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Within the framework of the program of using modern computer methods in the task of developing radiation-resistant

materials for IV-generation reactors, several methods for describing the form of local atomic segregations or compact

radiation defects of the nanometer range have been considered. A numerical method for measuring the shape of an

arbitrary atomic formation possessing a well-defined external boundary is proposed. The shape of the sequence of

equilibrium clusters is measured, the interaction of the particles in which is described by the Lennard-Jones potential.

It is shown that the proposed method correctly reproduces the oscillations of size effects and the sequence of magic

numbers for these clusters. The possibility of replacing geometric moments by the moments of Zernike 3D functions

is considered. Such a replacement allows us to get rid of the ill-posed nature of the inverse problem in the transition

from the source space of clusters form to the space of their descriptors.

PACS: 61.72.Qq

1. INTRODUCTION

In the active zone of the fission reactor, structural
materials are exposed to ionizing particle fluxes dur-
ing the entire operation time. This leads to changes
of the structure and properties of materials in wide
space-time scales. Of particular importance here
are complex defects with characteristic dimensions
of 10...1000nm, which 1) are the result of the nat-
ural evolution of primary radiation defects; 2) can
have sufficiently long lifetimes; 3) often have a com-
plex spatial structure. Such defects in many cases
determine the properties of materials that are critical
in deciding the possibility to use the material under
consideration in such an aggressive environment as
the active zone of fission reactors (existing and pro-
jected).

Indeed, it is well known, that defects generated by
radiation damage include vacancies, self-interstitial
atoms, gas atoms and clusters of these defects. As
these defects accumulate and interact within a metal,
they can agglomerate into larger defect clusters [1].
Depending on the constituents of a given cluster and
the type of metal lattice, clusters can take a variety
of geometric forms.

The majority of commercial nuclear reactors in
the world today are light water reactors. The nuclear
fuel used in these reactors is in the form of fuel rods,
which consist of long tubes (approximately 4m long,
with approximately 1 cm diameter and 0.6mm wall
thickness) made out of zirconium alloys and which
contain uranium dioxide pellets. These tubes (so

called nuclear fuel cladding) constitute the first bar-
rier against the release of fission products into the
primary circuit. Because of this important function,
it is crucial to nuclear safety to ensure cladding in-
tegrity during service.

The detailed study of oxide layer microstructure
has yielded considerable insights onto atomic level
into growth mechanism of oxide layers in zirconium
alloys exposed to high-temperature water. For alloys
that form a protective oxide layer in this conditions,
the oxide growth is stable, the oxide is adherent, and
no evidence of meaningful dissolution of the outer ox-
ide is seen.

Microstructure examination shows that oxidation
starts by the formation of small, equiaxed oxide
grains on the metal near the oxide/water interface
[2]. These small oxide grains are more or less ran-
domly oriented and exhibit a mix of tetragonal and
monoclinic ZrO2 crystal structures. As the grains
grow, they become columnar so as to favor the
growth of properly oriented grains to minimize the
stress accumulation.

The transition from equiaxed to columnar growth
occurs at a diameter of approximately 30...40nm.
The columnar grains grow to a length of approxi-
mately 200nm, at which point grains normally have
to renucleate to maintain the proper orientation.
This anisotropic columnar growth results in a fiber
texture with long, columnar oxide grains formed
in between transitions and small, equiaxed grains
formed at the beginning of the corrosion process and
at the oxide transition.
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As the oxide grows, stresses accumulate in the
oxide layer from the imperfect accommodation of
the volume expansion associated with oxidation. In-
plane stresses on the order of 1...3GPa have been
measured in growing oxide films at various stages of
film growth [3]. In parallel, oxide porosity develops
in the layer [4]. This porosity takes the form of small
tubes near or at the columnar oxide grain boundaries.

The pores first start out as equiaxed cavities and
grow into tubes as the oxide grows, as has been shown
by transmission electron microscopy [5]. The increas-
ing stress eventually causes lateral cracks to form,
which causes an interlinkage of the porosity from the
oxide/metal to the oxide/water interface, thus pro-
viding easy access to the water, which in turn in-
creases the corrosion rate. The sudden nature of the
transition is then related to the sudden oxide breakup
after the stress reaches a critical value. The interlink-
age of pores explains how lateral cracks can cause an
overall loss of protectiveness. This is thought to be
the mechanism related to the oxide transition [6].

