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A new class of metallic materials, so-called ‘“high-entropy alloys” (HEAS), was under review. Various
definitions of these alloys are given, their main differences from the conventional alloys are indicated and the
dynamics of publications in the period from the first publications in 2004 to the end of 2020 are presented. It is
noted the almost exponential growth of the article numbers concerning these alloys, and the main reasons of such
high interest are discussed. Experimental results of development the radiation-tolerant materials based on the
concept of high-entropy alloys and study of the radiation damage mechanisms are summarised.

HIGH-ENTROPY (MULTICOMPONENT)
ALLOYS

A set of ideas and approaches was put forward and
developed in the area of structural metallic materials in
the last century. This has enriched science with new
knowledge and led to creation of the materials with
radically new properties. Without pretending to a
complete list of these materials, we will list some of
them — precipitation hardening (ageing) alloys,
amorphous metal alloys (include, bulk), composite
materials, oxide dispersion-strengthened alloys (ODS)
etc. Apparently, an idea of creating so-called “high-
entropy alloys” (HEAs) (Yeh [1]) or “equiatomic
multicomponent alloys” (Cantor [2]) is chronologically
the last. This idea differs significantly from the
conventional alloys producing method, based on
alloying a principal metal (i.e., Fe or Ni) with relatively
small addition of other elements. Most of the known
alloys named by their main component are made
according to this principle. These alloys were divided
into such classes as copper alloys, iron alloys, nickel
alloys, aluminium alloys etc. According to the new
approach, an alloy is obtained by mixing (fusion,
mechanical alloying, spraying etc.) a number of
elements (4-5 and more) in equal or near-equal ratio. It
is clear that there is no base element in such alloys so
that multicomponent alloys cannot be assigned into the
classes listed above. The novel approach can be
illustrated by triple phase diagram: in this way,
researchers use the composition laid in the “central” part
of the phase diagram instead of “corners” and “sides” in
a classic case (Fig. 1,a).

Richard Feynmgn’s expression “There is plenty

room at the bottom™ characterized the call for transition

*

The future Nobel’s prizewinner in physics (1965) Richard P.
Feynman in 1959 delivered in California University the
lecture “There is plenty room at the bottom”. In this lecture he
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of science and technology, namely the area of material
design, from micro- to nanoscale. Paraphrasing it, the
idea of high-entropy alloys can be formulated as “There
is still plenty room in the centre”. By this, we want to
mention the centre of multidimensional space “element
— phase composition”, and alloys laid near the centre
could be extremely interesting in the point of science
and practical prospects. Continuing the analogy, there
had been no thorough study of this space among the
world's materials scientists before 2004; nevertheless,
some works had started much earlier [3].

One circumstance should be noted, that has
prevented the emergence of research in the mentioned
direction for a long time. As known, alloys, which
concentration located in the corners of phase diagram,
are either solid solutions or the mixture of solid solution
with intermetallic compounds (usually, one or two). In
other words, the main number of well-known alloys
used in technique are single-, two- or, relatively rare,
three-phased. Structure and properties of these alloys
are easy to control by varying the phase amount, volume
fraction, dispersion and shape. It seems intuitively that a
large  number of phases, especially complex
intermetallic phases, must coexist in a multicomponent
system, supposing its element concentration laid in the
central part of the phase diagram. Obviously, it will be
extremely difficult to control the structure of such
alloys. Namely, the development of these alloys seemed
to be of little prospect, at least when it comes to
structural materials, since intermetallic phases are
mostly brittle and their volume fraction may be large.

noted, “It is a staggeringly small world that is below. In the
year 2000, when they look back at this age, they will wonder
why it was not until the year 1960 that anybody began
seriously to move in this direction”. That lecture is considered
to have served as the starting point to begin an active works in
the field of nanotechnologies and nanomaterials.


http://www.zyvex.com/nanotech/feynman.html
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Fig. 1. Concentration areas in 3-component system used for development the conventional
alloys and “HEAs” [4] (a); mixing entropy changes depending on the element
concentrations in a 3-component system [5] (b);
dependence of mixing entropy on the number of components (c)

The intuitive idea of a large phase number in a
multicomponent alloy may be well supported by the
known Gibbs phase rule. Whereby, the possible number
of phases P in a multicomponent system (alloy) in an
equilibrium state is determined by the expression:

P=C+1-F, (1)

where C is the number of components (elements) in the
alloy, and F is the number of thermodynamic degrees of
freedom or independent variables (temperature,
pressure, etc.) in the system.

