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The analysis of the envelope equation for high-current relativistic electron beam propagation in plasma in an ex-
ternal uniform magnetic field is presented. The envelope equation is obtained in a Hamiltonian form with an effec-
tive potential, which depends from electron beam and plasma parameters, and external magnetic field. Hamiltonian
aproach allows fully analyze the behavior of the beam envelope as a function of the beam current, beam energy,
plasma density and conductivity, as well as on the external magnetic field and the initial beam angular momentum.

PACS: 52.75.-d, 52.77.Fv, 52.80.Hc, 52.90.+z, 81.20.-n

INTRODUCTION

Different types of charged particle beam envelope
equations in a plasma are widely used to analyze quali-
tative beam behavior under various operating condi-
tions, in particular, during transportation of an ion or
electron beam to a target, or an accelerating (slowing)
structure [1 - 4]. The paper presents a analysis of the
envelope equation for a high-current relativistic electron
beam propagating in plasma in an external uniform
magnetic field. In the paraxial approximation, for pure
transport of a high-current electron beam in a plasma,
the envelope equation can be presented in a Hamiltonian
form with an effective potential U, , which depends

from beam and plasma parameters, and external mag-
netic field. This allows fully analyze the behavior of the
beam envelope as a function of the beam current, beam
energy, plasma density and plasma conductivity, as well
as on the external magnetic field and the initial beam
angular momentum. There are four basic modes of
beam evolution depending on the problem parameters:
periodic beam radius oscillations, unlimited growth of
the beam radius, growth of the beam radius in the proc-
ess of its propagation in the plasma with initial radial
velocity, and the pinch mode, when at some distance
from the injection site the beam is compressed. Beam
pinching length can be effectively controlled by plasma
density and conductivity, as well as by external mag-
netic field. For beams with / ~ 20 kA, W ~ 750 keV

[5], initial radius #,, ~ 1 cm, charge neutralization fac-
tor f ~1, and current neutralization factor f, << 1
pinching length ~ 1 cm. For pinching length << 1 cm,
the paraxial approximation may not be applicable. In
this case, it is necessary to solve numerically a complete
system of equations that describes the beam envelope in
a plasma, or use the particle-in-cell codes to simulate
kinetic beam behaviour in a plasma. These simulations
have shown that the pinch length can be effectively con-
trolled by using the plasma density and its conductivity.

BEAM ENVELOPE EQUATION.
ANALYTICAL AND NUMERICAL
ANALYSIS

Consider an axially symmetric high-current relativis-
tic electron beam propagating in plasma in an external
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uniform magnetic field B, directed along the beam
axis. The motion equation for a charged particle with
mass m and charge e in the transverse direction has the
form:

B, =elE +@xB), /c), (1)
where p, =myi,, y=(1-p)", B=fil/c, ¥ is the
particle velocity, ¢ is the speed of light,

v, =ve + Vo€ s

v=v +ve , p, =dp, /dt. With the
assumed cylindrical symmetry, the main field compo-
nents are £ , B,, and external B . In this case the ra-
dial component of Eq. (1) yields
Fiyly-vi/r=elE +(v,B.—v.B,)/c)/my, (2)
and the azimuthal component of Eq. (1) yields a conser-
vation of canonical angular momentum P, :
;/rv9+Qr2/2=P9/m=const, 3)
where Q =eB, /mc . Eliminating v, from Eq. (2) using
Eq. (3) gives the envelope equation:
.. 2 2
+ﬂ+(gj n=—1IE, —m]{% =, @
y 2y ym ym) 1,
where 7, is the transverse coordinate of a particle lo-

cated at the outer beam boundary. The equation for y
has the form: y =ef - E/mc, where 8 =7/c, which in
the paraxial approximation (|v,

9

v9| <<V, ) can be pre-

sented as y =eB.E_/mc, where y ~ (1 - B’ )_”2 )
The field components E, and B, at the edge of the
beam are defined by Gauss' and Ampere's laws:
[ E-Nas = ame[n,(1- 1.)av ,
N Vv

