическая или цилиндрическая, поскольку позволяет 

провести расчеты для петли любого размера и без какой-либо коррекции упругого поля в ее области 

влияния. Получены зависимости эффективностей захвата и «bias»-фактора петли от радиуса и ее природы. 

Показана существенная роль формы граничного условия на внешней поверхности резервуара  в нарушении 

симметрии в поглощении ТД петлями разной природы.  

 

 

ЧИСЕЛЬНИЙ РОЗРАХУНОК ФАКТОРА ПЕРЕВАГИ БАЗИСНОЇ ДИСЛОКАЦІЙНОЇ 

ПЕТЛІ В ГЕКСАГОНАЛЬНОМУ КРИСТАЛІ 

А.В. Бабіч, П.М. Остапчук  

Чисельно (методом кінцевих різниць) пораховані дифузійні потоки радіаційних точкових дефектів на 

кругову базисну крайову петлю цирконію в тороїдальному резервуарі з урахуванням їх пружної взаємодії і 

пружної анізотропії гексагонального кристала. Тороїдальна геометрія резервуара є більш прийнятною для 

петлі, ніж сферична або циліндрична, оскільки дозволяє провести розрахунки для петлі будь-якого розміру і 

без будь-якої корекції пружного поля в її області впливу. Отримано залежності ефективностей захоплення і 

«bias»-фактора петлі від радіуса і її природи. Показана суттєва роль форми граничної умови на зовнішній 

поверхні резервуара в порушенні симетрії в поглинанні ТД петлями різної природи. 
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