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Regular and stochastic dynamics of three wave interaction and dynamics of cascades of such three wave pro-
cesses were investigated. It was shown that matrix elements of wave interaction are inversely proportional to square 
of frequency of LF wave participating in three wave interaction. It was shown, that thresholds of arising of regimes 
with dynamics chaos are proportional to cube of LF wave. By numerical methods dynamics of cascades of interact-
ing waves was investigated in detail. 
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INTRODUCTION 
Decay processes in plasma are well studied example 

of weakly nonlinear interaction of wave. Their results 
are widely presented in the scientific literature. The 
fullest they are presented, for example, in [1 - 3]. In 
works [4, 5] it was shown that there are conditions when 
decay process may transfer into stochastic regime. Sto-
chastic decays were investigated as numerically as ex-
perimentally. Results of these investigations are pre-
sented in works [6 - 12]. 

This process may be continued. As result, the cas-
cade of decays is received. One of the variants of such 
process is presented in [13]. It may talk about cascades 
with different scenarios. In one of such cases the low 
frequency wave is common for all decays. In other case 
in each of cascade decay different low frequency waves 
participate [14]. 

The one three wave decay is well have investigated. 
Hower, as result of one three wave decay the waves 
may appear that self may decay. In some cases there can 
be many such elementary wave processes. There is nat-
ural question about redistribution wave energy in such 
cascade of decays. Essential interest for plasma physics 
in this case is question about energy value that is trans-
ferred into low frequency part of spectra that well inter-
acts with ion component of plasma. Besides, it is im-
portant to find conditions when dynamics of these low 
frequency waves is chaotic. 

It should be noted that in the overwhelming majority 
of studies of the processes of nonlinear interaction of 
waves, dimensionless both dependent and independent 
variables are mainly used. In many cases it is conven-
ient. However, often with this consideration, the func-
tional dependence of the studied processes on the sys-
tem parameters is lost. 

1. DYNAMICS OF ISOLATED THREE-
WAVE INTERACTION  

Dynamics of amplitudes of interacting waves at 
three wave interaction is described by set of equations 
that contained in works [1 - 3]. 
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where ia  – slowly varying amplitudes of interacting 
mode; 1 2 3δ ω ω ω= − −  – detuning; 1,2ω  – frequencies 

of HF waves; 3ω  – frequency of LF wave; V  – matrix 
elements of nonlinear wave interaction. 
 In this section we will investigate strict synchro-
nism. In this case is convenient to use dimensionless 
time Vtt = . Set of equation (1) is universal. Hower, it 
is important to define dependence of matrix element 
versus LF wave frequency 

To find this dependence from the Maxwell equa-
tions, we write out the following relationship of the 
electric field strength with a non-linear current: 
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where 1E  – amplitude of decaying wave in the CGS 
system (in contrast of 1a  – which is normalized corre-
spondingly method that is presented in [1]); c  –speed of 
light; 1e – polarization vector of decaying wave; 1nlj



– 
density of nonlinear current; 1A  – value that functional-
ly depend versus frequency and wave vector of decay-
ing wave.  

Note that equation (2) already is shortened. The ex-
pression for density of nonlinear current can be obtained 
by means equation of hydrodynamics for electron and 
ions and has next form: 
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where e  – electron charge; ejn , ejv  – disturbance of 
electron density and velocity correspondingly in the 
field of j-th wave and have next form: 
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 Substituting expressions (4) into (3) and last in (2) it 
is obtained expression that is analogous to the first 
equation of set (1)  
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where 1V  is: 
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Formula (6) explicitly expresses dependence of ma-
trix element versus parameters of low frequency wave. 
Namely, explicit dependence versus frequency of LF 
wave is visible ( 2

31/V ω≈ ).  
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1.1. CONDITIONS OF ARISING REGIMES  
WITH DYNAMIC CHAOS 