§§-di =4;zejn,, B(1-f,)-Nds,
L N

where 7, is the beam charge density, j, =n,v , and f,

f,, are the charge and current neutralization factors. For

a beam of constant charge density out to the radius 7,
these give

E, =27T€n/yrh(l_fe)’ B, =27Tenhrhﬁ:(l_fm)' ®)

Eq. (4), taking into account (5), can be written as

[1]:
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+ﬂ+[3] - -7 —ﬂffm)]l‘[%] —A6)
y \2r mp.cy no\rm)
where [ =m’nef.c is the beam current. Assuming
that the charged particles beam moves with a constant
longitudinal velocity ( £, = 0, pure transport of a beam
in a plasma), Eq. (6) can be presented as:

o+ A === =0, ™

T

where 4 = (Q/2y)% B =2el[l -1, —ﬂzz (l —fon )]/mﬂzc;/;
C=(H/ ym)* . In Eq. (7), the second term describes the
effect of an external magnetic field on the beam enve-
lope, the third term describes the effect of the intrinsic
fields of a beam, partially compensated in charge and
current, on its envelope, and, finally, the fourth term
describes the influence of beam rotation on the beam
envelope. Coefficient 4 in (7) can be equal to zero if
there is no external magnetic field, otherwise it is
greater than zero, i.e., 4 €[0,+oo[ . Coefficient B in (7)
can be greater than zero, equal to zero, or less than zero,
depending on the combination of plasma ( f,, f, ) and
beam (f,) parameters, i.e., B€]—»,0,+o[. Coeffi-
cient C in (7) can be equal to zero, or greater than zero,
i.e., C €[0,+oo[. Depending on the signs of the coeffi-
cients A, B and C, or their equality (non-equality) to
zero, the form of Eq. (7) changes. This means that the
beam envelopes, which this equation describes, will also
have different shapes. In general case, as shown below,
the beam envelope can oscillate, constrict, or expand
over time.

To analyze the possible behavior of the beam enve-
lopes in plasma depending on the 4, B, and C, it is
convenient to represent Eq. (7) in Hamiltonian form.
Eq.(7) can be obtained from the Hamiltonian
H(r,,7)=r'/2+U(r,), where the effective potential
U(r,) has the form:

U(r,)=4r; /2= Bln(r,)+C/2r;. (8)

In the expression for the effective potential (8), the
first term describes the effect of an external magnetic
field on the beam envelope, the second term describes
the effect of the intrinsic fields of a beam partially com-
pensated in charge and current on its envelope, and, the
third term describes the effect of beam rotation on the
envelope. As can be seen from (8), the shape of the ef-
fective potential U(7,) depends on the coefficients 4,
B, C. Depending on the form of the effective poten-
tial, the beam envelope behaves differently. If the effec-
tive potential U(r,) has a minimum at some value of 7,

and goes to positive infinity at », > 0 and 7, >, as

shown in Fig. 1,a, then the beam envelope should oscil-
late. If the effective potential U(r,) goes to positive

infinity at 7, — 0, and goes to zero or negative infinity
at 7, — oo, as shown in Fig. 1,b, then the beam enve-
lope should expand. If the effective potential U(r,)
goes to negative infinity at », — 0, and goes to positive
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infinity at 7, — oo, as shown in Fig. 1,c, then the beam
envelope should compress.
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Fig. 1. The possible forms of the effective potential
U(r,)= Ar} /2= Bln(r,) + C/2r . Case (a) corre-
sponds to the beam envelope oscillation, case (b) corre-
sponds to the beam expansion, and case (c) corresponds
to the beam compression

Fig. 2 shows the beam envelopes 7 (¢) for different
shapes of the effective potential U(r,) which were ob-
tained numerically by direct solution of Eq. (7). Fig. 2,a
presents 7,(¢) for effective potential shown in Figs. 1,a;
2,b shows the beam envelope for U(r,) from Figs. 1,b;
and 2,c presents 7, (¢) for U(r,) shown in Fig. 1,c.

