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The analysis of the envelope equation for high-current relativistic electron beam propagation in plasma in an ex-
ternal uniform magnetic field is presented. The envelope equation is obtained in a Hamiltonian form with an effec-
tive potential, which depends from electron beam and plasma parameters, and external magnetic field. Hamiltonian 
aproach allows fully analyze the behavior of the beam envelope as a function of the beam current, beam energy, 
plasma density and conductivity, as well as on the external magnetic field and the initial beam angular momentum. 

PACS: 52.75.-d, 52.77.Fv, 52.80.Hc, 52.90.+z, 81.20.-n 
 

INTRODUCTION 
Different types of charged particle beam envelope 

equations in a plasma are widely used to analyze quali-
tative beam behavior under various operating condi-
tions, in particular, during transportation of an ion or 
electron beam to a target, or an accelerating (slowing) 
structure [1 - 4]. The paper presents a analysis of the 
envelope equation for a high-current relativistic electron 
beam propagating in plasma in an external uniform 
magnetic field. In the paraxial approximation, for pure 
transport of a high-current electron beam in a plasma, 
the envelope equation can be presented in a Hamiltonian 
form with an effective potential effU , which depends 
from beam and plasma parameters, and external mag-
netic field. This allows fully analyze the behavior of the 
beam envelope as a function of the beam current, beam 
energy, plasma density and plasma conductivity, as well 
as on the external magnetic field and the initial beam 
angular momentum. There are four basic modes of 
beam evolution depending on the problem parameters: 
periodic beam radius oscillations, unlimited growth of 
the beam radius, growth of the beam radius in the proc-
ess of its propagation in the plasma with initial radial 
velocity, and the pinch mode, when at some distance 
from the injection site the beam is compressed. Beam 
pinching length can be effectively controlled by plasma 
density and conductivity, as well as by external mag-
netic field. For beams with I  ~ 20 kA, W ~ 750 keV 
[5], initial radius bor  ~ 1 cm, charge neutralization fac-
tor ef  ~ 1, and current neutralization factor mf  << 1 
pinching length ~ 1 cm. For pinching length << 1 cm, 
the paraxial approximation may not be applicable. In 
this case, it is necessary to solve numerically a complete 
system of equations that describes the beam envelope in 
a plasma, or use the particle-in-cell codes to simulate 
kinetic beam behaviour in a plasma. These simulations 
have shown that the pinch length can be effectively con-
trolled by using the plasma density and its conductivity. 

BEAM ENVELOPE EQUATION. 
ANALYTICAL AND NUMERICAL 

ANALYSIS 
Consider an axially symmetric high-current relativis-

tic electron beam propagating in plasma in an external 

uniform magnetic field zB  directed along the beam 
axis. The motion equation for a charged particle with 
mass m  and charge e  in the transverse direction has the 
form:  
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assumed cylindrical symmetry, the main field compo-
nents are rE , B , and external zB . In this case the ra-
dial component of Eq. (1) yields 
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and the azimuthal component of Eq. (1) yields a conser-
vation of canonical angular momentum P : 
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where mceBz / . Eliminating v  from Eq. (2) using 
Eq. (3) gives the envelope equation: 
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where br  is the transverse coordinate of a particle lo-
cated at the outer beam boundary. The equation for   

has the form: mcEe /


   , where cv /


 , which in 

the paraxial approximation ( zr vvv , ) can be pre-

sented as mcEe zz /  , where   2/121  z . 
The field components rE  and B  at the edge of the 

beam are defined by Gauss' and Ampere's laws: 
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where bn  is the beam charge density, vnj bb


 , and ef , 

mf  are the charge and current neutralization factors. For 
a beam of constant charge density out to the radius br  
these give 

 ebbr frenE  12 ,   mzbb frenB  12  .   (5) 
Eq. (4), taking into account (5), can be written as 

[1]: 
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where cenrI zbb  2  is the beam current. Assuming 
that the charged particles beam moves with a constant 
longitudinal velocity ( zE  = 0, pure transport of a beam 
in a plasma), Eq. (6) can be presented as: 
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where 2)2/( A ;    cmffeIB zmze /]11[2 2  ; 
2)/( mPC  . In Eq. (7), the second term describes the 

effect of an external magnetic field on the beam enve-
lope, the third term describes the effect of the intrinsic 
fields of a beam, partially compensated in charge and 
current, on its envelope, and, finally, the fourth term 
describes the influence of beam rotation on the beam 
envelope. Coefficient A  in (7) can be equal to zero if 
there is no external magnetic field, otherwise it is 
greater than zero, i.e., [,0[ A . Coefficient B  in (7) 
can be greater than zero, equal to zero, or less than zero, 
depending on the combination of plasma ( ef , mf ) and 
beam ( z ) parameters, i.e., [,0,] B . Coeffi-
cient C  in (7) can be equal to zero, or greater than zero, 
i.e., [,0[ C . Depending on the signs of the coeffi-
cients A , B  and C , or their equality (non-equality) to 
zero, the form of Eq. (7) changes. This means that the 
beam envelopes, which this equation describes, will also 
have different shapes. In general case, as shown below, 
the beam envelope can oscillate, constrict, or expand 
over time. 

