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Particle transport in a random electric field across constant magnetic field is studied by numerical simulation and
analytical approach. We consider the effects of finite Larmor radius and finite correlation time on evolution of a
particle subensemble, i.e. a group of particles which are initially in vicinity of the chosen equipotential line. The
account for difference in evolution of subensembles improves agreement with a direct numerical simulation.
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INTRODUCTION

It is commonly known that in non-equilibrium
plasma an anomalous transport can considerably exceed
collisional one because of particle interaction with
intense fields generated by instabilities in such plasma.
Here the effect of particle trapping on anomalous two-
dimensional transport in constant magnetic and random
electric fields is studied.

This effect is most clearly manifested for two-
dimensional drift particle motion undergoing static
random electric field. The trapped particles move along
closed streamlines, and in static random field all
particles are trapped. Motion of these particles is
correlated;  therefore  Gaussian  displacements
approximation [1] isn’t valid [2]. Our approach accounts
for particle trapping [3], finite Larmor radius [4, 5], and
can be applied in a wide range of correlation times [6].

The idea of particle subensembles [7] applied to
our approach [8] for drift particle motion in static
random field improves consistency with results of direct
numerical simulations. However, Larmor gyration and
temporal variation of random field cause deviation of a
particle orbit from a streamline; consequently particles
are no more trapped for an infinite time. The effect of
partial particle trapping on subensemble evolution is a
subject of our study.

1. MODEL

We consider particle motion across a constant
magnetic field B = B e; exactly X = x4+ r_, and in ExB
drift approximation
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A random electric field E(x, t) = —0/0x ¢(X, t) is given
through a potential as superposition of harmonics with a
common amplitude ¢
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B(x,t) oc ZL% exp[—% ks ]cos(as(t)—ksx).
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Each realization is determined by the set of random
phases {as}. If {as} is constant then a random field is
static, so the field correlation time and the Kubo number
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tend to infinity, K — c. When {as} depends on time,
particularly being reseeded during simulation with
frequency v and probability p, the correlation time
t.=1/(v/In(1-p)), as well as the Kubo number, are
finite 0 < K < oo,

Numerical calculation of particles trajectories is
done by Runge-Kutta method of the 5-th order. Particle
trajectories are wused to calculate mean square
displacement, diffusion coefficient and correlation
function of drift velocity components along particle
trajectories. The correlation function of drift velocity
components in fixed points of reference frame is
obtained using equation for random field. For drift
motion, the Larmor radius is set to be r_ = 0.

2. STATISTICAL APPROACH

Our analytical approach is based on the Taylor
relation [9], that gives a diffusion coefficient Dj(t) and a
mean square displacement A;(t)

D;(t)= %%Ai(t)= J.dvaL.vi (t),

Ci, (F)= (uix(®) + x(to) £+t i (x(to ) 1)

through an unknonwn correlation function along
particles trajectories, Lagrangian one. The Eulerian
correlation function in fixed points of laboratory frame
is known

Cinvi (t): <vi(x+ X, t +to)Vi(X0vto)> .

The crucial problem is to find a Lagrangian
correlation function from a given Eulerian one. There is
no mathematically strict method in general case, so
approximated approaches are used. This is the moment
approximation [3] derived from microscopic equations
without use of free parameters. The closure is based on
the assumption that particle trajectories are
characterized by a mean square displacement

Ca(t)=Cy,, )+Cyy, (1),
Xi(t)=A2(),i=x,y,
va((t)= Ca(X®), |
L= [do expl-o¢ /2C5 (0,0)) & o
Cit)= [ doy Tty XG0

The final equation for a mean square displacement in a
subensemble by initial potential reads
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x[lo(”—zAJ(l— 720)+ |l£”—;A}z2A].

For a finite Larmor radius effects the gyroavereged
potential is used [4], [5] and the Lagrangian correlation
function is

Cilt)= 5 [akexp(x ()05 (]33 ).

For a finite correlation time the additional exponential
decorrelation factor for the Lagrangian correlation
function is introduced [6]

Cu(t)=exp(-t/tc JCy (E5 ).
3. RESULTS OF SIMULATION

The main feature of particle drift motion in static
random field is an asymptotically zero diffusion
coefficient, since all particles are trapped. In terms of
the Lagrangian correlation function this implies
appearance of an infinitely long negative tail as it is
shown in Fig. 1. Despite all particles are trapped, their
dynamics are not the same, it depends on random
potential, which is constant along particle drift
trajectories. Partial Lagrangian correlation functions for
different initial values of potential are presented in
Fig. 2. It reflects that a particle with a small absolute
value of potential travels for larger distances. The
difference between the basic moment approximation
(MA) and the moment approximation with
subensembles (MAS) is demonstrated in Fig. 1; (NS)
means a numerical simulation.

