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ION-CYCLOTRON ABSORPTION OF FAST WAVES
IN ACYLINDRICAL CURRENT-CARRYING PLASMA
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Influence of a longitudinal stationary current on the absorption and the radial structure of fast waves in a cylindrical
current-carrying plasma is discussed. To evaluate the dispersion equation for fast waves, there was used the dielectric
tensor taking into account the radial current structure and geometry of the confining helical magnetic field by the
plasma safety factor. It is shown that the damping rate of fast waves in a non-equilibrium current-carrying plasma differ
from those for an equilibrium plasma column in a homogeneous magnetic field nearby the cutoffs and resonances due
to the rotational transformation (including shear-effects) of the helical magnetic field lines.
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INTRODUCTION

The fast waves (often referred as the fast magnetosonic
or compressional Alfvén waves) are interesting for
scientists both academically and in applications for fusion
plasmas. They can be used for an additional plasma heating
in tokamaks, stellarators and open mirror-traps in the
frequency range of ion-cyclotron resonances (ICR) and are
believed to be responsible for ion-cyclotron emission there.
Presently, the linear theory is very well developed [1] for
any plane waves in a uniform magnetized plasma confined
by a straight magnetic field. However, the plane waves are
not suitable for cylindrical and toroidal plasma models. In
this connection, the theory of fast waves was significantly
advanced at the end of 20th century using the models of
cylindrical and quasi-cylindrical waves in the cylindrical
[2-5] and toroidal [5-10] plasma configurations. It was
shown that the eigenfrequencies of fast waves are defined
by the contribution of bulk particles (mainly ions) to the
transverse dielectric tensor components. As some
restriction of these investigations is an assumption that the
dielectric tensor & for waves in any cold current-carrying
magnetized plasma has the same (invariant) form, i.e., like
as for plane waves in a straight magnetic field [1].

However, the current-carrying plasma is not in the
stable equilibrium. Therefore, wave analysis in the current-
carrying plasmas should take into account the influence of
rotational transformation of the stationary magnetic field
lines (including the shear-effects) on the dielectric
properties of plasmas in the helical magnetic field. The
main goal of our paper is to describe the fast waves in the
cylindrical current-carrying plasmas using the approach
developed in Refs. [3, 11-14].

1. PLASMA MODEL

The simplest model of tokamaks is a magnetized
plasma cylinder (radius a) with identical ends in the
helical magnetic field, where the ohmic current j,
generates the poloidal magnetic field Hy, =H,e, in

addition to the longitudinal H,, =H,e, , where e, e,,

0z~z 1
and e, are the unit vectors along the axis r, @ and z of
the cylindrical
coordinates. In this case, the length of plasma cylinder
is equal to 2zR,, where R, corresponds to a major

tokamak radius. As a result, the stationary field
H,=H,, +H,, becomes helical with a rotational
transformation, allowing to take into account the shear-
effects and the radial profiles of ohmic current by the
radial  dependence of plasma safety factor
g(r)=rHy/(RoHyy) and its derivatives.

Describing such plasma model [11-14] we assume
that the steady-state current (J, || Hy) is created by
electrons having the velocity v, =uv,, whereas v, =0
for heavy ions. In this case, according to Ampere’s law,

A . 4
(VXHO)'h == Jo --= No.ev,, (1)
C (o}
where
A
H, 4rznye

Here ny is the electron density, e is the elementary
charge, and magnetic field parameter «, is equal to
h h rd
K, :22_9( ___q) 3)
r 2q dr

To evaluate the dispersion relations for eigenmodes
in the current-carrying plasma, as usual, we should
resolve the Maxwell’s equations for perturbed electric
field (E), magnetic field (H) and current density (j)
components. Further, we use the normal A, binormal A,
and parallel A, projections relative to H, for the vector

values A={E,H,j} =An+Ab+Ah:

A=A =An, A=A=Ab A=A=Ah
where n, b, h are the normal, binormal and parallel unit
vectors relative to H,:

h=H,/H,=he, +he,,
n=bxh=e,, (5)
b=hxn=he,-hge,,

accounting for that b, =h, =0,b, =h, and b, =-h,.