We will show in this subsection that the conditions 
of the transition to the regime with dynamic chaos de-
pend anomalously on the frequency of the low-
frequency wave participating in the interaction. Namely, 
the criterion is inversely proportional to the cube of this 
frequency. Indeed, it was shown in [4, 5] that the decay-
ing process can go into the stochastic regime if the in-
crement of the decaying instability ( 10Va , 10a  is the ini-
tial amplitude of the decaying wave) exceeds the fre-
quency of the most low-frequency wave. This criterion 
is: 

      10 10
3
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1
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From (7) it follows that stochastic regimes in decays 
can most easily be realized with the participation of 
waves with low frequencies. This circumstance can be 
used, for example, to heat the ion component of the 
plasma. 

1.2. DEPENDENCE OF THE WAVES DYNAMICS 
INTERACTION ON THE VALUE OF DETUNING 

Above, a rather idealized case was considered when 
the characteristics of interacting waves strictly satisfy 
the synchronism conditions. If these conditions are not 
satisfied that it is necessary to analyze the system of 
equations (1). 

At the initial stage of decay, we will assume the am-
plitude of the pumping wave 1 10a a const= = . Repre-
senting a solution for the low-frequency wave in the 
form 3 30

i ta a e ω=  we find the dispersion equation 
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whose solution has the form 
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Thus, in the presence of detuning, at the initial stage, 
the unstable dynamics of decay occurs under the condi-

tion 
222

10 0V aδ − <  that it is of a threshold nature. 
With strict synchronism ( 0δ = ), the dynamics have the 
character of instability with an increment 

10Im( ) V aγ ω= = . 

1.3. ACCOUNTING WAVE PROPERTIES  
OF LOW-FREQUENCY WAVE 

In the previous subsection the case was studied 
when the wave amplitude dynamics was considered 
only on the basis of shortened equations for all the 
waves involved in the interaction. In many cases, the 
frequency of the low-frequency wave can be quite 
small, so that the characteristic times of non-linear in-
teraction of waves are on the order of the low-frequency 
wave period. In this case, the wave properties of low-
frequency waves can significantly affect the dynamics 
of the interaction of waves. In this subsection, we will 
take into account this possibility. 

In this case, the system of equations (1) should be 
rewritten: 
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where 0 1ω ω−∆ = − ,  3ωΩ = . 
At the initial stage of decay, we will also assume the 

amplitude of the pump wave 0a const= . Writing the 
solution for the low-frequency wave we write in the 
form 0

i tb b e ω= , we obtain the dispersion equation: 

  2 22 2( )( ) 2 ( 0 ) 0V aω ω−Ω ∆ + − Ω = .  (11) 
The analytical representation of solutions of the dis-

persion equation is bulky, therefore the numerical anal-
ysis of the solutions of this equation was carried out. 
The graph below presents the main features of the solu-
tions of this equation (Fig. 1). 

 
 

Fig. 1. The dependence of  increment of the three-wave 
interaction on the parameters ∆  and Ω  for the pump 

wave amplitude 0 0.25a =  

The maximum value of the increment is directly 
proportional to the amplitude of the pumping wave. 

With decreasing of the amplitude of the pumping 
wave, the region of frequencies and detunings, at which 
there exist instability-like regimes, narrows and for 
small values of the pumping wave amplitude 0 0.1a ≤ , 
the instability develops under conditions close to reso-
nant: 0∆ −Ω ≅ . 

The transition to stochasticity has the form 
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Note that the frequencies and wave vectors of the in-
teracting waves must satisfy the synchronism conditions 
( 0δ = ). 

2. DYNAMICS OF LIMITED NUMBER OF 
ELEMENTARY THREE-WAVE PROCESSES 

For the analysis of Dynamics of the limited cascade 
of decays, it is convenient to use the following system 
of equations: 
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Here 1n nδ ω ω −= − −Ω  is detuning, nω  are frequen-
cies of the high-frequency wave, Ω  is frequency of the 
low-frequency wave, nV  are the matrix elements of the 
nonlinear interaction of the waves. At the same time, we 
assume that the frequencies and wave vectors of high-
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frequency waves are much higher than the frequencies 
and wave vectors of low-frequency waves 

, kω k>> Ω >> . 
Under this condition, the matrix elements nV  weakly 

depend on the number n . We will consider them the 
same and equal to one. 

