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The diffraction radiation generated by a charge passing by a plasma wedge is considered in impedance
approximation. In the perfect conductivity limit, the total radiated energy is not varying with the wedge rotation
around the edge fixed along with the charge motion line. The impedance increase may lead to the total radiated
energy increase, due to effective surface wave generation, when the charge motion to the edge is almost parallel to a

face of wedge.
PACS: 41.60.-m

INTRODUCTION

A diffraction radiation may be emitted by a bunch of
the charged particles passing by a plasma structure,
which plays a role of antenna [1]. For effective
wideband emission, antenna should have no
characteristic length. At the low frequency the antenna
may be considered as perfectly conductive. Resistance
can be taken into account in impedance approximation.
The case when antenna is a perfectly conductive half-
plane and the particle motion direction is perpendicular
to its edge is studied in [2]. In [3] the direction is
arbitrary. In the present work, antenna is a perfectly
conductive or an impedance wedge and the charged
particle moves uniformly along a line, which does not
cross the wedge faces.

1. PROBLEM FORMULATION

In the following study, the Cartesian coordinates
xv,2), (&n¢), and (X,y,z) and the polar
coordinates (r,6,¢) and (o, ,z) are used (Fig. 1).

Fig. 1. The views from z =+ (a) and & =—o0 (b)

The axis z is the edge of wedge, the sector
@ e (—D,+®) with ® e(z/2,7) is free space, the axis
¢ is the line of the particle’s motion, the axis & is

directed to the edge along the shortest line segment
between two points, at the motion line and at the edge,
&, denotes the segment length, the axis x is parallel to

the motion line projection on a plane perpendicular to
the edge, ¢, denotes the angle between the directions
X" and x, @, denotes the angle between the directions
¢ and z. Itisassumed that the particle moves from the
half-space y <0 to the half-space y >0, and so, the
wedge is in the half-space y'>0, and ¢, € (7 —®, D) .

The coordinates are connected by the equalities
z=¢cos6, +nsiné,, X'=¢'sing, —ncoso,,

y'=£-¢&, z=rcosd, p=rsind,
y=psing, X'=pcos(p-g,), y' = psin(p-¢.).
The particle motion is determined by the equalities
=0, n=0, ¢ =pct,where t istime, c is the speed
of light, #e(0,1). In free space, the electromagnetic

field obeys Maxwell’s equations, and it may be given by
the sum of E- and H- waves. The space-time
dependence of electric and magnetic field strength
components of these waves has the form
Re[F (x, y)exp(ik,z —iwt)], where F stands for E or
H . The amplitudes of the longitudinal components
obey the equations V’F, +k’F, =0, where
V, =60,+6,0,, k =K -k)"*, k=afc, € with
indexes are unit vectors of relevant directions, 0 with
indexes are derivatives with respect to relevant
variables. The amplitudes of the transverse components
are determined by ones of the longitudinal components,

k’E, =+k[VH,&,]+ik,V E,,
k?H, =—K[VE,&]+ik,V H, .

It is assumed that impedance Z for both faces is
identical and depends on frequency, Z=(-ikd,)"™,
where ¢, is skin layer depth and the power index, p, is
connected with the skin effect type. So,
Z=(ks,)™ exp(—ier,), where o, =p,z/2. If one
proceeds from the equality Z ={l- @’ [@(ew+iv)]'}*?,
where @, and v are plasma and collision frequencies

then the cases of normal and anomalous skin effect
(related to the frequency ranges w<<v<<am, and

X=pCos@,

v<<w<<am,) correspond to p, =12, & =cv/a,
and p, =1, &, =c/m,, respectively, and dependence of
Z on k is near to power one at ko, <<1 (and then
| Z |<<1).