2. WAVE’S EQUATIONS

Assuming the smallness of a poloidal magnetic field,
hy << h,, the differential Maxwell’s equations for short
wave perturbations, proportional to
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{E.H, j} ~ exp(-iet +imo+inz/ R, +i[k.dr), (6)
can be reduced, in the geometric optic approximation, to
the set of linear algebraic equations

H, = N,E,—N,E,,
H, = N,E, +iN,E, —N, E,,
H, =—-N,E, +N,E, —iN,E,, @)

NHHz —NyH; =&, B +&,E, +&,5E;,
—NHHl—iNlH2 +N.H,; =, E +&,E, +5,E;,
N H, =N, H, +iN,H, =&, E, + &,,E, + &,,E,.

k.c k.c k. .
Here N, =——, N,=—, N, =-— are the radial
(0] (0] (0]
(normal), binormal and parallel refractive index

components, corresponding to the radial (k;), binormal
(kb _ mh, —%J and parallel [kn _ mh, +n_hZJ wave-

r R, r R
numbers; m and n are the poloidal and toroidal
eigenmode numbers;

h h
N =S¢ N, =2 Kl:zTog_‘:

[ w
where x; — parameter is defined by the shear of
magnetic field lines (~dg/dr) in the explicit form.

Deriving Egs. (7) the perturbed current density
components were excluded by the connection
47jil o=(gx-Si)Ex, Where subscribed indexes i,k=1,2,3
numerate the n, b, h projections of the vector values,
Egs. (4); o are the Kronecker symbols.

Contribution of cold particles in the current-carrying
plasma to the dielectric tensor &, for waves in the
frequency range below the electron-cyclotron frequency
(a<<|Q¢|) can be expressed as [11,12]:

. (8)

. 2 o 2
e @ iy e 10
— _ pa - ps
=& =1+ X O — =1+ =~ O — 2
a a P B -
&p =6, —NN,, 9
i @2 Q

_ _ pa” "a i ~
& =€y =1 Z T_'NnNz =
« o(Q, —o)
. 2
hulp e .,
. pﬂ -
=iy Pe% NN
2 2 I 2y
B Qﬁ(Q[f - )
&3 == =IN,N,, &y =—&p =—IN/N,,
o 2 2
e,y () 1)
_ _ pa — pe
£ =6 =1- s =1-—.
a w 0]

Here «}, =4zN,, 6. /M, is the squared Langmuir
frequency of o-kind particles, Q_ =¢_H,/M_c is the
cyclotron (Larmor) frequency of ions (single or multiple
species, a=i,i,,..., €, >0) and electrons («=e,
Q, <0); M,, Ny, and ¢, are the mass, density and
charge of a-kind plasma particles; H, =,fH02Z +H., is

the stationary magnetic field module; c is the speed of
light. As we see, the transverse component ¢, =&, is

defined mainly by the contribution of plasma ions; the
longitudinal &, =&, and off-diagonal &, &, &y, &,

components — by the current-carrying electrons; ¢,, and
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gyrotropic components &, and &, — by both the ions
and electrons. Of course, if j=0, h=0, h,=1, x; =0,
x, =0, this dielectric tensor can be reduced to g for
waves in a cold equilibrium collisionless plasma in a
uniform magnetic field [1].

Excluding the magnetic field components by the
Faraday’s law [first three equations in (7)], we obtain
the following wave equations for E;, E,, and E;:

(£, =Nf =NZ)E, +(N,N, +ig)E, + N,N,E, =0,
(NN, —ig)E, +(&, = N7 = NZ = N,N, ) E, +
+(N,N, —iN,N, ) E, =0,

N N,E, +(N,N, +iN,N, ) E, + (& — N7 = N} = N} ) E, =0,
where the additional designation

(10)

iy e [N 0))
i a@ o v
PN

is introduced instead of &, —iN,N, =ig . Note, the new
parameter N,=N,+N, is
magnetic shear. Moreover, the term NN, can be

comparable and larger than the ion contribution to g for
low frequency waves (w<<Q) far from the rational
magnetic surfaces, where m+nq(r)>>1.

