
ELECTRODYNAMICS

CHARGE-SYMMETRIC DESCRIPTION OF ELECTRONS

AND POSITRONS IN THE DIRAC THEORY WITHOUT

NEGATIVE ENERGIES

Yu.M.Poluektov∗

National Science Center ”Kharkiv Institute of Physics and Technology”, 61108 Kharkiv, Ukraine

(Received May 7, 2019)

A formulation of the Dirac theory, symmetric with respect to particles and antiparticles, in which negative energy

states are excluded, is proposed. Fields of particles and antiparticles are associated with wave functions for which

the Born interpretation as probability amplitudes is valid. Thus, in theory, various ”paradoxes” are eliminated, the

existence of which is due to incorrect accounting of states with negative energy.
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1. INTRODUCTION

The relativistic equation for an electron was obtained
by Dirac in his classical papers [1]. The exposition
of Dirac’s theory is available in many textbooks and
monographs, some of which also became classical [2-
15]. Like the non-relativistic Schrödinger equation,
which describes the spatial and temporal evolution of
a complex function, the Dirac equation also describes
a complex function that includes four components.
Solutions of the nonrelativistic Schrödinger equation
for a free particle with positive energy form a com-
plete set of states, according to which an arbitrary
solution can be decomposed. In the Dirac theory,
along with solutions with positive energy, there are
solutions with the opposite sign of energy. Soon after
the appearance of the work of Dirac, Schrödinger pro-
posed simply to exclude from consideration the states
with negative energy and give physical meaning only
to states with positive energy [9]. However, as it
turned out, this can not be done. In contrast to the
nonrelativistic theory, solutions of the Dirac equation
corresponding to states with positive energy do not
form a complete set of states, and to obtain a general
solution, solutions with negative energy should also
be taken into account. In this regard, after it became
clear that it was impossible to exclude negative ener-
gies from the theory, a problem arose with the phys-
ical interpretation of such solutions [1]. To this pur-
pose, Dirac suggested that in nature almost all states
with negative energy are occupied, and unoccupied
states (holes) behave like positively charged particles.
At first, Dirac identified such states with protons,
but from symmetry considerations it followed that
the mass of electrons and holes should be the same.
The result of the realization of this circumstance was
the hypothesis that new particles correspond to the

holes, then unknown to science, with the same mass
as that of an electron, but with the opposite sign of
charge. Dirac’s theory describes both positively and
negatively charged particles with equal rights, while
the ”electronic sea” hypothesis breaks the symmetry
between them. The interpretation of Dirac, which in
itself does not follow from the mathematical formal-
ism of his theory, was rather coldly accepted by many
leading physicists. Only the discovery of the positron
changed her attitude. Meanwhile, the experimental
confirmation of some predictions of the theory does
not make the theory itself logically flawless. Although
over time it became clear that the Dirac theory for
its interpretation does not need additional construc-
tions, the interpretation at the ”particle-hole” level
is reproduced in many books on relativistic quantum
mechanics and field theory [6]. At present, there is
a completely consistent interpretation of Dirac’s the-
ory, which does not attract additional, intrinsically
non-peculiar, qualitative considerations [2], although,
in our opinion, this correct point of view is not always
consistently carried out.

When interpreting the theory, the central ques-
tion is: ”What is the physical meaning of the complex
multicomponent field, which is described by the Dirac
equation?”. This question is not purely speculative,
but is of practical importance, since, depending on
the answer to it, the rules for calculating the observed
values should be established. If the Schrödinger com-
plex field, according to the Born interpretation, is the
probability amplitude, and its phase-invariant com-
binations correspond to the probability density and
the probability flow density, then the general solution
of the Dirac equation containing the contribution of
states with both positive and negative energies does
not allow such interpretation. Since such a general
solution of the Dirac equation does not make sense
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of the probability amplitude, it cannot be used to
calculate average values of observed values and other
probability characteristics. The usual probabilistic
interpretation is allowed only by solutions with pos-
itive energies, through which the general solution of
the Dirac equation can be expressed. However, this
general solution is not a new admissible state in ac-
cordance with the quantum principle of superposi-
tion, since it involves the operation of charge con-
jugation. Oblivion of this circumstance leads to the
emergence of various ”paradoxes”, such as the ”Klein
paradoxes” [2,6], as well as to such phenomena in the-
ory as the ”jitter” of the electron [6,13].

This paper proposes a variant of the Dirac the-
ory in which equations for particles with opposite
charge signs and equal masses are simultaneously and
symmetrically considered, and where the indepen-
dent variables describing physically realizable states
are solutions for particles with opposite charge signs
and positive energies. Solutions of equations that cor-
respond to negative energies are not independent, but
are expressed in terms of solutions with positive en-
ergies using the charge conjugation operation. This
eliminates the problem of negative energies in the-
ory. Complex wave functions describing the states of
a particle and antiparticles admit the usual quantum
mechanical interpretation and have the meaning of
probability amplitudes. The equations for particles
and antiparticles are independent, so they should be
considered separately.

