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The diffraction radiation generated by a charge passing by a plasma wedge is considered in impedance 

approximation. In the perfect conductivity limit, the total radiated energy is not varying with the wedge rotation 

around the edge fixed along with the charge motion line. The impedance increase may lead to the total radiated 

energy increase, due to effective surface wave generation, when the charge motion to the edge is almost parallel to a 

face of wedge.  

PACS: 41.60.-m 

INTRODUCTION 

A diffraction radiation may be emitted by a bunch of 

the charged particles passing by a plasma structure, 

which plays a role of antenna [1]. For effective 

wideband emission, antenna should have no 

characteristic length. At the low frequency the antenna 

may be considered as perfectly conductive. Resistance 

can be taken into account in impedance approximation. 

The case when antenna is a perfectly conductive half-

plane and the particle motion direction is perpendicular 

to its edge is studied in [2]. In [3] the direction is 

arbitrary. In the present work, antenna is a perfectly 

conductive or an impedance wedge and the charged 

particle moves uniformly along a line, which does not 

cross the wedge faces.  

1. PROBLEM FORMULATION  

In the following study, the Cartesian coordinates 

( , , )x y z , ( , , )   , and ( , , )x y z   and the polar 

coordinates ( , , )r    and ( , , )z   are used (Fig. 1).  

    
a     b 

 

Fig. 1. The views from z    (a) and     (b) 

 

The axis z  is the edge of wedge, the sector 

( , )    with ( 2, )   is free space, the axis 

  is the line of the particle’s motion, the axis   is 

directed to the edge along the shortest line segment 

between two points, at the motion line and at the edge, 

e  denotes the segment length, the axis x  is parallel to 

the motion line projection on a plane perpendicular to 

the edge, 
e  denotes the angle between the directions 

x  and x , 
e  denotes the angle between the directions 

  and z . It is assumed that the particle moves from the 

half-space 0y   to the half-space 0y  , and so, the 

wedge is in the half-space 0y  , and e ( , )    .  

The coordinates are connected by the equalities 

e ecos sinz      , 
e esin cosx       , 

ey     , cosz r  , sinr  , cosx   , 

siny   , 
ecos( )x      , 

esin( )y      .  

The particle motion is determined by the equalities 

0  , 0  , ct  , where t  is time, c  is the speed 

of light, (0,1)  . In free space, the electromagnetic 

field obeys Maxwell’s equations, and it may be given by 

the sum of E- and H- waves. The space-time 

dependence of electric and magnetic field strength 

components of these waves has the form 

Re[ ( , )exp( )]zF x y ik z i t , where F  stands for E  or 

H . The amplitudes of the longitudinal components 

obey the equations 2 2 0z zF k F    , where 

x x y ye e     , 2 2 1 2( )zk k k   , k c , e  with 

indexes are unit vectors of relevant directions,   with 

indexes are derivatives with respect to relevant 

variables. The amplitudes of the transverse components 

are determined by ones of the longitudinal components,  
2 [ ]z z z zk E ik H e ik E       , 

2 [ ]z z z zk H ik E e ik H       . 

It is assumed that impedance   for both faces is 

identical and depends on frequency, s

s( )
p

ik   , 

where 
s  is skin layer depth and the power index, 

sp  is 

connected with the skin effect type. So, 

s

s s( ) exp( )
p

k i    , where 
s s 2p  . If one 

proceeds from the equality 2 1 1 2

e{1 [ ( )] }i         , 

where 
e  and   are plasma and collision frequencies 

then the cases of normal and anomalous skin effect 

(related to the frequency ranges 
e     and 

e    ) correspond to s 1 2p  , 2

s ec   , 

and s 1p  , s ec  , respectively, and dependence of 

  on k  is near to power one at s 1k   (and then 

| | 1  ).  

Both for E-waves, and for H-waves the problem is 

reduced to the plane one: for the given field of an 

external source e

zF , it should be found the scattered 

field s

zF , which obeys the equation 2 s 2 s 0z zF k F    , 

the radiation condition, and Meixner’s edge condition, 

and the full field, f s eF F F  , should obey the 

impedance boundary conditions, 
f f f f

z zE H E H      (at    ), which may be 
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written in the form f 1 f( ) sinz z FF F ik 

   , where 

,E H  are determined by the equations,  

sin ( )E k k   , sin ( )H k k   ,  (1) 

and the condition 
,0 Re 2E H   .  

2. PROBLEM SOLUTION  

The solution of the problem of one plane wave 

scattering on impedance wedge is described 

circumstantially in the original papers and books [4, 5]. 