3. DISPERSION RELATIONS

independent from the

As usual, the squared radial refractive index N? of
eigenmodes in the current-carrying plasma cylinder can
be derived from the corresponding biquadratic
dispersion equation [i.e., when the determinant of Egs.
(10) is equal to zero]:

AN/ —-BN?+C =0, (12)
where

A=g , (13)

B=(g+&,—N7)(e, -N?)-0* =N, N, (&, = N7 )+

+ NHZNl2 —-2N/}e, —2gN,N,,
c :(gH—sz—NZZ)[(Q—NHZ—sz)(gL—N‘f—NoNl)—ng—
—NgNF (&, = N7 =Ng).

This dispersion equation allows us to determine the
radial structure of eigenmodes (by k,, as a boundary
value problem) in dependence on the given m, n and @
at the considered magnetic surface [by r=const under
the given radial profiles of N,,(r) and q(r)]. The shear

corrections NyN, in C are smaller than ¢, , but they

can be comparable with NHZ, e.g., nearby the rational

magnetic surfaces, where m+nq(r) =0. It should be

noted, that assuming Ny=N;=N,=0 into B and C
coefficients, Eq. (12) can be easily reduced to the
dispersion equation in Ref. [7] suitable for plane (and
cylindrical) slow and fast waves in the equilibrium
magnetized plasmas held by a uniform magnetic field,
where h=0, k=K, ki=n/Ro=k;, ky=k=m/r=Kk,.

Two roots of Eq. (12) are equal to

_ B+4B?—4AC

ert - 2A (14)
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corresponding [7] to slow waves (N7, =

Z ) and fast
waves (NZ, =N?Z), respectively. Using inequalities

le, 19l ¢ |, Egs. (14) can be simplified to

&
Niw =NZ +-1 (e, =N), (15)
gL
. (e =NJ=NZ)(e, =N = NN, )- @7
N2, = ~ . (16)
g —N,

4. ICR ABSORPTION OF FAST WAVES

As is well known [1], the growth/damping rate of
any waves is determined by the anti-hermitic part of
dielectric tensor elements in the considered plasma
models. Since the dielectric tensor g in Egs. (9) is
hermitic, the slow and fast waves in our cold current-
carrying plasma cylinder must be pure harmonic-
periodic. However, we should remember about the
possible two principal collisional and collisionless wave
dissipation mechanisms in any plasma model.

The collisional mechanism is connected with
resistive (ohmic) conductivity of cold plasma models
due to electron-ion friction as a result of effective
electron-ion collisions. Resistive absorption both the
fast and slow waves in magnetized plasmas usually is
small. It can be substantial [7] only for slow waves at
the plasma periphery under the conditions where the
particle density is quite large and temperature is very
law. The detailed analysis of influence of collisional
effects on the cyclotron wave-particle interactions in
magnetized plasmas of tokamaks and stellarators has
been done at Ref. [8].

Other collisionless wave dissipation mechanisms are
connected with the resonance wave-particle interactions
in the high-temperature plasmas when collisional
(resistive) wave damping become ineffective. In this
case, the kinetic wave theory should be used to estimate
the contribution of resonant particles to the anti-hermitic
parts of &. As one can easily verify in section 4, the
collisionless damping rate of slow waves (i.e.,
imaginary  part of radial refractive index,

IMN, ~1Img) in a high-temperature plasma can be
defined by the contribution of resonant electrons to the
imaginary part (or anti-hermitic part) of the parallel
dielectric tensor element &, :

e,i 20)2:1 ]
g =1+ kzu”z [1+ |\/;gaw (ga)J ~
H2 Ts (17)
2w,

zmé@n$@wgﬂ.