Both for E-waves, and for H-waves the problem is
reduced to the plane one: for the given field of an

external source F;, it should be found the scattered
field F’°, which obeys the equation V2F’+k’F’ =0,
the radiation condition, and Meixner’s edge condition,

and the full field, F'=F°+F°, should obey the
impedance boundary conditions,

+E!/H  =Z=%E[/H] (at p=+d), which may be
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written in the form (oF)™0,F =ik, sin y., where
Xen are determined by the equations,

sin ye = kl/(kZ) ,siny,, = (kLZ)/k J @
and the condition 0<Re g, ,, <7/2.

2. PROBLEM SOLUTION

The solution of the problem of one plane wave
scattering on impedance wedge is described
circumstantially in the original papers and books [4, 5].
The result is briefly described below. Let the incident
scalar plane wave with unit amplitude in the 2D space
has the spatial dependence exp(ik;x’+ik;y"), where k;
is real and k) = (k? —k/?)**. Then the sum of the wave

and the scattered field may be given in the form of
Sommerfeld integral,

f,(x,p,p) = (271) " x

x| dwexp(—ik, pcosw)s, (x, +W). 2

Here s, (7, W) = s,(W) By (2, W)/ Py (2, W) ,
5, (W) = k,, os(k, W, )/[sin(k, W) —sin(k, W]
Ky =7/(20) , Py (. W) =Ty Vo, (7/2) — x £ W),
wo (W) = exp{-[7 dzch(zw) —1]x
x[2rch(z7/2)shd )"}

w, =g, —z+iarcosh(k, /K, ). 3)
The integration path C in (2) consists of two parts: C_,
in the half-plane Imw >0, and C_, symmetrical to C,
with respect to the point w=0. The path C, goes
along the parts of three straight lines, from &'+ioo to
—r—¢&' +ioo, passing through the points &'+ig” and
—r—¢&'+ig", consecutively, where &' and &" should
obey the inequalities 0 < &' < z/2 and &" >/ Imw;, |. The
quantity y should be taken from (1). The quantity
Rew; corresponds to the angle (with respect to x" axis)
of the wave incidence direction. The function s,(w) has
the pole at w=w,, corresponding to the incident wave.
Also, it can have the poles at w=20-w (if
Rew, e (®-7,®)) and at w=-220-w, (if
Rew, € (-®,7—®)), corresponding to the waves

reflected from top and bottom faces.

To use the written relations for the considered
problem solving, one has to present the field connected
with the moving charge e, by integral Fourier over the

plane waves coming to the line y’=0 in 2D problem.
The time-dependent Liénard-Wiechert potentials are:

A =Bge. of =el(C—pot) + - F)E +n ).
For {k>0, &£>0}, performing the Fourier transform,
@ = (7)™ ['7 dtexp(ikct)¢f , one gets
¢° = e, (mc) " Ky (f o) exp(ikf7¢) =
=[7 dk, exp(ik 7 +ik B¢ —k.£)5°
where o =(&*+7°)"%, f, =k/(By), r=0-p)",
k. =(fF2+K2)2, ¢ =enfex.), K, s
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McDonald’s function. Relevant transform for the

electric field strength gives
ES,.= J= dk, exp(ik 7 +ik 8¢ —K.£) E;M k,),

where E =x.0°, E; =ik ¢°,
Ef =—ikp'(1-p%)@°.  Replacing k, with

k, =k, sing, +kB™ cos, and taking
k! =(sing,) (kB -k, cos8,), (4)
one gets F° = [** dk, exp(ik,z +ik/x")F (k,, &) , where

Ej (k,,&) =i(sin@,) ™" (kBcosO, —k,)p° exp(-«.$),

H2 (k,. &) = fx.0° exp(—x,E)
That is, for the given k,, the wedge is illuminated by
one E-wave and one H-wave. They decrease
exponentially in the direction y'. Their amplitudes,
Ef(k,,&) and HS(k,,&), depend on & through the
exp(—x;<.) K, = (F2+k0)"2,
k, = (Bsin6,)™(Bk, —kcosb,).