For example, according to (1), the maximum
possible number of phases in a five-component system
is 6 (in the nonvariant system, i.e., F = 0).

However, “opportunity” does not mean “obligation”
and in fact, it turned out that the situation is not so
hopeless. Thus, Cantor and co-authors established [2]
that five-component equiatomic CoCrFeMnNi alloy
forms a single-phase structure during crystallization — a
disordered solid solution with a simple fcc lattice. Yeh
and co-authors [1] suggested that a stable single-phase
structure, or rather, a disordered solid solution, can
stabilized in the multicomponent equiatomic (or near-
equiatomic) alloys due to the high mixing entropy. The
prerequisites for this are to the following considerations.

It is known, that state with the minimal Gibbs free
energy G, is realized in the equilibrium system:

4

G=H-TS, )

where H — enthalpy of the system; S — entropy of the
system; T — absolute temperature.

The ability of a system to transit from one state to
another is determined by the change in free energy AG:

(3)

where G; and G, — free energies of the system at initial
and final states, respectively.

If AG <0, then the transition is thermodynamically
possible, when  AG>0, the  transition is
thermodynamically impossible, and when AG = 0, the
transition can arbitrarily occur in both directions, i.e., it
is reversible.

Let’s imagine a system consisted of several separate
components, i.e., metals, and mix the atoms of these
components at a certain temperature T. Then the change
in the free energy during mixing 4Gp,x can be written
as:

AG = G2 _Gl’

AGpix = AHpiy — TASpi, €©))

where A Aix — change in enthalpy; 4S,x —change in the
entropy of the system, when components are mixed (so-
called mixing enthalpy and entropy).
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A natural question arises: what state of the alloy will
realize after the mixing. The choice took place between
solid solution (ordered or disordered), intermetallic
compound (one or several), amorphous phase or their
combination  (i.e., solid solution + intermetallic
compound). In terms of thermodynamics, that state will
be realized, which has a negative maximum absolute
value AGui. Generally, A4, and A4Sy accurate
calculations for multicomponent alloys are extremely
complex, if not impossible. However, if several
simplifying assumptions are made [1], then it will be
possible to trace the trends of state realizing with the
component mixing.

Firstly, it is assumed, that the dominant contribution
to the mixing entropy among all (configurational,
vibrational, magnetic, electronic) is the configurational
entropy [1]. Secondly, it is considered, that solid
solution is completely disordered and could be
described as an ideal, i.e., atoms of the components do
not interact with each other. Then, the entropy of
mixing can be calculated as:

N
BSpie = —R ) (cilney), ®)
i=1

where R — gas constant (R =8.314 kJ/(kmol'K)); ¢; —
atomic concentration of i-component. Obviously, the
maximum mixing entropy is reached at equal atomic
concentration of the alloy components

ASpix = —ln(l/n) =RlInn, (6)

where n — number of components in equiatomic alloy.

Fig. 1,b illustrates the change in configurational
entropy of mixing in three-component alloy with
changing the component concentration, and Fig. 1,c
represents the change in entropy depending on the
number of components in equiatomic alloy. It can be
seen, that high entropy values realize in centre of a
concentration triangle (see Fig. 1,b) and mixing entropy
increases with growing number of components (see Fig.
1,¢). Mixing enthalpy AH nx Can be represented as

AHp; = §V=1,j¢i4AHr(ri'i];3CiCj' @)
where 4H", — mixing enthalpy of equiatomic binary
i,j — alloy [6], calculated on the base of Miedema’s
model [7]. Thus, it is possible to determine AH,;, and
ASmix values and estimate the gain in free energy with
one or other implemented structural state as a result of
mixing in the system.

