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     The computer simulation results of the ion acoustic instability evolution in the dusty plasma are presented. The 

dusty plasma consists from electrons, ions, massive charged dust grains and neutral atoms. In the simulation the 

implicit PIC-code is used. To this code the implicit scheme of particles movement is applied, namely the direct 

implicit method of Langdon-Fridman. Realization of the algorithm is presented too. 
     PACS: 52.35.Qz; 52.65.Rr; 2.80.Pi;52.27.Lw 

 

INTRODUCTION 

 It is known that the presence of dust in the plasma 

significantly affects the collective processes that take 

place in it. Dust can change both the spectra of 

oscillations and instabilities that exist in plasma without 

dust, and generate new branches of oscillations and new 

specific instabilities. The reason for this is that the 

presence of dust changes the characteristic 

spatiotemporal scales in the plasma. For example, the 

plasma frequency of the dust component of the plasma 

due to the large mass of dust grains is less than the ion 

plasma frequency by several orders of magnitude. As 

the charge mixture of the plasma changes, in particular, 

the dispersion of ion acoustic oscillations changes and a 

new low-frequency branch, namely dusty acoustic 

waves, appears. 
 One of the directions of modern research of dusty 

plasma is the study of instabilities that occur under the 

action of an external electromagnetic field of large 

amplitude. Among them are studies of the interaction 

between particles in plasma, forces acting on the dusty 

grains and low-frequency ion acoustic instability in 

dusty plasma, and so on. In this paper, the development 

of ion acoustic instability in dusty plasma is considered. 

For self-consistent modeling of low-frequency ion 

acoustic instability in dusty plasma, the “Particle-

Particle Particle-Mesh” (P3M) model was used [1], and 

a corresponding kinetic code based on the PIC / MCC 

model was developed [2]. The choice of this model is 

due to the fact that although the method "particle-in-

cell" (PIC) has proven its effectiveness in modeling 

plasma, it has a significant disadvantage for the study of 

dusty plasma. The spatial distinction in the PIC scheme 

is limited by the size of the spatial grid, which is usually 

of the order of the Debye radius. For a thermonuclear 

plasma, the size of the Debye radius of the tenth or 

hundredth of a millimeter. The size of the powders is in 

the micrometer range, i.e. much smaller than the size of 

the spatial grid. In PIC – models the plasma particles are 

represented by charged "clouds", which have the size of 

the cell mesh. This leads to an inaccurate presentaton of 

the interaction of particles when the distance between 

them becomes less than the size of the spatial grid. 

Thus, the force of interaction between particles at a 

small distance is very different from the Coulomb and 

goes to zero when the distance between the particles 

decreases. To overcome this problem, the PIC-MCC 

collision operator [3] with a cross-section of collisions 

obtained in the analytical theory of “orbital motion 

limit” (OML) [4] could be used to describe collisions of 

plasma particles with powders. This model is fast 

enough, but unsuitable when the plasma is highly 

inhomogeneous and not Maxwellian. 
 The P3M model is a combination of the PIC model 

with the technique used in molecular dynamics (MD) 

and is suitable for modeling the effects associated with 

finite dust grain sizes. The plasma itself is modeled in a 

self-consistent manner. This means that the long-range 

interaction of dust with charged plasma particles is 

described in accordance with the PIC formalism. At the 

same time, for plasma particles that are at a distance less 

than the Debye radius from the dust grains, the 

interaction force is calculated according to the direct 

particle-particle scheme, which uses the exact Coulomb 

potential. The interaction between the particles of the 

plasma in the same region is calculated by the PIC 

scheme. To reduce the computer time for calculating the 

direct particle-particle interaction, the so-called "chain 

grid" is additionally introduced [1]. On the scales of the 

order of the size of the dust grains, the motion of the 

plasma particles is calculated with a smaller time step 

than in areas far from them. The typical time step in the 

PIC circuit is of the order of 10
-11 

s. At the same time, 

near the dust grains, the characteristic time step is about 

10
-13 

s. Plasma particles that cross the boundary surface 

of the powder are considered to be absorbed. The charge 

of the powders is renewed at each time step. 
 