In general case, since A4 can either be equal to zero,
or be greater than zero, B can be greater than zero,
equal to zero, or less than zero, and C can either be
equal to zero, or be greater than zero, there are 12 dif-
ferent combinations of 4, B, C coefficients, which
determine the shape of effective potential U(r,). For
cases { A>0, B>0,C>0},{4>0,B=0,C>0},
{A4>0, B<0, C>0}, {4=0, B<0, C>0},
{A>0, B>0, C=0}, the effective potential U(r,)
has the shape as shown in Fig. 1,a, and the beam enve-
lope oscillates. If {4=0, B>0, C>0}, {4=0,
B=0,C>0}, {4=0, B>0, C=0}, the potential
looks like in Fig. 1b, and the beam diverges. For
{A4>0, B<0, C=0},{4=0, B<0, C=0}, the
potential U(r,) has the form as shown in Fig. 1,c, and
the beam compresses. For { 4=0, B=0, C=0}, the
effective potential U(r,) =0, and the Eq. (7) takes the

form: #,=0. A=0 means that B, =0, Q=0, and

By =myv,. C=(Py/y,m)* =0 means that v, =0,
and the beam expands, or contracts with an initial radial
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velocity v,, which is usually much less than the initial
velocity v,. Thus, the beam propagates in plasma with

an almost constant radius. A necessary condition for this
is B=0, or f,=f%, where =y +pB%f,. In the

case if f,, << 1/(y* —1), last term can be neglected, and
£ =972 or n, = n,y 2, where n, is the plasma den-
sity. If {4>0, B=0, C=0}, the potential
Ury) = Ar,,2 /2, and the Eq. (7) takes the form:
7, +Ar,=0. This case requires additional analysis at

ST
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Fig. 2. The beam envelope as function of time
for different shapes of the effective potential. Case (a)
corresponds to the U(r,) shown in Fig. 1,a, case (b)
corresponds to the U(r,) shown in Fig. 1,b, and
case (c) corresponds to the U(r,) shown in Fig. 1,c.
The envelopes r,(t) were obtained numerically
by solving Eq. (7)

In the cases of the high-current relativistic electron
beam pinching propagating in a plasma, the envelope
equation (7) has the forms:

-2 g g =0 ©)
mp.cy T
for{4=0, B<0, C=0},and
2
Q 2el [ pof l:’ (10)
Vb"'[zyj Ty mB.cy [1 Je—B: (1 fm)]"b 0

for {4>0, B<0, C=0}.In both cases, in order for
B to be negative, it is necessary that f, > £, .

z

Fig. 3 shows the numerical solution of Eq. (9) for
the beam with the current / =25 kA, initial radius r,, =

1 cm, initial v,, =0, y =2,and f = {0.4, 0.55, 0.6},
which corresponds to plasma densities of the order of
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102 em™, and f = 0. As seen from Fig. 3, the focusing

m

length L, is on the order of 2 cm. It decreases with

increasing charge neutralization factor f,. This means

that the L, can be controlled using f;.

b(2)
0.6}
0.4
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0 1 3 Z
Fig. 3. Beam radius as function of longitudinal coordi-

nate at various coefficients of charge neutralization
of the beam in the plasma. 1 =25 kA, r,, = 1 cm,

v,, =0,y =2, f ={0.4—black solid line,

0.55 — blue dotted line, 0.6 - black dash-dotted line}.
B, =0, vy =0. Lengths are in cm

From (9), for the time 7 during which the beam
from the initial radius #,, , at the initial v,, = 0, reaches

the axis (7,(z) = 0), the following expression can be
obtained: 7 = r,,m/TZ‘B‘ . This allows to estimate the
focusing length as L, =cp.7. For the parameters of
beams and plasma from Fig. 3, focus lengths L, are

2.15 cm for f,= 0.4, 1.52 cm for f,= 0.55, and
1.41 cm for f,= 0.6. These coincide with the results of

the numerical solution of Eq. (9) shown in Fig. 3.