The pore system developed in the oxide film has
a complex shape, and therefore it is desirable to have
a computational tool that allows for a quantitative
description of such a characteristic. The constantly
increasing power of modern computing devices makes
it quite realistic in the near future to formulate the
problem of computer modeling of the growth mech-
anism of oxide layers at the atomic level. It is clear
that in addition to high computer productivity, an
algorithm is needed to solve such a problem, which
1) would detect the appearance on the atomic level
of a compact formation of nanometer sizes with a
well-defined surface (for example, pores) and 2) pro-
vide the possibility of calculating its arbitrary inte-
gral characteristic.

In the paper, we propose methods for solving both
of these problems. In accordance with this, Section 2
describes the developed numerical method for iden-
tifying the surface of a compact nanoobject. This
method is simple enough, effective, stable, and allows
for a clear geometric interpretation.

The proposed method provides simultaneous un-
ambiguous determination of surface atoms and mo-
saic representation of the latter, which can then be
used to calculate various integral characteristics. In
Section 3, a method for calculating the shape of a
compact cluster is developed. In the framework of
the approach based on geometric moments, analyti-
cal expressions for the components of the shape vec-
tor were obtained for the first time.

Using the example of self-sustaining atomic clus-
ters, it was shown that the proposed method correctly
reproduces dimensional oscillations and a sequence of
magic numbers. In conclusion (Section 4) it is pro-
posed to replace the geometric moments with the mo-
ments of the 3D Zernike functions. In our opinion,
this makes possible to get rid of the ill-posed nature of
the inverse problem in the transition from the source
space of clusters form to the space of their descrip-
tors.

2. METHOD OF SURFACE DESCRIPTION
OF COMPACT NANOOBJECT

In the problem of describing the surface of a compact
nanoobject, two components can be distinguished.
First, an algorithm is needed that could determine
whether a given atom is part of the surface or not.
And, secondly, it is necessary to ensure the identifi-
cation of the surface as a whole as a single connected
entity.

The problem of separating surface atoms is a clas-
sification problem, which, in accordance with the ac-
cepted criterion, allows us to separate all atoms of
the system into two nonoverlapping sets: those lying
and not lying on the surface. There are many such
criterion of physical or geometric nature. In the pa-
per approach based on the concept of rolling on the
surface of the probe sphere was used.

In accordance with this, a smooth surface ∂Ω
bounding some closed domain Ω, and a probe sphere
of radius Rs were considered. For an arbitrary po-
sition of the center of the sphere, the intersection of
its surface and the domain Ω can be empty, contain-
ing one point or a continuum of points. In the first
case, the sphere lies entirely outside the domain Ω, in
the second case it touches the surface ∂Ω at a single
point, and in the third - contains the interior points
of the domain Ω. Hence it follows that the surface
can be represented as a union of one-point sets corre-
sponding to all possible positions of the probe sphere
rolling on the surface.

If we consider the collection of subsets Si of the
positions of the probe sphere in which it touches
simultaneously i atoms of the surface, then it can
be shown that S1 and S2 have the cardinality of
the continuum, and the set S3 is finite. This cir-
cumstance was used to discretize the surface of a
compact nanoobject.

For this purpose, a fixed position of the probe
sphere was determined as such, in which it is in si-
multaneous contact with three atoms and does not
overlap with any other atom (Fig.1,a). Clearly, from
a dynamic point of view, in this case the sphere can
not roll further without loss of contact, at least with
one of the atoms. The centers of these atoms form
the vertices of a triangle - an element of the so-called
r-reduced surface – and in the method under consid-
eration the surface of a compact atomic formation is
defined as an r-reduced surface.

If the first element of the surface is given, then the
next element can be determined by rolling the probe
sphere through any of its edges (sides of the triangle)
so that it maintains contact with two atoms of three
(in Fig.1,b - with atoms A and B) until the sphere
does not touch the third atom of the next surface el-
ement. It is important that any of the edges of the
r-reduced surface is a common edge of two adjacent
triangular elements.

Therefore, the partial nature of the system under
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a

b

Fig.1. The fixed position of the probe sphere
(darkened) with the center at the point S, at which
it simultaneously touches three atoms A, B and C of
the surface (a); an illustration of the transition from
the given to the next fixed position of the sphere (b)

consideration leads to a natural discretization of the
r-reduced surface, and the successive rolling of the
probe sphere through the unexplored edges ensures
the bonding of all triangular elements of the surface
into a single whole.