It was established [8-11] after the comparing the
calculated values of mentioned parameters and
experimental results on the structure formed during the
crystallization, that a simple disordered solid solution
preferentially forms at the high mixing entropy and low
mixing enthalpy. Compounds formed in system at high
negative values of mixing enthalpy (strong interaction
between atoms of different types) and low values of
mixing entropy.

Nowadays, there are proposed an impressive number
of empirical or semi-empirical criteria, which make it
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possible to “predict” structure state of a certain alloy
with sufficient probability [8-14]. Analysis of these
criteria is presented in number of reviews [15-19], but
their discussion is beyond the scope of this article. It
should merely be mentioned that atomic radii,
concentration of valence electrons, electronegativity,
melting temperature of elements etc. are analysed as
parameters, which determined alloy’s structure, besides
the entropy and enthalpy of mixing. When analysing,
most authors try to adapt the known Hume-Rothery
rules for multicomponent system. Should also be noted
the quite successful attempts of thermodynamic
calculations of high-entropy alloys phase diagram [20,
21] as well as structure predictions using machine
learning method [22].

The calculations show that there are a large humber
of single-phase alloys with disordered solid solution
structure among the multicomponent systems [23].
Experimental studies of as-cast and annealed at high
(pre-melting)  temperatures alloys  confirm this
conclusion. However, these alloys show the appearance
of second phases upon the prolonged annealing at
medium and low temperatures. A prime example of this
is the above-mentioned 5-component equiatomic
CoCrFeMnNi alloy (Cantor alloy) being considered as
disordered solid solution, thermodynamically stable for
all temperatures. However, long-time annealing (up to
1000 h) of this as-cast alloy [24] or short-time annealing
(1 h) of deformed alloy at 600...800 °C [25] led to
second-phase (c-phase) formation.

Another example is equiatomic high-temperature
HfNbTaTizZr alloy [26], in which the hcp-phase
precipitates form in bcc lattice during annealing at
600...800 °C. Probably, these processes are due to
reduction the contribution of the second (entropic) part
in the expression (4) with decreasing T. Thereby, phase
state of high-entropy alloys substantially depends on the
temperature. More detailed discussion of this issue can
be found in reviews [16, 18].

VARIOUS DEFINITION OF THE NOVEL
CLASS OF MATERIALS AND A SEARCH
QUERY FORMULATION FOR
PUBLICATIONS

As it was mentioned above, the main characteristics
of this new alloy class are the large number and high
concentration of each component (chemical element),
i.e., alloy is in the central part of multidimensional state
diagram. However, such qualitative definition needs to
be included of some quantitative characteristics for
more certainty. Various attempts to clarify qualitative
formulations, their semantics, quantitative parameters
and contradictions of existing definitions are described
in detail in reviews and monographs [16-18]. For the
purpose of this article, we will limit ourselves to the
minimal information.

To begin with, we note that in one of the first papers
[2], the main motivation was the study of
multicomponent alloys in the unexplored central part of
the multidimensional compositional space without
reference to the magnitude of entropy and the search for
a single-phase solid solution (see [16]).



In other papers published in the same year [1], the
main focus was on finding a single-phase solid solution
and the role of mixing entropy in stabilizing this state.
Several definitions were proposed for “high-entropy
alloy”. First one is a “compositional” definition: high-
entropy alloys must include at least 5 basic elements
with the concentration of each is between 35 and 5 at.%.
Second one is “entropy” definition, which refers to the
alloys with mixing entropy (5) 4Smix > 1.61 R to a high-
entropy alloy. Wherein, alloys with
0.69 R < ASix < 1.61 R are assigned to medium-entropy
alloys and alloys with 4S5, < 0.69 R — to low-entropy
alloys. Based on the contradiction between
“compositional” and “entropy” definitions some authors
[16] proposed to refer the alloys with 4S,x>1.5R or
even ASmix>1.39 R to high-entropy alloys (the last
definition allows to attribute equimolar four-component
alloys to HEA).