Here

o 2 o J
W(g)=e"* |1+—=| e dt 18
(©) [ N Iy (18)

is the probability integral for the complex arguments £ :

o—ku,
o
HUTe

where [12,13] the thermal velocity of hot electrons is
defined by their temperature T,,, vy, =1f2TOe /M, , and

(19)

38

the current velocity is determined in Eq. (2). The
corresponding resonance conditions for waves with
phase velocity w/k, and particles having the same

parallel velocity v, = @/k, are known as the Cherenkov

resonance conditions: w=Kkuv, . In this case, the field-

1=
aligned electric field component E =h-E of waves

effectively interacts with plasma particles moving along
the H, field lines, and the wave absorption mechanism
itself is named as the electron (or ion) Landau damping.

However, as was mentioned above, in a magnetized
collisionless plasma there is another wave dissipation
mechanism connected with cyclotron wave-particle
interactions under the conditions when the transverse
electric field components (E, +i¢E,) can effectively

interact with plasma particles moving along the
magnetic field lines with the parallel velocities
y, ~ (@—(Q,) Ik, where the indices a=e, o=i mark the

cyclotron frequencies of electrons and ions, and the
integer values ¢==142,... correspond to the numbers
of cyclotron resonances. The corresponding single
wave-particle resonance conditions in magnetized
plasmas confined by the uniform (straight) magnetic
field are well-known: a’_kM =(Q),, where ku =k, ,
since h,=0. Considering the cylindrical magnetized
current-carrying plasmas (in the helical magnetic field)
we should take into account that the cyclotron wave-
particle resonance conditions there have some another
form [13,14]:

w-ky =[Q +xv, . (20)
A specific feature of current-carrying plasmas is the -

shift,
K:Z% 1—Ld—q ) (21)
r 4q dr
in the parallel projection of the wave vector, k,, due to

the curvature of the external magnetic field lines in the
plasma with ohmic current. This x-shift is responsible
for the difference between the resonance conditions in
the plasmas with straight and helical magnetic fields.
Evidently, if x<=0 or h=0, i.e., in the absence of ohmic
current, the  cyclotron  resonance  conditions
automatically reduce to the expression w—kuy, =(Q,,

for plasmas in a uniform magnetic field, where k, —k, .

In this section we consider the ion-cyclotron
resonance absorption of fast waves in a cylindrical
current-carrying plasma nearby the first (principal,
fundamental, ¢=1) cyclotron frequency harmonic.
Unfortunately, there are no correct expressions of g
elements suitable for waves with o~ (€ (under

|¢(|>2) in the current-carrying plasma models. As for

case of |ﬂ| =1, the contributions of resonant ions to &

can be derived by solving [14] the Vlasov equation for
perturbed distribution functions of plasma particles in a
cylindrical current-carrying plasma under the arbitrary
values of parameter Ky, /(w—<). In this case, we

obtain [13] the following dielectric tensor elements &} :
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Here the ion argument of W (g;) — function, Eq. (18), is
-

[k + x| oy '

where the thermal velocity of resonant ions is defined

by their temperature T,;: vy =,¢2TOi IM; .

To estimate the ICR absorption of fast waves on the
fundamental cyclotron frequency (/=1, so that
w~Q,;), we can use the dispersion equations (14)
and/or (16), where the transverse and gyrotropic
dielectric tensor components (after summation over ions
and electrons) have the following form:

e e 1o wé, I«/ me () B
‘C"L - 811 - 822 - -
20(w+Q, ) 20(K, + K)oy,

_ Cz |\/_ a)p,W () (24)
41)A Za)(k + Ky,
oy (2o+9) I«/_a)pIW(gI

Za)Q (@+9Q,) " 20(k + K)oy

c? I\/;wpiW ()
—
4u 20K, + K)oy,
As one can see these dielectric characteristics under the
given (real) wave frequency @ and eigenmode numbers
m and n have the equal anti-hermitic parts ¢
Jrof, exp(=¢?)

20(k, + K)uy, '
responsible [1] for the ICR absorption of both the slow
and fast waves.