IMPLICIT SCHEME OF INTEGRATION OF 

EQUATIONS OF MOTION 

 Due to the huge difference in the masses of electrons 

and ions, not to mention the comparison with the masses 

of the dust grains, the code uses an implicit scheme for 

integrating the equations of motion, namely the direct 

implicit method of Langdon and Friedman. The essence 

of this method is that recursive filtering of the electric 

field suppresses high-frequency modes. Therefore, this 

scheme allows you to use a large time step, limited only 

by the value of the characteristic time of the problem. 
 The following implicit finite-difference scheme is 

used to integrate the equations of motion in a cylindrical 

coordinate system. 
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where 
mc

tq

2
=


 . The first equation in system (1) is 

solved with respect to velocity vn+1/2  in the next time 

step. 
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Members who depend only on the time step nt  and are 

even more advanced in time are separated. Then 

equation (2) takes the form 
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where v~  is an intermediate velocity 
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Corresponding intermediate positions of the particles 

 tn  vxx ~=~ . (5) 
Assuming axial symmetry, the electric and external 

magnetic fields will depend on only two cylindrical 

coordinates {z,r} and will have only two components 

E={Ez, Er}, B={Bz, Br}. The motion of particles in a 

time step nt  is determined by three components of 

velocity vr, vθ, vz. Although the PIC particle does not 

have an azimuthal coordinate, it has an azimuthal 

velocity component that describes the rotation of all real 

plasma particles containing one PIC particle around the 

z axis as a whole. Similar to [5], an auxiliary Cartesian 

coordinate system{x1, x2, x3} is introduced to move a 

particle in time by one step. 
 This system is oriented in such a way that its axis x1 

has some direction perpendicular to the cylindrical axis, 

at the same time the axis x3 and the beginning of the 

auxiliary coordinate system coincide with the z-axis of 

the main cylindrical system. Uncertainty arises due to 

the fact that the PIC particle has no azimuthal 

coordinate. Regarding the auxiliary Cartesian coordinate 

system, the velocity and acceleration of a particle under 

the action of a field at a time step nt  are 
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Appropriate Cartesian components of electric and 

magnetic fields will be 
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Let us denote the matrix by the symbol Bn 
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and rewrite equations (4) and (5) in matrix notation 
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In equations (6) and (7) the following symbols are 

introduced 
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Then the matrices Tn and Rn are written as follows 
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In accordance with the finite-difference scheme (3), an 

iterative procedure is used to advance the particles in 

time. This procedure consists of three steps. The first 

step of prediction is performed in the local auxiliary 

Cartesian coordinate system. In the time step tn, the 

values xn, vn-1/2, En, an are known, but the field 

En+1(xn+1) is unknown. Therefore, the first step is 

performed with the provided electric field 

)(=)( (0)(0)
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where mq=cqm / . This new intermediate position of the 

particles is not consistent with the electric field 

ρπ+n
~41  E , where ρ~  is a charge density calculated 

from the intermediate coordinates of the particles. To 

fix this, you need one or more correction steps, 
1)()(1)( =   sss

δxxx , where s is the iteration 

number with xx ~=(0)
. The difference in the 

coordinates of the particles is equal to 
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This discrepancy in the coordinates of the particles can 

be physically interpreted as the "polarization" of the 

plasma with the polarization vector  n22,TP
(s)(s) ρ=  . 
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This leads to an implicit elliptic equation for the electric 

field divergence 
1)( s

δE  
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 The last final step is required to correct the 

intermediate speed values 
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THE FORCES ACTED ON THE CHARGED 

PARTICLES IN THE TOKAMAK PLASMA 

 When the emission of the charged particles from 

dust grain surface is absent, we use the “Orbital Motion 

Limited” (OML) model for dust surface charging [8]. In 

the frame of OML, the surface floating potential  is 

determined by the electron current Je to the ion current 

Ji equality [9] (Fig. 1), where 

     eATeexpπmTn=J deeeee /
2

1
/84/1

2/1

0  , (9) 

    eσδχu,FmTn=J dTΓiiii //2
2/1

0 . (10) 