Fig. 4 shows the numerical solution of Eq. (10) for a
beam with / =25kA, n,,=1cm, v,, =0, y =2, and
f. =1{0.4,0.55, 0.6}, f, =0. As seen from Fig. 4, the

m

focusing length L, is on the order of 1 cm, it decreases
with increasing charge neutralization factor f,. The
focusing length L, is also decreased due to the pres-

ence of an external magnetic field. This means that the
L, can be controlled using B, .

b(2)
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Fig. 4. Beam radius vs longitudinal coordinate at vari-
ous coefficients of charge neutralization of the beam in
the plasma. 1 =25kA, 1, =1cm, v,, =0, y =2,

f.={0.4 = black solid line, 0.55 — blue dotted line,
0.6 — black dash-dotted line}. B, =5 kGs. vy # 0.

The rotation of the beam as a whole around the axis is
necessary for By = 0, and as a result, C = 0.

All lengths are in cm
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Fig. 5 shows the numerical solution of Eq. (7) where
{A=0, B<0, C>0} for a beam with [ = 25 kA,
n,=1lcm, v, =0, y =2,and f = {0.4, 0.55, 0.6},
f, =0. A=0 and C >0 means that the beam as a
whole rotates around the axis. It is seen that the beam is
periodically focused by the plasma. The first focus is
located at a distance of about 2 cm from the beam injec-
tion site, which is closed to the case shown in Fig. 3.
This distance decreases with increasing charge neutrali-
zation factor f,. The only difference between this case
{A=0, B<0, C>0}, and the case shown in Fig. 3
{A=0, B<0, C=0}, is that C >0, i.e., the beam
rotates as a whole around its axis. In the expression for
the effective potential U(7,), this led to an additional

term C /2rb2, which changed the shape of U(r,), turn-

ing the effective potential shown in Fig. 1,c to the po-
tential shown in Fig. 1,a. This led to the oscillatory be-
havior of the beam envelope.

ey
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0.2/ §§ § .
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Fig. 5. Beam radius as function of longitudinal coordi-

nate at various coefficients of charge neutralization
of the beam in the plasma. 1 =25 kA4, r,, =1 cm,

v,, =0, vy =2, f.={0.4—black solid line; 0.55 — blue
dotted line; 0.6 — black dash-dotted line}.
B, =0, vy # 0. Lengths are in cm

To evaluate the applicability of the above model in
experiments on focusing high-current electron beams in
a plasma, a number of 2d3v particle-in-cell simulations
were performed. The simulations involve solving a
complete set of Maxwell’s equations with charge-
conserving schemes for calculating the current density
on a mesh, and relativistic motion equations for charged
particles in self-consistent electromagnetic fields. The
XOOPIC code was used [6].

Fig. 6 shows, as example, simulation results for
beam injection into a bounded plasma. The beam cur-
rents are 1 kA, and 10 kA. Other parameters are the
same: r,, = lcm, y =2, f,=1, vy, =0, B, =0. This
is the case of Eq. (9) - {4=0, B<0, C=0}. The
focal length estimates give: L, =4.8 cm for / = 1KA,

and L, = 1.5cm for / =10 kA. Fig. 6,a,b clearly

demonstrate these focuses with the little bit high focal
lengths. Simulations showed that up to / = 50 kA, the
ratio of the focal length obtained in particle-in-cell
simulations to the L, is not high then 1.6. So, the enve-
lope equations can be used for rough estimates of beam
parameters in real experiments. Fig. 6,c,d shows elec-
tron beam density n,(r,z). It is seen that at the focus
the beam densities sharply increase.
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Fig. 6. Beam injection into a plasma: a, b — beam elec-
trons distribution in {r, z} plane; c, d — electron beam
density ny(r,z). I =1kA (a, c), and I =10kA (b, d).
he =1lcm, v, =0,y =2, f=1 B, =0, vy =0.
The dimensions of the simulation domain z; xr; were

chosen based on solving the envelope equation (9) so
that the focus is approximately in its center.
Ly =48cmfor I =1kA, and L; = 1.5 cm for

1 =10kA. z; xr, =10 x 2cmfor I =1FkA,
and z; xr, =4 x 2cemfor I =10kA
CONCLUSIONS

Analysis of the envelope equation for a high-current
relativistic electron beam propagating in a plasma in an
external uniform magnetic field B, is presented. In the
paraxial approximation the envelope equation has the
Hamiltonian form H(#,,7,)= sz /2+U(r,) with the
effective potential U(r,) = Arb2 /2=Bln(r,)+C/ 2rb2 ,
where 7, is a A=(Q/2y)%,
Q=eB,/mc,  B=2*(I/1)1-f,-B*(1-1,)l,

1, = [3}/mc3 /e, I —beam current, f,, f, — charge

beam radius,

and current neutralization factors, C =(F, [ym)? /2,
P, is the conserved angular momentum.