Analysing database and materials' behaviour under
irradiation, we will further include in a consideration all
the articles, used “high-entropy”, “medium-entropy”,
“multicomponent”, “complex concentrated” terms, i.e.,
alloys, except the binary ones, whose composition is in
the middle part of the corresponding state diagram.

The specific search query formulation for
publications on these alloys was as follows: (“high
entropy alloy” or “high entropy alloys”),
(“multiprincipal alloy” or “multiprincipial alloys”),
(“complex  concentrated alloy” or “complex
concentrated alloys”), (“medium entropy alloy” or
“medium entropy alloys”). All found publications are
combined in the framework of «high-entropy alloys»
formulation, which is conditional, but widely used.

PUBLICATION DYNAMICS

Due to the fact that none of the currently existing
databases (DB) in the field of natural sciences does not
exhaust the entire list of primary sources, we have
chosen 3 specialized databases to analyse publications
on high-entropy materials (INSPEC, Institution of
Engineering and Technology, UK, 1969-2020;
Materials Science Citation Index (MSCI), Institute for
Scientific Information, USA, 1992 — April 2011;
International Nuclear Information System (INIS),
IAEA, 1970-2020) and the universal database
SCOPUS, Elsevier, Netherlands, 2004-2020. The
growth rate of the number of publications reflected in
the listed above databases is shown in Figs. 2, 3.

These figures show a rapid increase in publications
on the problem under consideration, with the most

representative databases SCOPUS and INSPEC (the
MSCI database, unfortunately, has not been updated
since 2012).

Fig. 4 displays the countries whose scientists have
published the largest number of papers in the field of
high-entropy alloys. The total number of countries in
which studies are conducted is 58, according to the
SCOPUS database, 48, according to INSPEC, 33,
according to INIS and 9 countries are reflected in the
MSCI database. It has to be noted, that the greatest
number of papers were published by scientists from
Taiwan organizations (see MSCI DB on Fig. 4) in the
first years (2004-2011) of work in this area. Probably
because one of two first articles [1] was published by
Taiwanese researchers. Moreover, they introduced the
concept “high-entropy alloys”. It is noteworthy that the
number of references on this work exceeds 5000,
according to Google Scholar. In the subsequent period
the number of publications was sharply increased by
researchers from China, USA, Germany, India, South
Korea, Ukraine and other countries. The overwhelming
majority of publications are in the form of articles in
journals, and the main language of publications is
English. It should be noted the close cooperation of
scientists from different countries in conducting these
studies: many articles are written by representatives of
four, five or more countries. In total, there are more than
300 organizations participated in the study of high-
entropy alloys, according to the SCOPUS database.
Table 1 provides a list of 30 organizations whose
employees published the largest number of papers in
this area.
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publications reflected in various databases
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Table 1

The list of organizations whose employees published the largest number of papers on high-entropy
alloys (according to SCOPUS DB)