Assuming that |, |=|g|>> N7 N N, N;N, for fast

waves with @ ~ Q,, the dispersion equation (16) can be
reduced to

(23)

Gi =

g=-l&, =16, =

g, =lmg, =Imeg,, =Img = (25)

2

NZ, =N2+N? +N2 = 2

2

— g .

€

(26)

Here N =kc/w is the refractive index of fast waves
(FW), k=kZ+k’+k; =k +n’ /R +m* /r* s the
value of their wave vector. The dispersion
characteristics of fast waves (the real and imaginary
parts of the radial refractive index under the given
w~€,, m and n at the considered by r magnetic

surface):
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N, =ReN, +ilmN, =ReN, (1+iv) (27)
can be estimated from Eq. (26) using the smallness of
ICR damping rate:

ImN, _ Imk,
ReN, Rek,
As a result, the spectrum of fast waves in the ICR

frequency range is defined by the expressions for these

waves in the case of a uniform magnetic field:
2
+N+NE ~ C2
A

As we see, the radial refractive index of fast waves has a
finite value for o~ Q;, whereas |, |=|g| > oo in this
frequency range. Since the transverse electric field
component of fast waves and resonant ions rotate
relatively Ho-field lines in the opposite directions, the
damping rate of fast waves should be small and can be
estimated by the expression

- |k|\ + K| Uri exp(—gf)

v <<1. (28)

ReN2

rFW

(29)

Vew ® (30)
4\ﬁQi [\N(g i )|2
Neglecting the x-corrections to k, in Eqg. (30), we

obtain the well-known result for ICR fast wave damping
rate in Ref. [7]. However, these xcorrections are not
important only for perturbations with k >>h,/r, i.e

in the case, when the pitch of the H,-line screw is
greater than the wavelength along Ho. If k ~h, /r, the

x-corrections should be accounted in the current-
carrying plasmas, including the tokamaks, or other
devices, where the magnetic field is helical. The main
difference between our results and the well-known ones
is that fast waves propagating strictly across the uniform
magnetic field (k,=0) are not absorbed by plasma ions,
whereas if magnetic field is helical, the absorption of
these waves with k =0 (under @ ~ €2, ) can be nonzero

due to corrections connected with the magnetic shear
and curvature of the magnetic field lines in the wave-
particle resonance condition (20). In this case, the
damping rate of fast waves propagating along the
normal n to the magnetic surface in the current-carrying
plasma is estimated by the formula

1 [ o dqj vy exp(—57)
|l |
Rl 4adp)jadze W(g)|
This feature of the ICR absorption of fast waves should
be accounted analyzing their stability, excitation and
dissipation in cylindrical and toroidal plasmas near the
so-called rational magnetic surfaces, where the
longitudinal wave number changes sign, i.e., k (r)=0.

(31)

Vew |kﬂ =0

CONCLUSIONS

In conclusion, let us summarized the main results of
our paper related to the penetration of fast waves with
fixed longitudinal and poloidal mode numbers (n and m)
in the frequency range below the electron cyclotron

frequency (w<|Q,|) at the considered by r magnetic

surface in the cylindrical current-carrying plasma with
one and/or two ion species.
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It is shown that the dielectric characteristics of
electromagnetic waves in the current-carrying plasmas
depend on the structure of the steady-state magnetic
field configuration and plasma particle distribution
functions. Spectra of fast and slow waves in a current-
carrying plasma are determined (as in a straight uniform
magnetic field case) by the contribution of bulk particles
to the dielectric tensor components & However, the g
components in the current-carrying plasma (where H,

is helical), Egs. (9), (22), (24), differ from ones for
plasmas confined in the uniform magnetic field.

It is easily verify that, neglecting the poloidal
magnetic field h, -0, ie, if K, =x,=x,=x—0,
the dispersion characteristics (ReN, and ImN;) of fast
waves in the cylindrical current-carrying plasmas can be
reduced to the well-known results for magnetized
plasmas in a uniform magnetic field.