3. BASED ON GEOMETRIC MOMENTS
METHOD OF MEASUREMENT FORM OF

THE ATOMIC CLUSTER

One of the mandatory characteristics of an atomic
cluster is its shape. According to the definition [7],
”the shape of an object is that geometric informa-
tion that remains after separation from the object of
everything that is associated with possible changes
in its scale, movements and rotations in space.”

There are widespread use of methods in which
representation of forms is based on global features
of the object, for example, geometric moments. For
an arbitrary object bounded by a closed surface, its
moments are defined as follows

mp,q,r =

∫ ∫ ∫
xpyqzrD(r⃗)d3r , (1)

where D(r⃗) is the indicator function of the object, in-
tegration is carried out over the whole space, (p, q, r)
- a triplet of nonnegative integers, and p+q+r - is the
order of the moment. The moments of the lowest or-
ders include the volume of the object V = m000 and
three moments of the first order m100, m010, m001,
which allow us to calculate the coordinates of its cen-
ter of mass:

x̄ =
m100

m000
, ȳ =

m010

m000
, z̄ =

m001

m000
. (2)

The set of all moments (1) uniquely determines the
indicator function. A partial, albeit fairly accurate,
description of the shape of the object can be ob-
tained on the basis of a finite subset of the moments
{mp,q,r}, from which it is necessary to form the com-
ponents of the characteristic vector. It is necessary
that each component of the vector must be invariant
with respect to the movement of the object, a change
of its scale or rotation as a whole in space. In order to
satisfy the first condition, it is sufficiently to replace
the moments (1) by the central moments

Mp,q,r =

∫ ∫ ∫
(x−x̄)p(y−ȳ)q(z−z̄)rD(r⃗)d3r . (3)

Equally simple the scale invariance may be achieved
- as a result of isometric scaling of central moments.
The first systems approach to achieving the invari-
ance of the components of the characteristic vector
with respect to rotations was proposed in 1989 [8]
and was based on group theory and tensor analy-
sis. In [9], a method was proposed for describing the
form, in which only second-order moments and their
invariants are used:

O1 = M200 +M020 +M002 ,

O2 = M200M020 +M200M002 +M020M002 −M2
110 −M2

101 −M2
011 , (4)

O3 = M200M020M002 + 2M110M101M011 −M200M
2
011 −M020M

2
101 −M002M

2
110 .

To achieve scale invariance, the components O1,
O2 and O3 should be divided by V to an appropriate
degree. Therefore, in [9], the characteristic descriptor
with three components was used as the shape descrip-
tor:

Ω1 =
3V 5/3

O1
, Ω2 =

3V 10/3

O2
, Ω3 =

V 5

O3
. (5)

Exact expressions for components (5) are obtained
for a number of three-dimensional objects (tetrahe-

dron, cube, octahedron, ellipsoid, sphere, etc.) and
are shown that the maximum value (ΩS

1 , Ω
S
2 , Ω

S
3 )

is realized for the sphere. Therefore, the last step
consists of introducing the normalized components

Ω̄1 =
Ω1

ΩS
1

, Ω̄2 =
Ω2

ΩS
2

, Ω̄3 =
Ω3

ΩS
3

, (6)

which vary from 0 to 1.
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Thus, in the proposed approach, the shape of the
compact atomic formation is described by the charac-
teristic vector (Ω̄1, Ω̄2, Ω̄3) (6), and the measurement
of the particular components of this vector is based
on the calculation of the three-dimensional integrals
(1) and (3). A special form of the integration domain
i.e. the polyhedron bounded by an r-reduced surface
and the type of the integrand allowed obtain an ef-
fective scheme for calculating the exact values of the
geometric moments.

This scheme is based on the Ostrogradsky-Gauss
theorem, according to which the calculation of the
volume integral of some scalar field f(r⃗) reduces to
the calculation of the flux through the boundary

of this volume of the vector field F⃗ (r⃗), such that

divF⃗ (r⃗) = f(r⃗). In the previous author’s work [10]

an explicit expression for the field F⃗ (r⃗) was obtained
in the case f(r⃗) = xp1yp2zp3 :

F⃗ (r⃗) =
xp1yp2zp3

3

(
x

p1 + 1
,

y

p2 + 1
,

z

p3 + 1

)
. (7)

The flow of F⃗ (r⃗) through the boundary of the
polyhedron Σ is equal to the sum of the flows through
individual polygons, i.e.