 
Fig. 1. Electron flux falling on the dust grain surface 

 

Here ne0, ni0 and i0 are not disturbed electron and ion 

densities and plasma velocity far from the dust grain, mi 

is ion mass, u =i0 2Ti/mi
½, T =Ti/Te, Te=e, 

2

dd πR=σ  is a cross section area, and dd σ=A 4  is a dust 

grain surface area. 

      +uerfuδχ+u+u=δχu,F TTΓ //12/
1



 

    221
2exp/1 uπ+ 


, 

          21
2exp/12

1
//12/ uπ+uerfuδχ+u+u=δχu,F TTΓ 

 , 

and erf(x) is error function. It was assumed at deriving 

of the equations (9, 10), that (i) potential is attractive 

)(<0 , and axial symmetric, (ii) plasma ions are once 

ionized, and (iii) i0e n=n 0 . 

The floating plasma potential is determined by the 

following transcendent equation 
     TΓσTiee δχu,Fξ+δmm=χ=Te /ln/2ln/1/  , (11) 

where    ddσ Aσπ=ξ 42/1
21 . Due to ambipolarity of the 

plasma flux on a dust grain surface it obtains the 

negative charge, -eZd. Dust density dn  assumed to be 

small, and it satisfies inequality Zdnd << ne. The charge 

number Zd can be obtained from the relation 

 edd χT=RZe /2 . (12) 

This relation follows from that a conduction sphere 

charge obey the law eZd = C, where Te=e is the surface 

potential, and electrostatic capacity of the unit of 

surface area is C = Rd. 
 The assumption, that a dust grain surface does not 

emit the charged particles, has some restrictions. Under 

certain conditions, especially under emission data 

absence, the model gives uncertain value and even sign 

of a dust grain charge and floating potential. In the case 

of the emission, a balance of the charged particles fluxes 

on a surface is Je = Ji +Je,ph + Je,sem Je,sim + Je,them, 

where Je,ph is the electron flux due to photoemission; 

Je,sem, Je,sim and Je,them are the fluxes, associated with the 

secondary electron and ion emission, and the thermo-

electron  emission. The secondary electron emission 

[10] strongly depends on a flux and energy of the falling 

particles, at the same time a thermo-emission critically 

depends on a surface temperature and material 

properties, as determines Richardson-Dushman 

formulae  

      dwdesbdtheme, TAhTπemPA=J /exp/4 32
 . (13) 

Aw is a working function, h is the Plank constant,  dsb TP  

is a penetration factor of a potential wall [11] (Fig. 2).  

 
Fig. 2. Electron flux from a dust grain surface as a 

result of the thermo-electron emission 

 
Under a high temperature of the dust grains, thermo-

electron emission may be dominant, which leads to a 

positive dust grain surface charge. As a result a great 

flux of the hot electrons amplifies dust grain heating. In 

so doing the magnetic field and space charge effects 

may be important. The full force, which acts on a dust 

grain, is equal to the vector sum Fd =Ffric,i+ Ffric,n+ FL+ 

Fg, where Ffric,i (Fig. 3) is an ion-dust friction force, 

Ffric,n is an neutral-dust friction force, FL is a Lorentz 

force, Fg is a gravity force. 
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 The following expressions are used for evaluation of 

these forces 

  diTiiiifriciifric Vnm  vVF  ,, , (14) 

  dnTnnnnfricnnfric Vnm  vVF  ,, , (15) 

 







 BvEF

c
q plLL

1
 , (16) 

gF dg M , (17) 
where mi, ni, Vi, and mn, nn, Vn are a mass, a density and 

a velocity vector of plasma ions and neutral particles 

correspondingly; VTi = (2Ti/mi)
½
 is a thermal velocity of 

ions, VTn = 2Tn/mn
½
 is a thermal velocity of neutral 

atoms; Epl is a plasma electric field; B is a magnetic 

field and g is a gravity acceleration. The coefficients i, 

n, L are the scaling coefficients, which are used for 

taking in account a change in the force value, if a dust 

grain is non spherical. 