In real systems, the number of high-frequency inter-
acting waves, although large, but is finite. Therefore, we 
will assume that the amplitudes of the waves 0na = , if 
n  it is outside the range of values 1 2N n N− ≤ ≤  ( 1N  is 
number of red satellites, 2N  is number of blue satel-
lites). The system of equations (14) up to terms of order 

0( , )kω kΩ  has the integrals of motion: 
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The relation (14) represents the total energy of the 

interacting waves, and the relation (15) can be interpret-
ed as the number of quanta of the interacting high-
frequency waves. Besides, it is possible to show that  
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And in the case when the number of "red" and 
"blue" satellites is equal 1 2( )N N= , under the initial 
conditions ( 0

0 0 ( 0)a a t= = , 0 ( 0)b b t= = ) one more in-
tegral of motion takes place: 
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2.1. NUMERICAL ANALYSIS 

Analytical study of system (13) is possible only for 
an infinite number of interacting waves (see [1]). To 
analyze the dynamics of a finite number of interacting 
waves, it is necessary to use numerical methods. The 
system of equations (13) was solved numerically under 
various initial conditions for the fields and different 
detuning parameters δ . We investigated the temporal 
dynamics of wave interaction, the power spectra ( ( )S ω ) 
of realizations, their autocorrelation functions (Cf), and 
the maximum Lyapunov exponent of the system (σ ). 

At the initial moment of time, the real values of the 
fields were chosen: 0

0 0Re ( 0)a t a= = ; Rea-1(t=0)=a-1
0; 

( 0)b t = =b0. The imaginary parts of the fields and the 
amplitudes of other waves at 0t =  were selected equal 
to zero. The accuracy of the calculations was controlled 
by means of integral (16). The magnitude of the devia-
tion from the integral 

2 2 9
int | ( ) | | ( 0) | 10n na t a t −∆ = − = ≤∑ ∑  

in all conducted numerical researches. 
In Fig. 2 results of numerical calculations of system 

(13) are shown for an asymmetric case 
( 1 27, 0N N= = ) with the initial conditions of the beat-
wave type 0

0a =1 and 0
1a− = 0.1, when synchronism con-

dition ( 0δ = ) is fulfilled. 
 

a b 

c d 

e 
 

Fig. 2. Dependences of magnitudes of amplitude  
on time: a) amplitude 0a is red line, amplitude 1a−  

is blue line; b) amplitude b ; c, d) spectrum and auto-
correlation function of amplitude;  

e) σ is the maximum Lyapunov index 

From these graphs it can be seen that the amplitudes 
of high-frequency oscillations have the form corre-
sponding to the analytical representation of oscillations 
[14] at time intervals up to *t ≅ 5.1, after which a com-
plicated dynamics of the amplitude of interacting waves 
occurs. 

A peculiarity of this type of nonlinear wave interac-
tion is the fact that the number of low-frequency wave 
quanta increases over the time interval when the dis-
turbance did not reach the last waves participating in the 
interaction, after which oscillations of the number of 
low-frequency wave quanta occur. The maximum num-
ber of low-frequency quanta 2

bN b=  in this case ex-
ceeds the number of quanta of each of the high-
frequency waves 2

k kN a=  by more than six times. The 
maximum Lyapunov index of the system does not ex-
ceed in order of magnitude 22 10σ −< ⋅ ; therefore, in 
this case, we can speak about regular dynamics of the 
decay cascade. 

