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Dispersion properties of several dielectric waveguides are considered to provide for wakefield acceleration not
only superluminal group velocity of exciting laser pulse but also high relativistic Lorentz factor of laser pulse as a
driver. In such waveguides laser pulse can excite electromagnetic wakefields, in which charged particles can be
accelerated to high energy before they become dephased.
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INTRODUCTION

Cherenkov electromagnetic radiation as a wakefield
can be excited in a slowing down medium not only by a
relativistic electron bunch but by a short laser pulse too
[1]. For laser power of PW-level excited wakefields are
so intensive that particle acceleration by using such
dielectric wakefields is related to the advanced methods
of high gradient acceleration [2-5]. In [6] the possibility
to provide superluminal group velocity of the laser pulse
required for wakefield excitation in dielectric
waveguide has been considered taking into account the
frequency dispersion of the dielectric permittivity. In
this paper we consider the dispersion properties of
waveguides partly filled with dielectric which are
required to achieve possibly higher group velocity of the
laser pulse. Phase velocity of the excited wakefield is
coincided with group velocity of the laser wave packet,
which is less than speed of light. Therefore for
realization of effective acceleration of relativistic
electrons it is necessary to provide such conditions that
group velocity should be more close to speed of light.
This requirement can be attained at partly filling
waveguide with dielectric. In present report for
realization these conditions two dielectric waveguides
are considered. First dielectric waveguide is perfectly
conductive tube (cylindrical mirror) in which there is
thin dielectric layer near the inner wall. Second
dielectric structure is dielectric coaxial line, which
includes in itself same mirror and located near axis
homogeneous dielectric cylinder. It is shown, that in
such systems transversal dielectric inhomogeneity will
only weekly changes discrete transverse wave numbers
of eigen waves of the waveguide. In result phase and
group velocities are weekly depend on the degree of
filling of waveguide with dielectric.

DIELECTRIC WAVEGUIDE WITH
PARIETAL DIELECTRIC LAYER

Let’s consider tubular dielectric waveguide which
metal tube of inner diameter 2b is partially filled with a

thin layer of dielectric with permittivity & so the vacuum
channel has diameter 2a.
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The dispersion equation describing the propagation
of symmetric electromagnetic waves of the E-type with
the field components E,,E,, H, has the view

Mo (A) 6 3,(0)N, (om)—J,(on) N, (o)
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where A=va, V= «fké —k? is transverse wave number

in vacuum region, o=k,a, k, :,/kf,g—k2 is transverse
wave number in dielectric layer, k,=ow/c,
n=b/a>1, o is frequency, k is longitudinal wave
number. The parameters A and o are related by the
relation

o’ =p>+A\?, )

p? =kja®(e—1) is frequency parameter. The dispersion
equation (1) together with the relation (2) has a highly
universal form and determines the discrete spectrum of
transverse wave A =4 (p,¢&,n). From the last relation
we find the longitudinal wave numbers of the fast
electromagnetic eigen waves of the dielectric waveguide
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In interesting for us quasi-optical frequency range
kia® >>1
the phase velocity of the eigen waves is close to the
speed of light
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Accordingly, for group velocity we have expression
\ A2 A2 ® O\

2 =l-—o ity (0), 0)=——".(4
¢ 2K’ kgaZ“’"( ) ¥n(0) " o P

PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2019, M 1. Series: Plasma Physics (25), p. 95-98. 95


mailto:onish@kipt.kharkov.ua

From this relation it follows that, when the following
condition

A
72,2 Vn (0))

> <<1
k;a

is satisfied, the dielectric layer weakly influences on the
group velocity value, which, in turn, is close to the
speed of light in a vacuum.

In the quasi-optical approximation o >>1we can
use asymptotic representations of the Bessel and
Neumann functions for large values of the argument. As
a result, instead of (1), we obtain

k%z%tg(cu),

u=t/a, £=b-a is the thickness of the dielectric layer. For
radial harmonics with numbers n<< p/ 7z we obtain a

simpler transcendental equation for the eigenvalues A,

2203 -16). 1)

It is easy to verify that, under the condition f(p)>0

= Stg(pu)- (5)

the roots of this equation are in the intervals
Vo) > Mg >Viy,and - under  the  condition
f(p)<Oones are in the intervals v, ., >%, > vy,

where v,, andv,, are the roots of the Bessel functions
Jo(x) and J,(x), respectively.