As in the case of a uniform magnetic field the cold
plasma approximation for & becomes incorrect nearby
the Alfvén, cyclotron and hybrid resonances, where the
wave phase velocity can be comparable with thermal
velocities of ions and/or electrons. It means that kinetic
theory should be used analyzing the wave penetration,
wave excitation and wave dissipation in the current-
carrying plasmas in the range of resonant frequencies
and resonant surfaces.
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HMOHHO-IIUKJIOTPOHHOE MOIJIOMEHUE BBICTPBIX BOJIH B IIWIWHJIPUYECKOM ITJIA3SME
C TOKOM
H.HU. I'puwanos, H.A. A3apenxos

[Npoananu3npoBaHO BIMSIHKE MPOAOILHOTO CTAIIMOHAPHOTO TOKA Ha MOIJIONICHNE U PaJHalIbHYIO CTPYKTYPY OBICTPBIX
BOJH B NWIMHAPUYECKON TOKOHeCymied mmasme. lIpu mojydeHHMH IUCHEpPCHOHHOTO YPaBHEHHUS OBICTPBIX BOJIH
HCTIOJB30BaH JUJICKTPUYECKHUI TEH30p, YUUTHIBAIOLINI paJHalbHyI0 CTPYKTYPY TOKa M T€OMETPHUIO YAEpP KUBAIOIIETO
BHUHTOBOIO MarHMTHOTO MOJIsI 4epe3 KOI(pQUIMEHT 3arnaca yCTOWYMBOCTH IUia3Mbl. [lokazaHo, YTO JMCHEPCHOHHBIE
XapaKTePUCTUKK OBICTPHIX BOJH B HEPABHOBECHOM IIa3Me C TOKOM OTJIMYAIOTCS OT JMCIICPCHOHHBIX XapaKTEPUCTHK
PaBHOBECHOTO IIJIA3MEHHOTO IIHypa B OJHOPOJHOM MAarHUTHOM II0Jie BOJM3HM TOYEK OTCEYKH M PE30HAHCOB HM3-3a y4eTa
BpaIIaTeILHOTO MPEe0OPa30BaHIs CHIIOBBIX JIMHUI BUHTOBOTO MarHUTHOTO TIOJIS, BKITFOYAs! MIUP-3(PHEKTHI.

IOHHO-IIUKJIOTPOHHE MOTJIMHAHHS IBUJIKUX XBUJIb Y HUJITHIPUYHIN ITJTA3MI
31 CTPYMOM
M.I1 I'puwmanos, M.O. Azapenkos

[IpoanamizoBaHO BIUIMB CTaliOHAPHOTO CTPYMy Ha TOTJIMHAHHS 1 pafiaibHy CTPYKTYpY IIBHIKHX XBWIIb Yy
WTHAPWYHIA CTpyMOHecydil mmasmi. [Ipm oTpuMaHHI IUCHIEpCiHOTO PIBHAHHA INBHUIKUX XBWIb BHKOPHUCTAHO
JUETEeKTPIYHNN TEH30p, SKWH BPaxoBYe pamialibHy CTPYKTYpYy CTPyMy 1 T€OMETpil0 YTPHMYIOYOTO T'BHHTOBOTO
MAarHiTHOTO TOJI Yepe3 KoedillieHT 3amacy criiikocti mwiasMu. [Toka3aHo, MO JUCTIEPCiiHI XapaKTEePHCTHKU IIBUIKIX
XBWIb y HEPIBHOB@XKHINA IDIa3Mi 31 CTPyMOM BiIpI3HSIOTBCA Bl IUCHEPCIHHMX XapaKTEPUCTHK PiBHOBAYKHOTO
IUIa3MOBOTO IIHYpa B OJHOPIAHOMY MAarHiTHOMY IOJNi MOONM3Y TOYOK BiJICIYEHHS 1 pe3oHaHCIB uepe3 00K
00epTaNIbHOTO NEPETBOPEHHSI CUIIOBHX JIHIM TBUHTOBOTO MAarHITHOTO HOJIS, BKITIOYAI0UYH IINP-ePEKTH.
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