As the number of interacting waves increases 
1 211, 0N N= = , as shown by numerical analysis, the 

maximum amplitude of the low-frequency wave in-
creases and time increases somewhat *t ≅ 6.0. In this 
case, if the initial amplitudes of the waves are increased 

0
0 1a =  and 0

1 0.5a− = , the maximum amplitude of the 
low-frequency wave increases and time decreases 

*t ≅ 4.2. Other characteristics of the decay process of 
the waves at the same time qualitatively change a little. 

The results of numerical calculations for the sym-
metric case ( 1 2 7N N= = ) with initial conditions of the 
beat-wave type 0

0a =1 and 0
1a− =0.1, when the synchro-

nism condition ( 0δ = ) is satisfied, show that the ampli-
tudes of high-frequency oscillations also have the form 
corresponding to the analytical representation oscilla-
tions [14] on the time intervals necessary for the dis-
turbance to reach the last waves involved in the interac-
tion. 
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The spectrum of the low-frequency wave line, the 
correlation function is periodic. The maximum Lyapun-
ov exponent σ  decreases with time and in order of 
magnitude 0.02σ < , so that one can speak to the regu-
lar dynamics of the waves. 

A feature of this type of nonlinear wave interaction 
is the fact that the number of low-frequency wave quan-
ta increases linearly at time intervals *t ≅ 10 when the 
disturbance does not reach the last waves participating 
in the interaction, after which it falls linearly to zero and 
the dynamics of quanta of low-frequency waves repeats. 
The maximum number of low-frequency quanta does 
not exceed the number of high-frequency quanta. 

3. DYNAMICS OF THE LIMITED CASCADE 
TAKING INTO ACCOUNT WAVE 

PROPERTIES OF THE LOW-FREQUENCY 
WAVE 

Since the frequency of the low-frequency wave is ra-
ther small ( nω >> Ω ) when averaging its equation over 
a high frequency, it is necessary to use not a shortened 
equation, but a second-order equation. 

At the same time the system of the equations, neces-
sary for the analysis, takes a form: 
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whеre 1n nδ ω ω −∆ = +Ω = − . 

3.1. NUMERICAL ANALYSIS 

For a finite number n , the system of equations (18), 
also as well as in the previous case, was solved numeri-
cally under different initial conditions for the fields and 
different values of detuning ∆  and frequencyΩ . At the 
same time, at the initial moment of time, the real values 
of the fields were chosen: Rea0(t=0)=a0

0; Rea-1(t=0)=a-

1
0; ( 0)b t = =b0. The imaginary parts of the fields and the 

amplitudes of the other waves at 0t =  were chosen to 
be zero. The value of the deviation from the integral 
(15) 9

int 10−∆ ≤ . 
Below are the results of a numerical analysis of the 

system of equations (18). 
In Fig. 3 results of numerical calculations of system 

(18) for an asymmetric case ( 1 27, 0N N= = ) with ini-
tial conditions of the beat-wave type 0

0a =1 and 0
1a−  

=0.1– are shown, at 0.3Ω = , 0.3∆ = .  
From these graphs it can be seen that at the begin-

ning of the interaction, the amplitudes of high-frequency 
oscillations also have the form corresponding to the 
analytical representation oscillations [14] on the time 
intervals necessary for the disturbance to reach the last 
waves involved in the interaction. After that, the ampli-
tudes of high-frequency oscillations have a shape simi-
lar to irregular oscillations with different intensities, 
whose frequencies also change irregularly. 

The spectra of these waves take the form of a “table” 
type; the correlation function rapidly decreases with 
time to zero value and has irregular oscillations near this 

value. Therefore, we can speak about random amplitude 
and frequency modulation of HF waves. The spectrum 
of the low-frequency wave is is a little widened, correla-
tion function slowly decreases remaining periodic, so 
that the dynamics of the low-frequency wave is regular. 
The maximum Lyapunov exponent eventually reaches 
almost a constant level ~ 0.2σ  (see Fig. 3,g), that con-
firms the chaotic nature of the process. Consequently, 
when a low-frequency wave interacts with a system of 
high-frequency waves with chaotic dynamics, the dy-
namics of the low-frequency wave remains regular. 