 
Fig. 3. Plasma ion-dust friction force 

 
 Analytic expression for a friction force between a 

dust grain and plasma ion is found in [6, 7]. This force 

has two components Ffric,n = Fcoll + Forb, where Fcoll is a 

force, caused by an absorption of ions by a dust grain, 

and Forb is a force, caused by the Coulomb scattering. 

For a negative charged sphere the first component is 

determined by the expression 

      +uδχ++uuπumT= TiiEpsteincoll

222/13 exp/212/ FF  

      2//212124 2242/1 uerfδχuu+uπ+ T , 

where   Tii V=u /vV  ,   diTiiiEpstein σVnm= vVF  . 

The second component has a form 

       uuYΛδχ= TEpsteinorb /ln/2
2

FF ,  

where        22 2/2exp/12 uuuπuerf=uY   

is the Chandrasekhar's function; 

     /22

90ln2/1ln sfitλη+b=Λ      22

90 dR+b  is 

the Coulomb logarithm;   2

90 effiTid mδχTR=b v  

is a sighting parameter,    22
23 u+T=vm ieffi ; 

        222
/31 effieDs vmT+λ=λ


 is a screening length, 

D is an electron Debye length.  

 For an exact data reproduction from [6] the 

parameter      2/1
6/1/1 iesdfit TT+λR+=η  is introduced. 

This parameter is used in (8), where coefficient of 

friction ifric,ζ  is a function of different plasma 

parameters and properties of particles. 
 The friction force Ffric,n is computed in [12] with the 

assumption that the cross section of a rigid sphere 

collisions is a constant and distribution of the neutral 

atoms is Maxwellian. In this case the coefficient nfric,ζ  

in (9) obtains the following view  

           sπss+s+serfss+=ζ nfric, //exp221 2/12122 


, 

where   nn V=s TvV / . 

 

DUST PLASMA ION ACOUSTIC 

INSTABILITY 

 Let us consider the dust ion acoustic instability 

(DIA) at the presence of electromagnetic (EM) waves of 

large amplitude in a magnetized dust plasma [16, 17] 

under the following parameters: Ion mass mi=40 amu; 

electron temperature Te=1 eV; ion temperature 

Ti =0.1 eV; electron-neutral collision cross section 

en =2∙10
-20

 m
2
; ion-neutral collision cross section 

in =5∙10
-19

 m
2
; parameter Z=0.5; external electric 

pumping field E0=250 V/m; neutral gas pressure 

P=10 mTorr. 
 Such parameters were chosen because they are 

typical for the experiments with dusty plasma. 

 

Fig. 4. Evolution of the ion temperature 

 
 The results of the computer simulation of the 

evolution of the dust ion acoustic instability under the 

action of the external varying electric field are shown in 

Figs. 4-7. In Fig. 4 ion temperature time dependence is 

shown. From Fig. 4 it is visible that ion temperature 

starts oscillate with time and at the simulation time end 

reaches the level in 1.5 times higher than initial. 

In Fig. 5 the electric energy density time dependence is 

shown. The frequency and the growth rate of the electric 

field energy density in this figure correspond to the 

doubled frequency and growth rate of the ion acoustic 

instability of a dust plasma. In Fig. 6 frequency 

spectrum of the unstable ion acoustic oscillations is 

shown. In Fig. 7 the ion velocity distribution function is 

depicted. From this figures it follows, that with time the 

ion velocity distribution function stops to be 

Maxwellian. It elongates under the action of the external 
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electric field and at last acquires so-called bump on the 

tail. 