2. CHARGE-SYMMETRIC FORM DIRAC
EQUATIONS

The Dirac equation describes the evolution of a four-
component complex function ψ(x) = ψσ(x, t), where
index takes values σ = 1, 2, 3, 4. In the matrix no-
tation, the Dirac equation for the function ψ(x) and
the conjugate function ψ̄(x) = ψ+γ4 are

~cγµ
∂ψ(x)

∂xµ
+mc2ψ(x) = 0 ,

~c
∂ψ̄(x)

∂xµ
γµ −mc2ψ(x) = 0 , (1)

where x ≡ xµ = (x⃗, x4) = (x⃗, ix0) = (x⃗, ict), m –
particle mass, c – the speed of light, ~ – Planck’s
constant, γµ – Hermitian 4 × 4 – Dirac matrices.
The sign + in ψ+(x) means Hermitian conjugation.
Over repeated indices everywhere means summation.
We mainly adhere to the notation of the book [2].
Accounting for interaction with the electromagnetic
field is carried out using a well-known replacement

∂

∂xµ
→ ∂

∂xµ
− ie

~c
Aµ(x) , (2)

where Aµ(x) – four-vector potential, and charge
e = ±|e| or e = 0 for electrically neutral particles.
In the following, we consider charged particles. Usu-
ally, when writing the Dirac equation, in (2) choose
the electron charge. This initially introduces some

asymmetry into the theory. However, since oppo-
sitely charged particles enter the theory perfectly
symmetrical, for a charge-symmetric consideration it
is convenient to introduce two fields of particles with
the same masses, but opposite signs of charge − a
”negative” field ψ, which we will consider the field
of particles, and a ”positive” field η, which we call
the field antiparticles. It is accepted to consider a
particle with a negative charge e = −|e| (electron)
as a ”particle” and a particle with a positive charge
e = |e| (positron) as an ”antiparticle”. We do not
discuss the asymmetry observed in nature between
particles and antiparticles, which, quite likely, is not
associated with a charge symmetry breaking in fun-
damental equations. Note also that the state of a
particle can additionally be characterized by an ”in-
ternal” (lepton) quantum number Λ, which for the
particle is assumed positive, then the antiparticle is
characterized by a lepton quantum number of oppo-
site sign. The presence of the ”internal” quantum
number allows us to distinguish the fields of parti-
cles and antiparticles in the absence of an electromag-
netic field, as well as in the case of neutral particles.
Thus, the Dirac equations for the fields of charged
particles and antiparticles in an electromagnetic field
Aµ = (A⃗, iA0) take the form

a) ~cγµ
(
∂ψΛ

∂xµ
− ie

~c
AµψΛ

)
+mc2ψΛ = 0 ,

b) ~cγµ
(
∂η−Λ

∂xµ
+
ie

~c
Aµη−Λ

)
+mc2η−Λ = 0 .

(3)

In the future, the index of the internal quantum num-
ber Λ for brevity will be omitted everywhere. Func-
tions ψ and η are not independent. Their relationship
can be established using a unitary charge conjugation
matrix, which satisfies the conditions [2]:

C+C = CC+ = 1 , CγµC
+ = −γ̃µ , C = −C̃ .

(4)
The sign˜means transpose. This matrix can be se-
lected as C = γ2γ4. Then, from equations (3) and
(4), the following relations follow:

a) ψ = C∗ ˜̄η , b) η = C∗ ˜̄ψ , (5)

binding solutions of Dirac equations with opposite
charge signs.

Expand the solution of the Dirac equation into
the Fourier integral:

ψ(x) =

∫ ∞

−∞
c(ω)ψ(x⃗, ω)e−iωtdω = ψ+(x) + ψ−(x) ,

(6)
where the positive-frequency and negative-frequency
functions are defined by the formulas:

ψ±(x) =

∫ ∞

0

c(±ω)ψ(x⃗,±ω)e∓iωtdω . (7)

It is assumed that there is an integral

1

2π

∫ ∞

−∞
ψ(x)eiωtdt <∞ . (8)
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Note that the integration in (7) is performed only
by positive frequencies. Similarly, the solution of an
equation with the opposite sign of charge is repre-
sented:

η(x) =

∫ ∞

−∞
b(ω)η(x⃗, ω)e−iωtdω = η+(x) + η−(x) ,

(9)
where

η±(x) =

∫ ∞

0

b(±ω)η(x⃗,±ω)e∓iωtdω . (10)