The result is briefly described below. Let the incident 

scalar plane wave with unit amplitude in the 2D space 

has the spatial dependence exp( )x yik x ik y    , where 
xk   

is real and 2 2 1 2( )y xk k k
   . Then the sum of the wave 

and the scattered field may be given in the form of 

Sommerfeld integral,  
1( , , ) (2 )

exp( cos ) ( , )

z

C z

f i

dw ik w s w

   

  





 

   .  (2) 

Here 
0 i( , ) ( ) ( , ) ( , )zs w s w P w P w    ,  

0 i i( ) cos( ) [sin( ) sin( )]s w k k w k w k w     ,  

(2 )k    , 
{ } 2( , ) (( 2) )P w w        ,  

0

1

( ) exp{ [ch( ) 1]

[2 ch( 2)sh(2 )] }

w d w  

   







    

  ,  

i e arcosh( )xw i k k  
   .                        (3) 

The integration path C  in (2) consists of two parts: C
, 

in the half-plane Im 0w  , and C
, symmetrical to C

 

with respect to the point 0w  . The path C
 goes 

along the parts of three straight lines, from i    to 

i      , passing through the points i    and 

i      , consecutively, where    and    should 

obey the inequalities 0 2    and 
i| Im |w   . The 

quantity   should be taken from (1). The quantity 

iRew  corresponds to the angle (with respect to x  axis) 

of the wave incidence direction. The function 
0 ( )s w  has 

the pole at 
iw w , corresponding to the incident wave. 

Also, it can have the poles at 
i2w w   (if 

iRe ( , )w    ) and at 
i2w w    (if 

iRe ( , )w    ), corresponding to the waves 

reflected from top and bottom faces.  

To use the written relations for the considered 

problem solving, one has to present the field connected 

with the moving charge 
0e  by integral Fourier over the 

plane waves coming to the line 0y   in 2D problem. 

The time-dependent Liénard-Wiechert potentials are: 
e e

t tA e , e 2 2 2 2 1 2

0[( ) (1 )( )]t e ct           . 

For { 0k  , 0  }, performing the Fourier transform, 

e 1 eˆ (2 ) exp( ) tdt ikct   

  , one gets  

e 1 1

0 0

1 e

ˆ ( ) K ( )exp( )

exp( )

e c f ik

dk ik ik  

    

     

 



 



 

    ,  

where 2 2 1 2( )    , ( )f k   , 2 1 2(1 )    , 

2 2 1 2( )f k    , 
e 1

0 (2 )e c     , 
0K  is 

McDonald’s function. Relevant transform for the 

electric field strength gives 
e 1 e

, , , ,
ˆ exp( ) ( )E dk ik ik E k              

    , 

where e eE   , e eE ik   , 

e 1 2 e(1 )E ik      . Replacing k  with 

1

e esin coszk k k      and taking  

1 1

e e(sin ) ( cos )x zk k k      ,   (4) 

one gets e eˆ exp( ) ( , )z z z x z zF dk ik z ik x F k 


    , where  

e 1 e

e e( , ) (sin ) ( cos ) exp( )z z zE k i k k          ,  

e e( , ) exp( )z zH k        .  

That is, for the given 
zk , the wedge is illuminated by 

one E-wave and one H-wave. They decrease 

exponentially in the direction y . Their amplitudes, 

e

e( , )z zE k   and e

e( , )z zH k  , depend on 
e  through the 

factor 
eexp( )  , where 2 2 1 2( )f k    , 

1

e e( sin ) ( cos )zk k k      .  

The longitudinal field strength components for the 

sum of the incident and scattered waves are given by 2D 

distributions e

e( ) ( , ) ( , , )z z z z z FF k F k f    , where the 

quantities 
E , 

H , and 
iw  are dependent on the ratio 

z zc k k  (through (1), (3), and (4)). The 3D 

distributions for the set of waves are given by the 

equality ˆ ( , , ) exp( ) ( )z z z z zF r dk ik z F k  

  .  

In the wave zone of 2D space, where 1k   , the 

angular distribution of amplitude is obtained in [5], by 

the stationary phase method,  

( , , )z Ff      1 2[ (2 )] exp( ) ( , )F zi k ik c      ,  

where 
{ }( , ) [ ( , )]F z z Fc s       . The incident 

and reflected waves related to the uniform charge 

motion are exponentially decreased in relevant 

direction, and they do not contribute to the radiation 

field. Similarly, in the wave zone of 3D space, where 

1kr  , one gets  

ˆ ( , , )zF r     1 e

eexp( ) ( cos , ) (cos , )z Fikr r F k      .   