To analyze the possible behavior of the beam enve-
lopes in plasma depending on the A , B , and C , it is 
convenient to represent Eq. (7) in Hamiltonian form. 
Eq. (7) can be obtained from the Hamiltonian 

)(2/),( 2
bbbb rUrrrH   , where the effective potential 

)( brU  has the form: 
22 2/)ln(2/)( bbbb rCrBArrU  .  (8) 

In the expression for the effective potential (8), the 
first term describes the effect of an external magnetic 
field on the beam envelope, the second term describes 
the effect of the intrinsic fields of a beam partially com-
pensated in charge and current on its envelope, and, the 
third term describes the effect of beam rotation on the 
envelope. As can be seen from (8), the shape of the ef-
fective potential )( brU  depends on the coefficients A , 
B , C . Depending on the form of the effective poten-
tial, the beam envelope behaves differently. If the effec-
tive potential )( brU  has a minimum at some value of br  
and goes to positive infinity at 0br  and br , as 
shown in Fig. 1,a, then the beam envelope should oscil-
late. If the effective potential )( brU  goes to positive 
infinity at 0br , and goes to zero or negative infinity 
at br , as shown in Fig. 1,b, then the beam enve-
lope should expand. If the effective potential )( brU  
goes to negative infinity at 0br , and goes to positive 

infinity at br , as shown in Fig. 1,c, then the beam 
envelope should compress. 

 

 

 
Fig. 1. The possible forms of the effective potential 

22 2/)ln(2/)( bbbb rCrBArrU  . Case (a) corre-
sponds to the beam envelope oscillation, case (b) corre-
sponds to the beam expansion, and case (c) corresponds  

to the beam compression 
Fig. 2 shows the beam envelopes )(trb  for different 

shapes of the effective potential )( brU  which were ob-
tained numerically by direct solution of Eq. (7). Fig. 2,a 
presents )(trb  for effective potential shown in Figs. 1,a; 
2,b shows the beam envelope for )( brU  from Figs. 1,b; 
and 2,c presents )(trb for )( brU  shown in Fig. 1,c.  

In general case, since A  can either be equal to zero, 
or be greater than zero, B  can be greater than zero, 
equal to zero, or less than zero, and C  can either be 
equal to zero, or be greater than zero, there are 12 dif-
ferent combinations of A , B , C  coefficients, which 
determine the shape of effective potential )( brU . For 
cases { 0A , 0B , 0C }, { 0A , 0B , 0C }, 
{ 0A , 0B , 0C }, { 0A , 0B , 0C }, 
{ 0A , 0B , 0C }, the effective potential )( brU  
has the shape as shown in Fig. 1,a, and the beam enve-
lope oscillates. If { 0A , 0B , 0C }, { 0A , 

0B , 0C }, { 0A , 0B , 0C }, the potential 
looks like in Fig. 1b, and the beam diverges. For 
{ 0A , 0B , 0C }, { 0A , 0B , 0C }, the 
potential )( brU  has the form as shown in Fig. 1,с, and 
the beam compresses. For { 0A , 0B , 0C }, the 
effective potential 0)( brU , and the Eq. (7) takes the 
form: 0br . 0A  means that 0zB , 0 , and 

 rvmP  . 0)/( 2  mPC o  means that 0v , 
and the beam expands, or contracts with an initial radial 
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velocity rv , which is usually much less than the initial 
velocity zv . Thus, the beam propagates in plasma with 
an almost constant radius. A necessary condition for this 
is 0B , or eq

ee ff  , where m
eq

e ff 22    . In the 

case if )1/(1 2  mf , last term can be neglected, and 
2 eq

ef , or 2 bp nn , where pn  is the plasma den-
sity. If { 0A , 0B , 0C }, the potential 

2/)( 2
bb ArrU  , and the Eq. (7) takes the form: 
0 bb Arr . This case requires additional analysis at 

0br . 

 

 

 
Fig. 2. The beam envelope as function of time  

for different shapes of the effective potential. Case (a) 
corresponds to the )( brU  shown in Fig. 1,a, case (b) 

corresponds to the )( brU  shown in Fig. 1,b, and  
case (c) corresponds to the )( brU  shown in Fig. 1,c.  