The longitudinal field strength components for the
sum of the incident and scattered waves are given by 2D
distributions F,(k,) = Iff(kz,ée)fZ (e, p @) , where the
quantities y., g, , and w, are dependent on the ratio
c, =k,/k (through (1), (3), and (4)). The 3D
distributions for the set of waves are given by the
equality F,(r,8,¢) ="~ dk, exp(ik,z)F, (k,) .

In the wave zone of 2D space, where k, p >>1, the

angular distribution of amplitude is obtained in [5], by
the stationary phase method,

f,(ze . 0) = i/ 27k, )] exp(ik, p)Ac (c,, 9) |
where A (C,, ) =2 ,[*s, (¥, ¢F7)]. The incident
and reflected waves related to the uniform charge
motion are exponentially decreased in relevant
direction, and they do not contribute to the radiation
field. Similarly, in the wave zone of 3D space, where
kr >>1, one gets

F,(r,0,9) ~ exp(ikr)r *Ff (kcos0,&,)A. (Cos O, ).

®)

For the components of E- and H- waves, respectively,
there are the relations -E,H =~ |E,[ k/k, and
E,H, = |H, [P k/k_, with asterisk denoting the
complex conjugate. The substitution k, =kcosé,
corresponding to the arguments of the functions in (5),
implies ¢, =cosé,

W =g, —7+iA(9), K, =k(Bsin6,)*D¥*(6),
where
A(0) =arcosh[(1— Bcos&cosb,)/(BsinOsinb,)],
D(0) = (L- B%)sin® 6, + (Bcos&—cosb,)’ . The
radiation field distribution depends on &, through the
factor  exp[-k& (Bsing,)*DY?(0)],  which s
independent on ¢ . As a result, if the particle motion

line is translated parallel to itself then relative
distribution of the radiation field with respect to azimuth
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factor where



angle ¢, at the given frequency, for the given polar

angle @, is not changed, the power flux density for the
different ¢ is changed in accordance with the same
factor written just above. Such azimuthal invariance of
the radiation field takes place for the arbitrary z-—
uniform structure, but under the condition of the plane
existence, with respect to which the structure and the
particle motion line are in the different half-spaces. In
such conditions the scattered field distribution is fully
determined by the ‘incident’ field at the mentioned
plane, and the Fourier transforms of the ‘incident’ field
components depend on &, exponentially, with

increment dependent on K, .
Proceeding from the equality
W, = (47)"c'g dp[” dz([EHJE,)
for the power flux through the cylinder with radius p,

integrating it by time, moving from the functions to
their Fourier transforms, and performing the limit
transition p — oo, for the total radiated energy W one

gets

W =4zc[? dkW , (6)
Where W = (47[)71Ck J.tt dkzklz zF:E,H I Fz (kz) |2 IF (Cz) ’
I (c,) =15 dpl A (c,. 0) [ (7

Replacing of integration variable, k, =k cos.%, gives
W = (167°c) e} [ d9(sin 9)* exp(—2x.&, ) x
x[1,, (cos 9) + 1 (cos 9) (cos - B cosb,)? /D(I)]. (8)
3. RESULTS

In the case of perfect conductivity, Im y. =+o0,

X =0, 0ne gets s, (xe.9) =5(9), S, (1, 9) =51(9),
where s, (@) = k,, cos(k,@)[sin(k,®) —sin(k,w;)]™, and
integration in (7) gives
Ic y (cos9) = 27k, coth[k, A(H)]x
xsin? (zk, )/{cosh?[k, A($)] —cos® (7K, )} (9)
As it follows from (6), (8), and (9), in the case of perfect

conductivity, the total radiated energy does not depend
on the angle ¢, . So, if the particle motion line and the

edge of wedge are fixed and the wedge is rotated around

the edge then the total radiated energy is not changed.
After the next limit transition, to the perfectly