∫
Σ

F⃗ (r⃗) · n⃗ds =
N∑
i=1

∫
∆AiBiCi

F⃗ (r⃗) · n⃗ids , (8)

∫
F⃗ (r⃗) · n⃗ids =

∫
xp1yp2zp3

3

(
xnix

p1 + 1
+

yniy

p2 + 1
+

zniz

p3 + 1

)
ds =

=
nix

3(p1 + 1)

∫
xp1+1yp2zp3ds+

niy

3(p2 + 1)

∫
xp1yp2+1zp3ds+

niz

3(p3 + 1)

∫
xp1yp2zp3+1ds . (9)

The transition to natural coordinates and the use
of the Newton binomial formula make it possible to
obtain an exact expression for the contribution at

moment (1) from the flow F⃗ (r⃗) through the poly-
gon with vertices at the points A = (x1, y1, z1),
B = (x2, y2, z2), and C = (x3, y3, z3) :

mp1,p2,p3 =

∫
△ABC

xp1yp2zp3

3

(
xnx

p1 + 1
+

yny

p2 + 1
+

znz

p3 + 1

)
ds =

=
2S

3(P + 3)!

p1∑
k1=0

p2∑
k2=0

p3∑
k3=0

(
p1
k1

)(
p2
k2

)(
p3
k3

)
xp1−k1

3 yp2−k2

3 zp3−k3

3 (P −K)!×

×
k1∑

j1=0

k2∑
j2=0

k3∑
j3=0

(
k1
j1

)(
k2
j2

)(
k3
j3

)
xj1
1 yj21 zj31 xk1−j1

2 yk2−j2
2 zk3−j3

2 (K − J)!×

×[φ1 + φ2 + φ3 + (φ1 − φ2)J + (φ2 − φ3)K + φ3P ] , (10)

φi =
nxxi

p1 + 1
+

nyyi
p2 + 1

+
nzzi
p3 + 1

, (11)

P =
3∑

i=1

pi , J =
3∑

i=1

ji , K =
3∑

i=1

ki . (12)

The developed method was used to measure
the shape of equilibrium atomic clusters, the in-
terparticle interaction in which is given by the LJ-
potential. At zero temperature, the equilibrium

atomic configuration corresponds to the minimum of
the potential energy, which for a cluster containing n
atoms is a function in 3n-dimensional space:

U(r⃗1, r⃗2, ..., r⃗n) =
n∑

i=1

n∑
j=i+1

V (rij) = 4ε
n∑

i=1

n∑
j=i+1

[(
σ

rij

)12

−
(

σ

rij

)6
]
. (13)

Here rij = |r⃗i − r⃗j | is the distance between atoms
i and j.

Atomic clusters are one of the most actively stud-
ied objects of nanophysics. They are characterized by
the existence of oscillating dimensional effects. The

latter are due to the fact that small atomic systems
often have a pronounced shell structure, and the lo-
cal extremum of properties corresponds to the filling
of the current shell. In particular, for LJ-clusters,
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as the number of atoms increases, the icosahedral
shells are formed and filled, each of which consists of
20 regular triangles. These shells correspond to the
following sequence of magic numbers:

n =
10

3
z3 + 5z2 +

11

3
z + 1 , (14)

where the integer z is the order of the shell.
For z = 1, 2, 3, 4 it follows from (14) that
n = 13, 55, 147, 309, respectively.

It should be noted that at present none of the op-
timization methods can be used to ensure a global
minimum of the potential energy of an atomic clus-
ter, the number of particles in which exceeds several
dozen. Nevertheless, the application of all methods
allowed to determine such minima for the set of LJ-
clusters. Data on their atomic structure are collected
in an open international database [11].

The developed method was used to measure the
shape of clusters with 4 ≤ n ≤ 150. At the first
step, the atoms of the outer surface of the cluster
were determined and the corresponding polyhedron
was formed, and on the second step the components
of the characteristic shape vector were measured.

The obtained dependences Ω̄1(n), Ω̄2(n) and
Ω̄3(n), are shown in Fig.2. It can be seen from
the figure that as the number of particles in the
LJ-cluster increases, its shape approaches the shape
of the sphere, but the convergence is nonmonotonic.
From general considerations, it can be expected that
filling the next shell of the cluster should lead to
the formation of atomic formation - a magic cluster
- with a high spherical symmetry. On the depen-
dencies Ω̄1(n), Ω̄2(n), Ω̄3(n), this should be man-
ifested in the form of local maxima for all values
simultaneously. It is seen from Fig.2 that really
for n = 13 and n = 55 there are pronounced
local maxima which correspond to the filling of
the first and second icosahedral shells respectively.