(5) 

For the components of E- and H- waves, respectively, 

there are the relations *

zE H   2| |zE k k  and 

*

zE H   2| |zH k k , with asterisk denoting the 

complex conjugate. The substitution coszk k  , 

corresponding to the arguments of the functions in (5), 

implies coszc  ,  

i e ( )w i      , 
1 1 2

e( sin ) ( )k D    ,  

where 

e e( ) arcosh[(1 cos cos ) ( sin sin )]         , 

2 2 2

e e( ) (1 )sin ( cos cos )D          . The 

radiation field distribution depends on e  through the 

factor 1 1 2

e eexp[ ( sin ) ( )]k D    , which is 

independent on  . As a result, if the particle motion 

line is translated parallel to itself then relative 

distribution of the radiation field with respect to azimuth 
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angle  , at the given frequency, for the given polar 

angle  , is not changed, the power flux density for the 

different   is changed in accordance with the same 

factor written just above. Such azimuthal invariance of 

the radiation field takes place for the arbitrary z ‒ 

uniform structure, but under the condition of the plane 

existence, with respect to which the structure and the 

particle motion line are in the different half-spaces. In 

such conditions the scattered field distribution is fully 

determined by the ‘incident’ field at the mentioned 

plane, and the Fourier transforms of the ‘incident’ field 

components depend on 
e  exponentially, with 

increment dependent on 
zk .  

Proceeding from the equality  
1(4 ) ([ ] )t t tW c d dz E H e   

    ,  

for the power flux through the cylinder with radius  , 

integrating it by time, moving from the functions to 

their Fourier transforms, and performing the limit 

transition   , for the total radiated energy W  one 

gets  

04W c dkW   ,    (6) 

where 1 2 2

,(4 ) | ( ) | ( )k

k z F E H z z F zW ck dk k F k I c   

     ,  

2( ) | ( , ) |F z F zI c d c 

   .   (7) 

Replacing of integration variable, coszk k  , gives  

3 1 2 1

0 0 e

2

e

(16 ) (sin ) exp( 2 )

[ (cos ) (cos ) (cos cos ) ( )]H E

W c e d

I I D



    

     

    

   .   (8) 

3. RESULTS  

In the case of perfect conductivity, Im E   , 

0H  , one gets 
0( , ) ( )z Es s   , 

1( , ) ( )z Hs s   , 

where 1

1 i( ) cos( )[sin( ) sin( )]s k k k k w   

     , and 

integration in (7) gives  

,

2 2 2

(cos ) 2 coth[ ( )]

sin ( ) {cosh [ ( )] cos ( )}

E HI k k

k k k

  

  

 

  

  

   .  (9) 

As it follows from (6), (8), and (9), in the case of perfect 

conductivity, the total radiated energy does not depend 

on the angle 
e . So, if the particle motion line and the 

edge of wedge are fixed and the wedge is rotated around 

the edge then the total radiated energy is not changed.  

After the next limit transition, to the perfectly 

conductive half-plane, for which   , one gets  
1 2

, e(cos ) 2 sin sin ( )E HI D      ,  

2 2 2 2 2

0 e e e3 sin [8 (1 cos )]W e        ,  

in agreement with [2] and [3].  

In the Fig. 2, an example of directional radiation 

pattern (the quantity 
2

e 0exp(2 ) ( sin )c dW e d d d      ) is presented for 

the case  0.9, 
s ,  150, 

e 45, 
e 60, 

 30. Sloped straight lines correspond to the angles 

  and 
e . The curves correspond to the frequencies, 

at which | | , 0.03, 0.3 (from right to left, at the 

horizontal wedge symmetry plane).  

Appearance of nonzero impedance   with 

s (0, 2)  , may lead both to decrease of the total 

radiated energy and to its increase. The radiation field is 

determined by the charge and current distributions on 

the wedge faces. The increase of impedance 

corresponds to the resistance increase and may lead to 

decrease of the currents, and so, to the radiated power 

decrease. In particular, very small values of the 

radiation flux in the directions near to the symmetry 

plane in the Fig. 2, for the sufficiently large value of 

impedance, are connected with very small currents over 

the edge of wedge. On the other hand, near the surface 

with nonzero impedance, the surface wave exists. At 

| | 1  , its speed is near to the speed of light. When a 

particle moves to the edge almost parallel to a face of 

wedge then it effectively generates the waves, which 

speed projection on the particle motion direction is near 

to the particle speed. At the edge of wedge, a part of 

wave field transforms into a radiation field. In some 

conditions, an appearance and increase of impedance 

can yield an increase of the radiated energy. 