To determine the group velocity (4) the function
o\, /0w easy to calculate from equation (5)

tg(pu)+7(pu)

cos? (pp)
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In result for group velocity fast eigen electromagnetic
wave in the high frequency limit k?a® >> 4> we obtain
the following expression
Vv 2
2= 1—%
c 2kga
_op
2k%a’ ¢

2pp+sin(2pp)
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Let us investigate the expression for the group velocity
(6). In the case up =mm (m is an integer), we obtain

- (6)

The additive to the group velocity does not depend on
the number of the radial mode. The condition pp=mm

means that an integer number of transverse half-waves
fit in the dielectric layer ¢(=mh, /2, A, =2m/k, ,

96

k, =ky\e—1. In this case, on the inner surface of the
layer, the longitudinal component of the electric field
equals zero, and the connection between the vacuum
region and the dielectric layer is realized through a
magnetic field.

We now consider the case wo=n(m+1/2) or

{=mh, /24X, /4. For the group velocity, we obtain

c 2kza® 2kXa® a ©
In the case under consideration, the magnetic field
vanishes on the inner surface of the dielectric layer, and
the connection between the regions occurs through an
electric field.

Thus, the analysis showed that in the quasi-optical

frequency range k2a® >>22 the group velocity of the
fast electromagnetic eigen waves (v, >c) of the

dielectric waveguide is close to the speed of light in a
vacuum. The dielectric layer slightly slows down the
wave packet so that y, >>1.

DIELECTRIC COAXIAL LINE

The dielectric structure of this type is represented
by a homogeneous dielectric cylinder of radius a,
which is surrounded by a coaxial cylindrical mirror of
larger radius b > a.

The dispersion equation describing symmetric
electromagnetic waves of the E-type in such a dielectric
structure has the form [7]

% Jo () No (An) —Jo (An) Ny () _od (o)
L (M)Ng (An)=3,(An)N,(A) € I, (o)
where A=va, c=k,a, o=k a n=>b/a.

The parameters A and o are related by (2). In the
high-frequency limiting case A*>>1 , p°> A%,

(1)

A% 12p <1, the dispersion equation (7) can be
simplified

gn = 0% (P)

N0 =f(p). (8)

Here ng—l. The transverse wave number in the
a
vacuum region A is defined as follows
A=v(b-a).

From this relation instead of formulas (3), (4) we
obtain expressions for the phase and group velocities

Vv 2
_Ph:1+17‘—n2, 9)
¢ 2Ki(b-a)
Vg 7\‘2 ?\.2

_:1 n n

c 2kj(b-a)” k;(b-a)

7V, (@), (10)

ISSN 1562-6016. BAHT. 2019. Nel(119)



where A, are roots of the transcendental equation (8).
For positive values of the function f(p), the roots of
equation (8) are in intervals ©(n+1/2)>A, >=n, n is
positive integer, and for negative values f(p) intervals
are nn>X, >n(n-1/2).

For a function v, (w) contained in the expression
for the group velocity (10), we have.
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Let us consider some particular cases. For discrete
CVon

m:a\/STl,(pzvom)

dispersion equation (16) we find the roots A, =7n.

frequencies ® from  the

Correspondingly, for the function y, (©) we obtain

s
er?
For the phase and group velocities we have expressions
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For a thin dielectric rod a «'b, the correction to the
group velocity due to the dielectric rod is small and

negative.
Let now consider the set of frequencies
Ccv,,
o, =———, (p=v,). Then the spectrum of
ave-1 .

transverse wave numbers is A, =mn(n—1/2). For the
phase and group velocities, we obtain

V_ph=1 nz(n—]/2)2

+—
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The addition to group velocity is also small. And,
finally, far from these discrete sets of frequencies for the
group velocity of fast electromagnetic waves of a
dielectric coaxial line, we have expression

v, A2 1
1- —+
c " K(b-a) Ki(b-a)

e [1 Q).

Thus, in the whole quasi-optical frequency region, in the
case of a thin dielectric rod a/ b « 1, the group velocity
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of fast electromagnetic waves is close to the speed of
light.

As is known, in a perfectly conducting coaxial line,
there is a coaxial (TEM) electromagnetic wave with a
simple dispersion law @w=kc and a phase velocity
equal to the speed of light in a vacuum. An analogous
quasi-coaxial wave can propagate in a dielectric coaxial
line. For a theoretical analysis of this wave, we will
consider the exact dispersion equation (7). We will
assume that the phase velocity of the quasi-coaxial wave
is close to the speed of light in a vacuum and
consequently 4, << 1. In this limiting case, the dispersion
equation (7) is substantially simplified and takes the
form

2,2 _ 1 ocl(o)

eln(b/a) J,(c)

Solving equation (11) by the method of successive
approximations, we find expressions for the longitudinal
wave number, phase and group velocities of the quasi-
coaxial wave

kzg_lx/s—l 1 1
aln(b/a) Q(p)’
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where 6= 500 @6 )

Frequencies o, :v0nc/(a«/s—1) are called critical [7]
and they separate fast and slow waves. Indeed, in the
vicinity of the critical frequencies, the expression for the
phase velocity (12) can be written in the form

Von 1 &e-1 o-o,

c  2ech(ba) o

n

When o<, v,, >c ,and when o>w, v, <C.
In this case, the group velocity is equal
Vy e-1 1

¢ = 2 In(bja)’
The group velocity is close to ¢ for a large ratio of the
radii of the mirror and the dielectric cylinder.