o Number of
Organizations L
publications
1 | University of Tennessee, Knoxville, USA 353
2 | University of Science and Technology Beijing, China 320
3 | Central South University, China 232
4 | Oak Ridge National Laboratory, USA 208
5 | City University of Hong Kong, China 200
6 | National Tsing Hua University, Taiwan 189
7 | Northwestern Polytechnical University, China 155
8 | Dalian University of Technology, China 154
9 | University of North Texas, USA 153
10 | Max-Planck-Institut fur Eisenforschung, Germany 143
11 |Harbin Institute of Technology, China 141
12 | Chinese Academy of Science, China 117
13 | Northwestern Polytechnical Univ. State Key Lab. of Solidification Processing, China 107
14 |Indian Institute of Technology, Madras, India 101
15 | Ministry of Education, China 98
16 | Pohang University of Science and Technology, Korea 93
17 | The Royal Institute of Technology KTH, Sweden 82
18 | Institute of Metal Research Chinese Academy of Sciences, China 79
19 |Yanshan University, China 71
20 | Uppsala Universitet, Sweden 70
21 | Zhengzhou University, China 65
29 National Science Center “Kharkov Institute of Physics and Technology” Nat. Acad. of
Sciences, Ukraine 64
23 | Belgorod State University, Russian Federation 63
24 | Institute for Materials Research, Tohoku University, Japan 56
25 | Wright-Patterson AFB, USA 53
26 | Chalmers University of Technology, Sweden 50
27 | South China University of Technology, China 49
28 | Taiyuan University of Technology, China 48
29 |Inst. for Problems of Materials Science Nat. Acad. of Sciences, Ukraine 46
30 | CNRS Centre National de la Recherche Scientifique, France 46

WHY SUCH INTEREST IN HEAS?

The development of the civilization is inextricably
linked with the emergence and improvement of new
materials. Moreover, it is the new materials that mostly
determine the progress of society evidenced by the
names of various periods of its development — the Stone
Age, the Iron Age, the Bronze Age, the age of
semiconductors etc. Regarding to metallic materials, the
traditional approach to improving their properties is
being almost exhausted. Therefore, the concept of
multicomponent concentrated (high-entropy) alloys
proposed in [1, 2] was met with enthusiasm by the
scientific community. Firstly, it was due to a great
number of possible alloy combinations [3, 16, 23], and
secondly — the possibility of obtaining the materials
with unique mechanical properties at both very high
[27, 28] and ultra-low (down to 0.5K) [28, 29]
temperatures. It was established, that number of HEASs
have a high corrosion resistance, so they can be used in
the chemical industry. Moreover, the coatings based on
HEAs have a high hardness and thermal stability, which
makes them a promising one for tools hardening. High
lattice distortions in HEAs, caused be the difference in
atomic radii of elements, as well as the features of their
electronic structures improve the activity of these

8

materials in the chemical reactions, where they can act
as catalysts. Certain success was achieved in obtaining
and studying the properties of superconducting HEAs,
HEA-hydrogen storage and biocompatible materials for
the medical implants manufacture. Data on these
properties have been published in a number of original
papers, monographs and reviews.

HIGH-ENTROPY ALLOYS AS A
PROSPECTIVE CLASS OF RADIATION-
TOLERANT MATERIALS

The prospects for using HEAs in nuclear and
thermonuclear power industry are of a great interest.
The development of these areas requires the creation of
materials with a complex of properties that satisfy harsh
operating conditions. In particular, nuclear reactors of
the fourth generation (Gen IV) require the materials
capable to withstand high temperature and radiation
doses (up to 200 dpa and more), to be high corrosion
and crack resistant, high creep resistant, etc. [30]. At the
same time, radiation resistance is a key characteristic
determined the interest in a particular material class and
the prospects for its use. While preparing this article, we
have collected and considered the results, obtained in
the study of different aspects of HEAs behavior under
irradiation with particles of different type.
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However, quite recently a detailed review [31] has
been published, authors of which gave a detailed critical
analysis of these works. Therefore, we will provide only
a table that displays a list of studied HEAs, irradiation
conditions and the main results (see Table 2). It is worth
noting, that promising features of HEA behavior under
irradiation, such as higher resistance to a radiation-
induced defect formation, lower void swelling, higher
microstructural stability and limited radiation-induced
hardening in alloys, have been found in a number of
studies [31]. Various reasons for such behavior
associated with HEAsS' complex composition are
discussed, i.e., effect of reduced thermal conductivity on
cascades dynamics, effect of sluggish diffusion on
damage accumulation and effect of defect formation
energy on damage accumulation. However, Pickering et
al. have mentioned in the final part of the review [31],
“Our understanding of the irradiation responses of
HEASs remains in its infancy, and much work is needed
in order for our knowledge of any single HEA system to
match our understanding of conventional alloys like
austenitic steels”.
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BbICOKO3HT}’OHPII71HbIE CILTABBI — IEPCIIEKTUBHBIN KJIACC PAJNAITMOHHO
CTOUKHUX MATEPHUAJIOB. AHAJIN3 PA3SBUTUSA UCCIIELJOBAHUU
HA OCHOBE HTH®OPMAIIMOHHBIX BA3 IAHHBIX