The envelopes )(trb  were obtained numerically  
by solving Eq. (7) 

In the cases of the high-current relativistic electron 
beam pinching propagating in a plasma, the envelope 
equation (7) has the forms: 
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for { 0A , 0B , 0C }. In both cases, in order for 
B  to be negative, it is necessary that eq

ee ff  . 
Fig. 3 shows the numerical solution of Eq. (9) for 

the beam with the current I  = 25 kA, initial radius bor = 
1 cm, initial rov  = 0,   = 2, and ef  = {0.4, 0.55, 0.6}, 
which corresponds to plasma densities of the order of 

1012 cm-3, and mf  = 0. As seen from Fig. 3, the focusing 
length fL  is on the order of 2 cm. It decreases with 

increasing charge neutralization factor ef . This means 
that the fL  can be controlled using ef . 

 
Fig. 3. Beam radius as function of longitudinal coordi-

nate at various coefficients of charge neutralization  
of the beam in the plasma. I  = 25 kA, bor  = 1 cm,  

rov  = 0,   = 2, ef = {0.4  black solid line,  
0.55  blue dotted line, 0.6 - black dash-dotted line}.  

zB  = 0, v  = 0. Lengths are in cm 

From (9), for the time   during which the beam 
from the initial radius bor , at the initial rov  = 0, reaches 
the axis (  br  = 0), the following expression can be 

obtained: Brbo 2/  . This allows to estimate the 

focusing length as  zf cL  . For the parameters of 

beams and plasma from Fig. 3, focus lengths fL are 

2.15 cm for ef = 0.4, 1.52 cm for ef = 0.55, and 
1.41 cm for ef = 0.6. These coincide with the results of 
the numerical solution of Eq. (9) shown in Fig. 3. 

Fig. 4 shows the numerical solution of Eq. (10) for a 
beam with I  = 25 kA, bor = 1 cm, rov  = 0,   = 2, and 

ef  = {0.4, 0.55, 0.6}, mf  =0. As seen from Fig. 4, the 
focusing length fL  is on the order of 1 cm, it decreases 

with increasing charge neutralization factor ef . The 
focusing length fL  is also decreased due to the pres-
ence of an external magnetic field. This means that the 

fL  can be controlled using zB . 

 
Fig. 4. Beam radius vs longitudinal coordinate at vari-
ous coefficients of charge neutralization of the beam in 

the plasma. I  = 25 kA, bor  = 1 cm, rov  = 0,   = 2, 

ef = {0.4  black solid line, 0.55  blue dotted line,  
0.6  black dash-dotted line}. zB  = 5 kGs. v  0.  

The rotation of the beam as a whole around the axis is 
necessary for P  0, and as a result, C  0.  

All lengths are in cm 

a 

a 

b 

c 
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Fig. 5 shows the numerical solution of Eq. (7) where 
{ 0A , 0B , 0C } for a beam with I  = 25 kA, 

bor = 1 cm, rov  = 0,   = 2, and ef  = {0.4, 0.55, 0.6}, 

mf  = 0. 0A  and 0C  means that the beam as a 
whole rotates around the axis. It is seen that the beam is 
periodically focused by the plasma. The first focus is 
located at a distance of about 2 cm from the beam injec-
tion site, which is closed to the case shown in Fig. 3. 
This distance decreases with increasing charge neutrali-
zation factor ef . The only difference between this case 
{ 0A , 0B , 0C }, and the case shown in Fig. 3 
{ 0A , 0B , 0C }, is that 0C , i.e., the beam 
rotates as a whole around its axis. In the expression for 
the effective potential )( brU , this led to an additional 

term 22/ brC , which changed the shape of )( brU , turn-
ing the effective potential shown in Fig. 1,c to the po-
tential shown in Fig. 1,a. This led to the oscillatory be-
havior of the beam envelope. 
 

 
Fig. 5. Beam radius as function of longitudinal coordi-

nate at various coefficients of charge neutralization  
of the beam in the plasma. I  = 25 kA, bor  = 1 cm, 

rov =0,   = 2, ef = {0.4 – black solid line; 0.55 – blue 
dotted line; 0.6 – black dash-dotted line}. 

zB  = 0, v    0. Lengths are in cm 

To evaluate the applicability of the above model in 
experiments on focusing high-current electron beams in 
a plasma, a number of 2d3v particle-in-cell simulations 
were performed. The simulations involve solving a 
complete set of Maxwell’s equations with charge-
conserving schemes for calculating the current density 
on a mesh, and relativistic motion equations for charged 
particles in self-consistent electromagnetic fields. The 
XOOPIC code was used [6]. 