CONCLUSIONS

A necessary condition for the realization of the
acceleration method of relativistic electrons (positrons)
by the wake fields of a short laser pulse in dielectric
structures is the possibility of propagation in them of
laser wave packets with a group velocity close to the
speed of light in a vacuum. This is due to the fact that
the phase velocity of the Cerenkov wakefield in
dielectric media coincides with the group velocity of the
laser pulse. The condition v, ~c can be realized in
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dielectric slowing structures, in which the dielectric
only partially fills the dielectric structure in the cross
section. In this case, the transverse dielectric
inhomogeneity will only slightly perturb the discrete
transverse wave numbers of the eigen waveguide waves.
In turn, in the quasi-optical approximation wa/c > 1,
where a is the characteristic transverse dimension of
the structure, the phase and group velocities are weakly
dependent on the values of the transverse wave number
and, respectively, the degree dielectric filling of
dielectric structure.

The theoretical analysis performed in the work on
the example of two dielectric structures fully confirms
the quasi-optical ideology presented above. It is shown
that, indeed, in the quasi-optical approximation, the
filling dielectric with a relatively small volume does not
lead to a significant slowing down the group velocity.
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JJACITEPCUOHHBIE CBOMCTBA JJUDJIEKTPHUECKHUX BOJTHOBO/IOB JIJISI YCKOPEHU A
SJIEKTPOHOB KNJIbBATEPHBIM ITOJIEM JIABEPHOT'O UMITYJIbCA

B.A. banakupes, H.H. Onuuienko

PaccmarpuBaroTcsi AUCIEPCHOHHBIE CBOWCTBA HECKOJIBKMX JMAIIEKTPUYECKUX BOJIHOBOAOB, 00ECIEUNBAIOIINX
JUIsl KWJIBBATEPHOTO YCKOPEHHUsI HE TOJBKO CBEPXCBETOBYIO T'PYIIIOBYK) CKOPOCTb BO30YKIAIOLIErO JIa3€pHOTO
HMIIyJbca, HO M BBICOKMH PESITUBUCTCKHM JIOpPEeHI-pakTOp JIa3epHOT0 HMIIyJlbca Kak JpaiiBepa. B Taxmx
BOJIHOBOJIAX JIa3€pHBI HMIIYIbC MOXET BO30YXKIaTh 3JIEKTPOMATHUTHBIE KHJIBBATEPHBIE IO, B KOTOPBIX
3apsHKEHHbBIE YaCTHIIBI MOTYT OBITh YCKOPEHBI 10 BBICOKOM DHEPTHH /IO TOTO, KaK OHHM CTaHYT Je(ha3supOBaHHBIMU.

JICHEPCIHHI BJACTUBOCTI JIEJEKTPHUYHNUX XBUJIEBO/IB JJIs1 TIPUCKOPEHHSA
EJIEKTPOHIB KIJIbBATEPHUM I1OJIEM JIASEPHOI'O IMITYJIBCY

B.A. Banaxipes, |.M. Oniwenko

PosrnsmatoTecss MUCTIEPCiifHI BIACTHUBOCTI NEKUTHKOX MiCIEKTPHUYHUX XBUJICBOMIB, IO 3a0€3MeUyrOTh LIS
KiJIbBATEPHOTO TMPUCKOPEHHS HE TUIBKU HAJCBITIOBY TPYNOBY MIBUAKICTH JIA3€PHOTO IMITYJIbCY, LIO 30yIKYy€E
KiJIbBaTepHE M0JjIe, ajie 1 BUCOKHH PENATHBICTCHKHUI JIOpEHII-(paKTOp JIA3epHOro IMIyJbCy SIK JApaiiBepa. Y Takux
XBHJIEBOJIAX JIA3ePHHUM IMITyJIbC MOXKe 30Yy/DKyBaTH eJNEKTPOMArHiTHI KiJbBaTepHI MOJs, B SKUX 3apsKeHi
YaCTHHKU MOXYTh OYTH NPUCKOPEHI JI0 BUCOKOT €HEPTii 10 TOT0, SIK BOHH CTaHYTh Jie(pa3oBaHUMH.

98 ISSN 1562-6016. BAHT, 2019. Nel(119)


http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2018_4.html
http://vant.kipt.kharkov.ua/CONTENTS/CONTENTS_2018_4.html