A.B. Jleseneu, M.A. Tuxonosckuii, B.H. Boesooun, A.I'. Illenenes, O.B. Hemawikano

PaccMOTpeH HOBBIN KJIacC METANTHUECKHX MATEPHAOB — TaK Ha3bIBAEMBIC «BBICOKOIHTPOIUIHBIC CILIABBIY.
JlaHbl BX pa3aMyHbIC ONMpPECIICHHS, YKa3aHbl OCHOBHBIC OTJIHYHUS 3THX MATCPHAIOB OT TPATUIIMOHHBIX CILUIABOB M
MpUBeJIeHA TMHAMUKA MyOJMKauid 3a mepuoji oT nepBbix padboT B 2004 roay mo xonma 2020 roma. OOHapykeH
MPaKTHYECKU IKCIIOHEHIIMAIBHBIA POCT YKCIa paboT, MOCBSIEHHBIX STHM CILIaBaM, 0OCYX/IEHbI MPUYHHBI TAKOH
BBICOKOW aKTHBHOCTH WCCJICIOBaHWN B JaHHOW oOmactu. [IpuBeneHBI pe3ymbTaThl pa3pabOTOK pagHalliOHHO
CTOHKMX MaTepHaOB Ha 0a3e KOHIICMIUH BBHICOKOIHTPONHMIHBIX CIUIABOB, W MPOCYMMHPOBAHBI HCCIICIOBAHHS
MEXaHU3MOB PaIUAMOHHBIX TIOBPEKICHUH B TAKUX MaTEpHAaIaX.

BUCOKOEHTPOIIVHI CIIJIABU — MEPCIEKTUBHUI KJIAC PAJTIALIMHO CTIMKHX
MATEPIAJIIB. AHAJII3 PO3BUTKY JOCJIIKEHDb
HA OCHOBI IHOOPMAIIMHUX BA3 JIAHUX

A.B. JIeeéeneuv, M.A. Tuxonoecvkuit, B.M. Boesooin, A.I'. Illenencs, O.B. Hemawikano

PosrnsiHyTO HOBHMH KJac METaJiYHHUX MaTepiajliB — Tak 3BaHI «BHCOKOEHTPOMiHHI cmiaBm». Hamano pisHi ixX
BU3HAYCHHS, BKA3aHO OCHOBHI BIIMIHHOCTI IIMX MaTepiaiiB Bifl TPamWIlifHUX CIUIaBIB, HABEACHO IUHAMIKY
my6aikanii 3a nepioa Big nepumx po6it y 2004 pomi 1o kinis 2020 poky. BusiBieHo nMpakTHYHO €KCIIOHEHIiadbHE
30iMBIICHHST YHMCIa CTaTel, INPUCBSYCHHX IMM CIUIaBaM, OOTrOBOPEHO NPUYMHM TaKOi BHUCOKOi aKTHBHOCTI
JIOCIIIJKEeHB Y 1aHii obsacti. HaBeneHo pe3ynpTaTi po3poOKH pajialliifHO CTIMKMX MaTepiaiiB Ha OCHOBI KOHLTILIT
BHUCOKOCHTPOIIMHUX CIUIaBiB, Ta IMiJCYMOBaHO MAOCIHI/DKCHHS MEXaHI3MIB paialliiHUX IOIMIKOMKEHb Y TaKUX
Matepianax.
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