a b 

c d 

e f 
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Fig. 3. The magnitudes of the amplitude on time are 
a) amplitude 0a is red line, amplitude 1a− is blue line; 
b) amplitude b ; c, d) spectrum and autocorrelation 
function of the amplitude of the low frequency wave;  

e, f) spectrum and autocorrelation function of the ampli-
tude of the high frequency wave; g) is the maximum 

Lyapunov exponent σ  
The number of quanta of the low-frequency wave 

grows on time interval when the perturbation has not 
reached the last waves participating in the interaction, 
after which oscillations of the number of low-frequency 
quanta occur. The maximum number of low-frequency 
quanta 2

bN b=  exceeds the number of quanta of each 

of the high-frequency waves 2
k kN a=  by more than an 

order of magnitude. 
Increase the number of waves involved in the cas-

cade does not lead to significant change in the dynamics 
of the interaction of waves. 

In the symmetric case ( 1 2 7N N= = ) with 0
0a =1 and 

0 ( 0) 0.1b b t= = = , when 0.3Ω =  and 0.3∆ =  the low-
frequency wave spectrum is line, the autocorrelation 
function changes periodically with time, the pump wave 
spectrum has linear character, the autocorrelation func-
tion slowly changes with time. The maximum Lyapunov 
index of the wave system σ  decreases with time to 
values 21 10σ −< ⋅ , therefore in this case it is possible to 
say that dynamics of amplitudes as high frequency 
waves and low-frequency wave has regular character. 
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CONCLUSIONS 
Let’s note the most important results: 
1. The effective transformation of the energy of the 

high-frequency wave into the energy of the low-
frequency wave is possible at nonlinear wave interac-
tion. 

2. The magnitude of the matrix element of the non-
linear interaction of the waves is inversely proportional 
to the square of the low frequency. As a result, the pro-
cess of decay to low frequencies occurs at lower field 
strengths of the decaying wave. 

3. Modes with stochastic dynamics arise, primarily 
with the participation of the wave with a minimum fre-
quency of the low-frequency waves. This is due to the 
fact that the threshold of stochastic instability is inverse-
ly proportional to the cube of low frequency. 

4. The feature of the cascade of decays in which were 
took into account the wave properties of a low-frequency 
wave is that the maximum number of low-frequency wave 
quanta exceeds the number of quanta of each of the RF 
waves by more than an order of magnitude. 
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ОСОБЕННОСТИ СЛАБОНЕЛИНЕЙНОГО ВЗАИМОДЕЙСТВИЯ ВОЛН  
В.А. Буц, И.К. Ковальчук, А.П. Толстолужский 

Исследована регулярная и стохастическая динамика трехволнового взаимодействия, а также дина-
мика каскадов таких трехволновых процессов. Показано, что матричные элементы взаимодействия 
волн обратно пропорциональны квадрату частоты НЧ-волны, участвующей в трехволновом взаимо-
действии. Показано, что пороги возникновения режимов с динамическим хаосом пропорциональны 
кубу частоты НЧ-волны. Численными методами детально исследована динамика каскадов взаимодей-
ствующих волн. 

ОСОБЛИВОСТІ СЛАБОНЕЛІНІЙНОЇ ВЗАЄМОДІЇ ХВИЛЬ  
В.О. Буц, І.К. Ковальчук, О.П. Толстолужський 

Досліджена регулярна та стохастична динаміка трихвилевої взаємодії, а також динаміка каскадів 
таких трихвилевих процесів. Показано, що матричні елементи взаємодії хвиль обернено пропорційні 
квадрату частоти НЧ-хвилі, що бере участь у трихвилевій взаємодії. Показано, що пороги виникнення 
режимів з динамічним хаосом пропорційні кубу частоти НЧ-хвилі. Чисельними методами детально 
досліджена динаміка каскадів хвиль, що взаємодіють.  
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