The analysis showed that, in the general case, four
modes of beam propagation in plasma are possible: pe-
riodic beam radius oscillations, unlimited growth of the
beam radius, growth of the beam radius with initial ra-
dial velocity, and the pinch mode, when at some dis-
tance from the injection site the beam is compressed.
Beam pinching in a plasma occurs at length

Ly =cPry,\|m/|2B], 1,

length can be controlled by plasma density and conduc-
tivity, as well as by external magnetic field. Particle-in-
cell simulations confirm these results.
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OOKYCHUPOBKA CHJIBHOTOYHOI'O PEJATUBUCTCKOTI'O 9JIEKTPOHHOI'O ITYUKA
B IIJIABME

O.B. Manyiineuxo, A.B. Ilawenko, B.I. Ceuuenckuii, b.B. 3aiiyes

[IpencraBineH aHaiaW3 ypaBHEHHS OTHMOAIOMICH IS CHIBHOTOYHOTO PENIATHBHCTCKOTO 3JCKTPOHHOTO IyYka B
IUIa3Me BO BHEUTHEM OJJHOPOJHOM MAarHUTHOM Iojie. Y paBHEHHE Orubaroleil mojay4eHo B raMIIbTOHOBOU (hopme ¢
3¢ (GEKTHBHBIM OTEHIIMAIOM, KOTOPBIN 3aBHCUT OT MapaMeTPOB 3JICKTPOHHOTO ITyYKa M IUIa3MBI, a TAK)KE OT BHEIII-
HEro MarHUTHOTO MOJisA. |'aMHUJIBTOHOB TMOAXOJ] IO3BOJISET MOJHOCTHIO MPOAHATU3HPOBATH MOBEIACHUE OTHOAIOIICH
My4Ka B 3aBUCUMOCTH OT €r0 TOKa M YHEPIHH, IFIOTHOCTH U TIPOBOJIUMOCTH IIJIa3Mbl, & TAK)KE OT BHEIIHETO0 MarHUT-
HOTO MOJISI ¥ HAYaJIHbHOTO YIJIOBOTO MOMEHTA My4Ka.

®OKYCYBAHHA CUJIBHOCTPYMOBOI'O PEJIATUBICTCBKOI'O EJIEKTPOHHOI'O ITYYKA
B IIJIA3ZMI

O.B. Manyiineunxo, A.B. Ilawenko, B.I. Ceéiuencokuit, b.B. 3aiiyes

[IpencraBneHo aHalli3 PiBHAHHA OOBIAHOI JJI MOTY)KHOCTPYMOBOI'O PEIIATUBHUCTCKOTO €JICKTPOHHOrO Iy4YKa B
IUIa3Mi B 30BHIIIHHOMY OJHOPIHOMY MarHiTHOMY moui. PiBHSHHS OOBiZHOI OTPHMaHO B TaMUIBTOHOBIW (hopmi 3
e(peKTHBHUAM TIOTCHINAJIOM, SIKHI 3aJIKHUTH BiJl MapaMeTPiB €JICKTPOHHOIO MyYKa 1 IUIa3MH, a TAKOXK BiJl 30BHIIIHBO-
IO MarHiTHOIr'O MOJIs. ['aMiIbTOHIB MiJXiJ JO3BOJISE MTOBHICTIO MPOAHAi3yBaTH MOBEMIHKY O0BITHOTO ITy4YKa B 3ajie-
JKHOCTI BiJ HOT'O CTpyMy, €Heprii, TyCTHHH Ta MPOBITHOCTI IUIa3MH, a TAKOXK BiJ] 30BHINTHHOIO MArHiTHOTO ITOJIA 1
ITOYaTKOBOT'O KYTOBOT'O MOMEHTY ITyJKa.
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