Random potential is not constant along exact
particle trajectory and this leads to a less correlated
particle motion. Depending on initial velocity or Larmor
radius r., particles wander between equipotential lines
with different rates, so while particles with small initial
radius r_ ~ 0.1 are trapped, the other ones with larger
r_~1 are not. Despite a finite Larmor radius cause a
decorrelation, the account for subensembles dynamics
improves the the consistency of analytical approach
with direct numerical simulation. The diffusion
coefficient calculated with subensembles (MAS) shows
a better agreement with results of numerical simulation
(NS) than the basic method (MA) (Fig. 3).

A temporal variation of random potential enhances
a decorrelation effect as well. Even particles located in
places of high potential are trapped by the field within a
limited time interval.

The Lagrangian correlation function for different
correlation times is presented in Fig. 4. For a small

correlation times t; < 1 there is no particle trapping, but
for t.> 1 it is noticeable, and account for subensembles
becomes important.
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Fig. 1. Lagrangian correlation function
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Fig. 3. Evolution of diffusion coefficient
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Fig. 4. Lagrangian correlation function
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CONCLUSIONS

Transport of particles across constant magnetic field
undergoing random electric fields in a wide range of
correlation times and initial Larmor radius was
considered. Despite the decorelection of particle motion
through temporal variation of a random field and
Larmor gyration, the trapping effect could be
significant. An account for a specific particle dynamics
in various subensembles improves consistency with a
direct numerical simulation.
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MNOJAHCAMBJIN YACTHUIL B CJIYYAMHOM IOJIE C KOHEYHBIM BPEMEHEM KOPPEJIAAIIUA
A.H. Yepnsax, B.U. 3acenko

[Iepenoc yactull B cayyailHOM 3JEKTPUYECKOM MOJI€ MONEPEK NOCTOSIHHOINO MarHUTHOT'O MOJISl pacCMaTpUBaeTCs
B YHCJICHHOM MOJCIHPOBAaHUH C aHATUTHYCCKUM MpHONmKeHneM. VccnenyeTcs BIUSHHE KOHEYHOTO pajmyca
JlapMopa M KOHEYHOTO BpPEMEHH KOPPEIALIUU Ha JIBOJIOIHIO IMMOJAHCAMOJIEH YacTHI], TO €CTh TPYIIIBl YACTHII,
KOTOpbIE HAXOJIATCSI B OKPECTHOCTH BBIOPAHHOM SKBUIIOTCHIIMAIHHON JIMHUM B HAYAIbHBIA MOMEHT. YUeT pa3iuyuit
B SBOJIIOIHH MOIaHCaMOJIel YIIydIIaeT COTJIAaCKe C MPSIMBIM YUCIEHHBIM MOJICTUPOBAHUEM.

MIJTAHCAMBJII YACTHUHOK Y BUITAJIKOBOMY ITOJII 31 CKIHUEHHUM YACOM KOPEJISAIII
O.M. Yepnsak, B.1. 3acenxo
[lepeHeceHHsT YaCTHHOK Y BHIIQJKOBOMY €JCKTPUYHOMY THOJII MONEPEeK MOCTIHHOTO MAarHiTHOTO IOJIs
JOCIIJDKYETBCS B YUCIOBOMY MOJENIOBAHHI 3 QHAIITHYHMM HaOJIDKCHHSM. PO3IJIsiIaeThesi BIUIMB KiHLIEBOTO
paniyca JlapMopa Ta KiHIIEBOTO Yacy KOpEIIALlii Ha eBOIIOIIIO0 MiJaHCaMOJIIB YaCTHHOK, TOOTO TPYIH YaCTHHOK, IO

nepe0yBaroTh MOONIH3Xy BHOpaHO! €KBIMOTEHIANBHOI JIiHIT B TOYaTKOBUI MOMEHT. BpaxyBaHHS BiIMiHHOCTEH B
€BOJIIOIIIT IMiJaHCAMOJIiB TIOKPAIy€e Y3TO/HKEHICTP 13 MPSIMHUM YHCIOBHM MOJICITFOBAHHSIM.
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