conductive half-plane, for which ® = 7, one gets

I i (cos ) =27 Bsin 9sin g,/ DY*(9),
W =3ely B*sin” 6, /[8, (1— A% cos® 0,)] ,
in agreement with [2] and [3].
In the Fig. 2, an example of directional radiation
pattern (the quantity

cexp(2x.£,)dW/(efdwsin@ddy) ) is presented for
the case £ =0.9, a,=45° @ =150°, ¢,=45° 6,=60°,
6=30°. Sloped straight lines correspond to the angles
+® and ¢,. The curves correspond to the frequencies,
at which |Z]=0, 0.03, 0.3 (from right to left, at the
horizontal wedge symmetry plane).
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Appearance of nonzero impedance Z with
a, €(0,7/2), may lead both to decrease of the total

radiated energy and to its increase. The radiation field is
determined by the charge and current distributions on
the wedge faces. The increase of impedance
corresponds to the resistance increase and may lead to
decrease of the currents, and so, to the radiated power
decrease. In particular, very small values of the
radiation flux in the directions near to the symmetry
plane in the Fig. 2, for the sufficiently large value of
impedance, are connected with very small currents over
the edge of wedge. On the other hand, near the surface
with nonzero impedance, the surface wave exists. At
| Z|<<1, its speed is near to the speed of light. When a

particle moves to the edge almost parallel to a face of
wedge then it effectively generates the waves, which
speed projection on the particle motion direction is near
to the particle speed. At the edge of wedge, a part of
wave field transforms into a radiation field. In some
conditions, an appearance and increase of impedance
can yield an increase of the radiated energy.

0.2

0.0

-0.1

-0.1 0.0 0.1 0.2
Fig. 2. Directional radiation pattern

To obtain simple approximate relations, it is
expedient to consider the case when particle is
relativistic, ¥ >>1, the distance between the motion line

and edge is so large, that & >> o, , the value of siné, is

not small, and the motion line is almost parallel to the
lower wedge face, so that the angle ¢, =@, —7+® is

small, ¢, <<1. Then the main part of energy is radiated
within the angle 1/ near the motion directions of the

particle and its mirror reflection in the lower wedge face,
and for |6€-6,|<<1l one gets the relations

A@©) = @+7)"?/(ysing,),

D) ~ sin* 0, 1+7%)/y*, k. ~ k(1+7°)"?/y, where
T=y(0—-6,). Due to the relation & >> 9, the factor
exp(—2x.&,) in (8) may be not small only at the
frequencies, which obey the relation ko, <<1, and so,
give | Z|<<1. That is, the relation &, >> »5, implies that
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the main contribution to the integral by k in (6) is given
by the frequencies, at which impedance is small. Using of

the equality T, v, ((/2) W) =y (7/2)cos(k, W/2)
(from [5D), for |6-6, |<<1, gives
I.(cos®) ~ 27z/A(0),

I,,(cosO)/I:(cosd) ~ 1-2[A(O)Im g, +¢; Re x,,] x
x {(p +Re )" +[A(O) +Im 1, ¥
Denoting 7, =g ysing,, z, =/ Z|ysin’6,, using the
variable 7 =y(6—-46,), and assuming that z, and z, are

not very large, from (8) one gets
W —V\~/0 ~ (4z°c) e}z, x
x [ drexp[-2kE, (L+7°)"?/y] =
x cosa, [tana, —7, /(L+7°)"*]/G(z),  (10)
where  G(z) =[(L+7°)"? -7, sina, ]’ +(z; +7, cos )’
and V\70 is the value of W in the perfect conductivity

case. From (6) and (10), changing the integration order,
by r and k, and changing the variable, z=cot¢, one

gets

W-W, ~ (75,) " €[(5,)/(2&,)]™ " ysin” 6, x
x T(p, +1)cose,S(p, +1, 77)[tan e, —R(p, +1,7)], (11)
where W, is related to the in the perfect conductivity
case, r is gamma-function,
R(p,7) =7S(p+17°)/S(p,7%),

S(p,q) =7 dg(sing)®/(L+qsin’ ).