Fig.2. Dependences of the components of the
characteristic vector of the shape of equilibrium
LJ-clusters on the number of particles

4. SUMMARY AND CONCLUSIONS

The method described above, based on geometric mo-
ments (1), can be considered as a special case of a

general approach. In the context of shape analysis
moments are defined as projections of the indicator
function, D(r⃗) onto a set of functions Ψ = {Ψi};
i ∈ ℵ. D(r⃗), also known as the characteristic function
or shape function, is a stepwise function equal to 1
inside the object and 0 outside. The general moments
of this function with respect to a set of polynomial
basis functions, Ppqr(r⃗), are defined as

µp,q,r ≡
∫ ∫ ∫

d3r D(r⃗)Pp,q,r(r⃗) = ⟨D,Pp,q,r⟩ ,

(15)
where ⟨f,Ψ⟩ is a dot product on the Hilbert space of
finite energy functions f,Ψ ∈ L2.

The simplest 3D moment basis functions are the
Cartesian functions Pp,q,r(r⃗) = xpyqzr, from which
the geometric moments mp,q,r (1) are derived. The
behavior and properties of a particular moment based
representation are determined by the set of functions
Ψ. The desirable properties of a descriptor based on
moments can be summarized as follows:

1) Invariance. If F (f) is a set of descriptors com-
puted on the indicator function D(r⃗), and let G be
a group of transformations. The invariance of F un-
der the action of G means that F (gf) = F (f), where
g ∈ G. A typical requirement is the invariance under
the action of similarity transformations, i.e. uniform
scaling, reflection, translation and rotation.

2) Orthonormality. The collection of functions Ψ
is orthonormal, if ⟨Ψi,Ψj⟩ = δij .

3) Completeness. The set of functions Ψ forms a
complete system if

lim
n→∞

∥∥∥∥∥D(r⃗)−
∞∑
i=0

⟨D(r⃗),Ψi⟩Ψi

∥∥∥∥∥
2

= 0 , (16)

where ∥...∥ denotes the L2-norm.
The orthogonality of function collection Ψ, i.e.

the mutual independence of computed features is an
important property, since it implies that a set of fea-
tures will not contain redundant information. The
non-orthogonality (as in the case of geometrical mo-
ments based on monomials) means that some charac-
teristics of the objects will be overrepresented. The
completeness property implies that it is possible to re-
construct approximations of the original object from
moments. The approximations are getting finer with
increasing number of moments and converge to the
original object at infinity. This is of considerable
practical importance.

In these respect selection Ψ as 3D Zernike func-
tions are preferable than Cartesian functions because
the former are orthogonal over the unit ball and al-
low for an arbitrary shape, scaled to fit inside an em-
bedding sphere, to be decomposed into 3D harmon-
ics. 3D Zernike functions were introduced by Canter-
akis [12]. It should be stressed that moments of 3D
Zernike functions may be expressed through geomet-
rical moments (1). Therefore developed in this paper
analytical forms for the latter in the case of compact
radiation nanodefects allows us to develop fast com-
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putational scheme for quantitative description form
of these defects.
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ÌÅÒÎÄÛ ÎÏÈÑÀÍÈß ÔÎÐÌÛ ÄÅÔÅÊÒÍÛÕ ÍÀÍÎÑÒÐÓÊÒÓÐÍÛÕ
ÎÁÐÀÇÎÂÀÍÈÉ Â ÌÀÒÅÐÈÀËÀÕ ÏÎÄ ÎÁËÓ×ÅÍÈÅÌ

À.È.Êóëüìåíòüåâ

Â ðàìêàõ ïðîãðàììû èñïîëüçîâàíèÿ ñîâðåìåííûõ êîìïüþòåðíûõ ìåòîäîâ â çàäà÷å ðàçðàáîòêè ðàäèàöèîííî

ñòîéêèõ ìàòåðèàëîâ äëÿ ðåàêòîðîâ IV ïîêîëåíèÿ ðàññìîòðåíû íåñêîëüêî ìåòîäîâ îïèñàíèÿ ôîðìû ëîêàëüíûõ

àòîìíûõ ñåãðåãàöèé èëè êîìïàêòíûõ ðàäèàöèîííûõ äåôåêòîâ íàíîìåòðîâîãî äèàïàçîíà. Ïðåäëîæåí ÷èñëåí-