 

Fig. 2. Directional radiation pattern 

 

To obtain simple approximate relations, it is 

expedient to consider the case when particle is 

relativistic, 1  , the distance between the motion line 

and edge is so large, that 
e s  , the value of 

esin  is 

not small, and the motion line is almost parallel to the 

lower wedge face, so that the angle 
f e      is 

small, 
f 1  . Then the main part of energy is radiated 

within the angle 1   near the motion directions of the 

particle and its mirror reflection in the lower wedge face, 

and for 
e| | 1    one gets the relations 

( )   2 1 2

e(1 ) ( sin )   , 

( )D    2 2 2

esin (1 )   ,    2 1 2(1 )k   , where 

e( )     . Due to the relation e s   the factor 

eexp( 2 )   in (8) may be not small only at the 

frequencies, which obey the relation s 1k  , and so, 

give | | 1  . That is, the relation e s   implies that
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the main contribution to the integral by k  in (6) is given 

by the frequencies, at which impedance is small. Using of 

the equality 2

{ } (( 2) ) ( 2)cos( 2)w k w          

(from [5]), for 
e| | 1   , gives 

(cos )EI    2 ( )  ,  

(cos ) (cos )H EI I    
f1 2[ ( ) Im Re ]H H        

 2 2 1

f{( Re ) [ ( ) Im ] }H H        .  

Denoting 
f f esin    , 2

e| | sinZ Z   , using the 

variable 
e( )     , and assuming that 

f  and 
Z  are 

not very large, from (8) one gets  

0W W   2 1 2

0(4 ) Zc e    

 2 1 2

eexp[ 2 (1 ) ]d k   

      

 2 1 2

s s fcos [tan (1 ) ] ( )G      ,       (10) 

where 2 1 2 2 2

s f s( ) [(1 ) sin ] ( cos )Z ZG             

and 
0W  is the value of W  in the perfect conductivity 

case. From (6) and (10), changing the integration order, 

by   and k , and changing the variable, cot  , one 

gets  

0W W   s 11 2 2

s 0 s e e( ) [( ) (2 )] sin
p

e        

 2

s s s f s s f( 1)cos ( 1, )[tan ( 1, )]p S p R p        , (11) 

where 
0W  is related to the in the perfect conductivity 

case,   is gamma-function, 
2 2( , ) ( 1, ) ( , )R p S p S p     ,  

2

0( , ) (sin ) (1 sin )pS p q d q      .  

If the faces are resistive (
s 0  , 

scos 0  ) then the 

right hand side of (11) may be both positive and negative. 

In the case of normal skin effect it is zero at 
f   1.194. 

For smaller angle 
f  it is positive and appearance of 

resistance leads to increase of the radiated energy.  

CONCLUSIONS  

The wide-band electromagnetic pulse may be 

generated by particle bunch created in the pulse 

accelerator and passing by antenna. If the bunch is 

relativistic then the main part of radiation is emitted in 

the directions near to the direction of the bunch motion. 

The case of plasma wedge-form antenna and single 

charge moving uniformly is considered in impedance 

approximation. For the perfectly conductive wedge 

(zero impedance) it is shown that the total radiated 

energy does not depend on the direction of the charge 

motion line projection on a plane perpendicular to the 

edge of wedge. That is, if the particle motion line and 

the edge are fixed and the wedge is rotated around the 

edge then the total radiated energy is not changed. 

Appearance and increase of impedance may lead both to 

decrease and to increase of the total radiated energy. Its 

decrease can be caused by the decrease of the surface 

currents, through the resistance increase. The increase 

of the total radiated energy is observed in the 

conditions, favorable for the surface wave generation, 

when the charge moves to the edge almost parallel to a 

face of wedge and the particle velocity is near to the 

wave velocity.  
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ИЗЛУЧЕНИЕ ЗАРЯДА ПРИ ДВИЖЕНИИ МИМО ИМПЕДАНСНОГО КЛИНА  

В. Остроушко 

Рассмотрено в импедансном приближении дифракционное излучение, созданное зарядом при движении 

мимо плазменного клина. В пределе идеальной проводимости полная излученная энергия не изменяется при 

повороте клина вокруг ребра, фиксированного вместе с линией движения заряда. Увеличение импеданса 

может вести к увеличению полной излученной энергии благодаря эффективному созданию поверхностной 

волны, когда движение заряда к ребру почти параллельно к грани клина.  

ВИПРОМІНЮВАННЯ ЗАРЯДУ ПРИ РУСІ ПОВЗ ІМПЕДАНСНОГО КЛИНА  

В. Остроушко 

Розглянуте в імпедансному наближенні дифракційне випромінювання, утворене зарядом при русі повз 

плазмового клина. У граничному випадку ідеальної провідності загальна випромінена енергія не змінюється 

при обертанні клину навколо ребра, фіксованого разом з лінією руху заряду. Збільшення імпеданса може 

вести до збільшення загальної випроміненої енергії завдяки ефективному утворенню поверхневої хвилі, 

коли рух заряду до ребра майже паралельний до грані клину.  