Fig. 6 shows, as example, simulation results for 
beam injection into a bounded plasma. The beam cur-
rents are 1 kA, and 10 kA. Other parameters are the 
same: bor  = 1 cm,   = 2, ef = 1, v  = 0, zB  = 0. This 
is the case of Eq. (9) – { 0A , 0B , 0C }. The 
focal length estimates give: fL  = 4.8 cm for I  = 1 kA, 

and fL  = 1.5 cm for I  = 10 kA. Fig. 6,a,b clearly 
demonstrate these focuses with the little bit high focal 
lengths. Simulations showed that up to I  = 50 kA, the 
ratio of the focal length obtained in particle-in-cell 
simulations to the fL  is not high then 1.6. So, the enve-
lope equations can be used for rough estimates of beam 
parameters in real experiments. Fig. 6,c,d shows elec-
tron beam density ),( zrnb . It is seen that at the focus 
the beam densities sharply increase. 

  
 

  
 

Fig. 6. Beam injection into a plasma: a, b – beam elec-
trons distribution in {r, z} plane; c, d – electron beam 

density ),( zrnb . I  = 1 kA (a, c), and I  = 10 kA (b, d). 

bor  = 1 cm, rov  = 0,   = 2, ef = 1, zB  = 0, v  = 0. 
The dimensions of the simulation domain LL rz   were 
chosen based on solving the envelope equation (9) so 

that the focus is approximately in its center.  
fL  = 4.8 cm for I  = 1 kA, and fL  = 1.5 cm for  

I  = 10 kA. LL rz   = 10   2 cm for I  = 1 kA, 
 and LL rz   = 4   2 cm for I  = 10 kA 

CONCLUSIONS 
Analysis of the envelope equation for a high-current 

relativistic electron beam propagating in a plasma in an 
external uniform magnetic field zB  is presented. In the 
paraxial approximation the envelope equation has the 
Hamiltonian form )(2/),( 2

bbbb rUrrrH    with the 

effective potential 22 2/)ln(2/)( bbbb rCrBArrU  , 

where br  is a beam radius, 2)2/( A , 

mceBz / ,  ]11)[/(2 22
meAL ffIIcB   , 

emcI AL /3 , I  – beam current, ef , mf  – charge 

and current neutralization factors, 2/)/( 2mPC  , 

P  is the conserved angular momentum.  
The analysis showed that, in the general case, four 

modes of beam propagation in plasma are possible: pe-
riodic beam radius oscillations, unlimited growth of the 
beam radius, growth of the beam radius with initial ra-
dial velocity, and the pinch mode, when at some dis-
tance from the injection site the beam is compressed. 
Beam pinching in a plasma occurs at length 

|2|/ BrcL bof  , bor  – initial beam radius. This 
length can be controlled by plasma density and conduc-
tivity, as well as by external magnetic field. Particle-in-
cell simulations confirm these results. 
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ФОКУСИРОВКА СИЛЬНОТОЧНОГО РЕЛЯТИВИСТСКОГО ЭЛЕКТРОННОГО ПУЧКА  
В ПЛАЗМЕ 

 

О.В. Мануйленко, А.В. Пащенко, В.Г. Свиченский, Б.В. Зайцев 
 

Представлен анализ уравнения огибающей для сильноточного релятивистского электронного пучка в 
плазме во внешнем однородном магнитном поле. Уравнение огибающей получено в гамильтоновой форме с 
эффективным потенциалом, который зависит от параметров электронного пучка и плазмы, а также от внеш-
него магнитного поля. Гамильтонов подход позволяет полностью проанализировать поведение огибающей 
пучка в зависимости от его тока и энергии, плотности и проводимости плазмы, а также от внешнего магнит-
ного поля и начального углового момента пучка. 

 

ФОКУСУВАННЯ СИЛЬНОСТРУМОВОГО РЕЛЯТИВІСТСЬКОГО ЕЛЕКТРОННОГО ПУЧКА  
В ПЛАЗМІ 

 

О.В. Мануйленко, А.В. Пащенко, В.Г. Свіченський, Б.В. Зайцев 
 

Представлено аналіз рівняння обвідної для потужнострумового релятивистского електронного пучка в 
плазмі в зовнішньому однорідному магнітному полі. Рівняння обвідної отримано в гамільтоновій формі з 
ефективним потенціалом, який залежить від параметрів електронного пучка і плазми, а також від зовнішньо-
го магнітного поля. Гамільтонів підхід дозволяє повністю проаналізувати поведінку обвідного пучка в зале-
жності від його струму, енергії, густини та провідності плазми, а також від зовнішнього магнітного поля і 
початкового кутового моменту пучка. 