íûé ìåòîä èçìåðåíèÿ ôîðìû ïðîèçâîëüíîãî àòîìíîãî îáðàçîâàíèÿ, îáëàäàþùåãî õîðîøî îïðåäåëåííîé âíåø-

íåé ãðàíèöåé. Âûïîëíåíî èçìåðåíèå ôîðìû ïîñëåäîâàòåëüíîñòè ðàâíîâåñíûõ êëàñòåðîâ, âçàèìîäåéñòâèå ÷à-

ñòèö â êîòîðûõ îïèñûâàåòñÿ ïîòåíöèàëîì Ëåííàðä-Äæîíñà. Â ïðåäëîæåííîì ìåòîäå êîððåêòíî âîñïðîèçâîäÿò-

ñÿ îñöèëëÿöèè ðàçìåðíûõ ýôôåêòîâ è ïîñëåäîâàòåëüíîñòü ìàãè÷åñêèõ ÷èñåë äëÿ ýòèõ êëàñòåðîâ. Ðàññìîòðåíà

âîçìîæíîñòü çàìåíû ãåîìåòðè÷åñêèõ ìîìåíòîâ íà ìîìåíòû 3D-ôóíêöèé Öåðíèêå. Òàêàÿ çàìåíà ïîçâîëÿåò

èçáàâèòüñÿ îò íåêîððåêòíîãî õàðàêòåðà îáðàòíîé çàäà÷è ïðè ïåðåõîäå îò èñõîäíîãî ïðîñòðàíñòâà ôîðì â ïðî-

ñòðàíñòâî èõ äåñêðèïòîðîâ.

ÌÅÒÎÄÈ ÎÏÈÑÓ ÔÎÐÌÈ ÄÅÔÅÊÒÍÈÕ ÍÀÍÎÑÒÐÓÊÒÓÐÍÈÕ
ÓÒÂÎÐÅÍÜ Ó ÌÀÒÅÐIÀËÀÕ ÏIÄ ÎÏÐÎÌIÍÅÍÍßÌ

Î. I.Êóëüìåíòü¹â

Ó ðàìêàõ ïðîãðàìè âèêîðèñòàííÿ ñó÷àñíèõ êîìï'þòåðíèõ ìåòîäiâ ó çàâäàííi ðîçðîáêè ðàäiàöiéíî ñòiéêèõ ìà-

òåðiàëiâ äëÿ ðåàêòîðiâ IV ïîêîëiííÿ ðîçãëÿíóòî êiëüêà ìåòîäiâ îïèñó ôîðìè ëîêàëüíèõ àòîìíèõ ñåãðåãàöié

àáî êîìïàêòíèõ ðàäiàöiéíèõ äåôåêòiâ íàíîìåòðîâîãî äiàïàçîíó. Çàïðîïîíîâàíî ÷èñåëüíèé ìåòîä âèìiðþâàí-

íÿ ôîðìè äîâiëüíîãî àòîìíîãî óòâîðåííÿ, ùî ìà¹ äîáðå âèçíà÷åíó çîâíiøíþ ìåæó. Âèêîíàíî âèìið ôîðìè

ïîñëiäîâíîñòi ðiâíîâàæíèõ êëàñòåðiâ, âçà¹ìîäiÿ ÷àñòèíîê â ÿêèõ îïèñó¹òüñÿ ïîòåíöiàëîì Ëåííàðä-Äæîíñà. Ó

çàïðîïîíîâàíîìó ìåòîäi êîðåêòíî âiäòâîðþþòüñÿ îñöèëÿöi¨ ðîçìiðíèõ åôåêòiâ òà ïîñëiäîâíiñòü ìàãi÷íèõ ÷èñåë

äëÿ öèõ êëàñòåðiâ. Ðîçãëÿíóòî ìîæëèâiñòü çàìiíè ãåîìåòðè÷íèõ ìîìåíòiâ íà ìîìåíòè 3D-ôóíêöié Öåðíèêå.

Òàêà çàìiíà äîçâîëÿ¹ ïîçáóòèñÿ âiä íåêîðåêòíîãî õàðàêòåðó îáåðíåíî¨ çàäà÷i ïðè ïåðåõîäi âiä ïî÷àòêîâîãî

ïðîñòîðó ôîðì ó ïðîñòið ¨õ äåñêðèïòîðiâ.
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