If the faces are resistive (J, >0, cose, >0) then the
right hand side of (11) may be both positive and negative.
In the case of normal skin effect it is zero at 7, ~1.194.
For smaller angle ¢, it is positive and appearance of
resistance leads to increase of the radiated energy.

CONCLUSIONS

The wide-band electromagnetic pulse may be
generated by particle bunch created in the pulse
accelerator and passing by antenna. If the bunch is
relativistic then the main part of radiation is emitted in

the directions near to the direction of the bunch motion.
The case of plasma wedge-form antenna and single
charge moving uniformly is considered in impedance
approximation. For the perfectly conductive wedge
(zero impedance) it is shown that the total radiated
energy does not depend on the direction of the charge
motion line projection on a plane perpendicular to the
edge of wedge. That is, if the particle motion line and
the edge are fixed and the wedge is rotated around the
edge then the total radiated energy is not changed.
Appearance and increase of impedance may lead both to
decrease and to increase of the total radiated energy. Its
decrease can be caused by the decrease of the surface
currents, through the resistance increase. The increase
of the total radiated energy is observed in the
conditions, favorable for the surface wave generation,
when the charge moves to the edge almost parallel to a
face of wedge and the particle velocity is near to the
wave velocity.
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HU3JIYYEHUE 3APSIJIA TPU IBUXKEHUU MUMO UMIIEJJAHCHOI'O KJIMHA
B. Ocmpoywko

PaccMOTpeHO B UMIIEITaHCHOM MPUOJIMKEHNU NU(PAKIMOHHOE U3ITyYeHUE, CO3AaHHOE 3apsioM NPH JBHIKCHUH
MHMO IUIa3MEHHOT'0 KIuHA. B npenene uueanbHoi IPOBOAMMOCTH IOJHAS U3JIYyYEHHAsl S3HEPTUS HE U3MEHSETCs IIPU
MIOBOPOTE KIIMHA BOKPYT pedpa, (PUKCHPOBAHHOTO BMECTE C JIMHHEW ABIDKEHUS 3apsiia. YBENWUCHHE MMIIEJaHCca
MOXET BECTH K YBEJIMYEHHIO MOJHOW M3JIydeHHON SHepruu Onaronapsi 3p(eKTHBHOMY CO3JaHHUIO MTOBEPXHOCTHOM
BOJIHBI, KOT/1a JIBM)KCHHE 3apsi/ia K peOpy HOUTH MapaulebHO K TpaHH KIIMHA.

BUITPOMIHIOBAHHS 3APAAY ITPU PYCI IIOB3 IMIIEJAHCHOI'O KJIMHA
B. Ocmpoywixo

PosrnsiHyTe B iMmenaHCHOMY HaOMIKeHHI TudpakiiiiHe BUITPOMiHIOBaHHS, YTBOPEHE 3apsiioM MpH pyci MOB3
IUTa3MOBOTO KJIMHA. Y TPAaHWYHOMY BHUIAJIKY 1€aTbHOI IMPOBITHOCTI 3arajibHa BUIIPOMIHEHA CHEPTis HE 3MIHIOETHCS
npu o0epTaHHI KJIMHY HAaBKOJIO peOpa, (iKCOBaHOTO pa3oM 3 JIHIEI pyXy 3apsay. 30UIbIICHHS iMIIeAaHCca MOXKE
BECTH /10 30LIbLICHHs 3arajbHOI BHIIPOMIHEHOI eHeprii 3aBIsIKM e(eKTHMBHOMY yTBOPEHHIO IOBEPXHEBOI XBWII,
KOJIM PyX 3apsiay 10 pedpa Maike napajieiabHUi 10 rpaHi KIuHY.
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