 
Fig. 5. Electric energy density time dependence 

 
Fig. 6. Frequency spectrum of the unstable oscillations 

 

 Thus, under the action of the external electric field 

on plasma, with neutral gas presence, electron and ion 

drift appears in the opposite directions. Under the 

certain conditions this relative drift is sufficient for the 

ion acoustic waves excitation. The negative charged 

particles presence facilitates the unstable waves 

excitation and critic amplitude of the external field for 

they excitation is decreased when the density of the 

negative charged dust grains increases. 

 
Fig. 7. Ion velocity distribution function 

 

CONCLUSIONS 

 The development of ion-acoustic instability in 

a dusty plasma, turbulence and heating of the 

magnetized dusty plasma under the action of an external 

electric field are investigated by the implicit PIC/MCC 

method of numerical simulation. It is shown that, in an 

external electric field, the development of ion-acoustic 

instability is observed, the saturation of which is 

associated with the capture of plasma ions by the field 

of the most unstable mode. The presence of a large-

amplitude external electric field leads to an increase in 

the current velocity and the excitation of ion-acoustic 

instability, the saturation of which is accompanied by 

stochastization of oscillations and effective heating of 

the ions of dusty plasma. The relative velocity and 

temperature of the ions in this case increase 

significantly. In an alternating electric field, the relative 

ion velocity oscillates with the frequency of the 

pumping field. Accordingly, the energy of turbulent ion 

pulsations and the ion temperatures reach stationary 

values determined by the amplitude of the pump wave. 

The ion temperature at the initial stage is permanently 

increasing. Further, there is a sharp increase in the 

amplitude of the electric field of unstable oscillations 

along with a strong rearrangement of their spectrum. 

Along with the long-wavelength mode, which has the 

maximum growth rate, the amplitudes of the satellite 

modes increase. The electric field of the most unstable 

mode captures ions. It leads to the intensity of turbulent 

noise decreases, the capture is weakened, the current 

velocity increases, and instability grows, as a result of 

which the amplitude of the electric field again increases 

to values sufficient for the capture of ions. Then there is 

an increase in the ion temperature and a significant 

decrease in the current velocity. The ion temperature 

reaches a stationary level, which is much higher than 

their initial temperature. The oscillations of ions at this 

stage of the process are of a stochastic nature, as 

evidenced by the mixing of particles in the phase plane 

and a significant broadening of the ion distribution 

function. 

 Thus, the final stage of ion-acoustic turbulence of 

dusty plasma in the presence of an alternating electric 

field is similar to the final stage of the development of 

instability with inertial relative motion of ion and 

electron flows. However, in an alternating electric field, 

the velocities of charged particles and their relative 

velocity oscillate, while the levels of turbulent 

pulsations and the temperature of the ions reach a 

stationary level. 
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ИОННО-ЗВУКОВАЯ НЕУСТОЙЧИВОСТЬ В ПЫЛЕВОЙ ПЛАЗМЕ 

Я.В. Сусаев, В.В. Ольшанский 

 Представлены результаты компьютерного моделирования развития неустойчивости ионно-звуковых 

волн в пылевой плазме, которая состоит из электронов, ионов, массивных заряженных пылинок и 

нейтральных атомов, с использованием неявного PIC-кода. В этом коде используется неявная схема 

интегрирования уравнений движения, а конкретно – прямой неявный метод Лэнгдона-Фридмана. Также 

представлена реализация алгоритма этой неявной схемы. 

 

ІОННО-ЗВУКОВА НЕСТІЙКІСТЬ У ЗАПОРОШЕНІЙ ПЛАЗМІ 

Я.В. Сусаєв, В.В. Ольшанський 

 Представлено результати комп'ютерного моделювання розвитку нестійкості іонно-звукових хвиль у 

запорошеній плазмі, яка складається з електронів, іонів, масивних заряджених порошинок та нейтральних 

атомів, з використанням неявного PIC-коду. У цьому коді використовується неявна схема інтегрування 

рівнянь руху, а саме – прямий неявний метод Ленгдона-Фрідмана. Також представлено реалізацію 

алгоритму цієї неявної схеми. 