Then from formulas (5) follow the relations express-
ing negative frequency functions in terms of positive
frequency functions:

ψ−(x) = C∗ ˜̄η+(x) , ψ̄−(x) = η̃+(x)C ,

η−(x) = C∗ ˜̄ψ+(x) , η̄−(x) = ψ̃+(x)C . (11)

Thus, general solutions of the Dirac equation with
a charge of an arbitrary sign can only be expressed
in terms of positive-frequency partial solutions ψ+(x)
and η+(x) for Dirac equations with opposite charge
signs and equal masses, which should be regarded as
particle and antiparticle wave functions that allow
Born probabilistic interpretation:

ψ(x) = ψ+(x) + C∗ ˜̄η+(x) ,

η(x) = η+(x) + C∗ ˜̄ψ+(x) . (12)

Since the positive-frequency particular solutions are
interpreted as wave functions of the particle and an-
tiparticle, having a meaning of probability ampli-
tudes, they must be normalized by the conditions:∫

|ψ+(x)|2d3x = 1 ,

∫
|η+(x)|2d3x = 1 . (13)

General solutions of the Dirac equation (12) are ex-
pressed both through the wave function of the par-
ticle and the wave function of the antiparticle, but
they are not a linear superposition of these func-
tions, because they contain an antilinear transforma-
tion of complex conjugation, and therefore have no
sense of the probability amplitudes. Thus, functions
(12) containing the contribution of states with nega-
tive energies are not physically realizable states that
have a meaning of probability amplitudes, and, there-
fore, they cannot be used when calculating transition
probabilities and average values of observable opera-
tors. It is the illegal use in the calculations of such
functions, including states with negative energy, that
leads to the appearance in theory of various ”para-
doxes”.

3. DIRAC EQUATIONS FOR
PROBABILITY AMPLITUDES

Substitute the functions (12) into equations (3) and
(4). As a result, we arrive at equations containing
only functions with positive frequencies, which can
be written as

Q(x) + C∗ ˜̄Π(x) = 0 , Q̄(x) + Π̃(x)C = 0 ,

Π(x) + C∗ ˜̄Q(x) = 0 , Π̄(x) + Q̃(x)C = 0 , (14)

where designations are used

Q(x) ≡ ~cγµ
∂ψ+

∂xµ
− ieAµγµψ+ +mc2ψ+ ,

Π(x) ≡ ~cγµ
∂η+
∂xµ

+ ieAµγµη+ +mc2η+ , (15)

and Q̄(x) ≡ Q+(x)γ4, Π̄(x) ≡ Π+(x)γ4. Any three
equations (14) are a consequence of the fourth equa-
tion, so relations (14) give a different form of writ-
ing one equation. We will first basically consider the
case of a stationary electromagnetic field, assuming
Aµ(x) = Aµ(x). Using expansions (7) and (10) for
functions ψ+(x) and η+(x), we find

Q(x) =

∫ ∞

0

c(ω)Q(x⃗, ω)e−iωtdω ,

Π(x) =

∫ ∞

0

b(ω)Π(x⃗, ω)e−iωtdω , (16)

where

Q(x⃗, ω) =

=
[
~c

(
γ⃗∇− ω

c
γ4

)
+mc2 − ieAµ(x⃗)γµ

]
ψ(x⃗, ω) ,

Π(x⃗, ω) =

=
[
~c

(
γ⃗∇− ω

c
γ4

)
+mc2 + ieAµ(x⃗)γµ

]
η(x⃗, ω) .

(17)

In this notation, equations (14) are equivalent to∫ ∞

0

[
c(ω)Q(x⃗, ω)e−iωt+

+b∗(ω)C∗ ˜̄Π(x⃗, ω)eiωt
]
dω = 0 . (18)

Multiplying (18) first by eiω
′t, where ω′ > 0, and in-

tegrating over time, and then multiplying by e−iω
′t,

and also performing integration over time, we get

what should be Q(x⃗, ω) = 0 and ˜̄Π(x⃗, ω) = 0. Thus,
we have arrived at two independent equations for the
particle and antiparticle wave functions, which, given
the notation (17), have the form[

~cγ⃗
(
∇− i

e

~c
A⃗(x⃗)

)
− (~ω − eA0(x⃗)) γ4+

+mc2
]
ψ(x⃗, ω) = 0 , (19)

[
~cγ⃗

(
∇+ i

e

~c
A⃗(x⃗)

)
− (~ω + eA0(x⃗)) γ4+

+mc2
]
η(x⃗, ω) = 0 . (20)

Here the functions ψ(x⃗, ω) and η(x⃗, ω), according to
(7) and (10), depend only on the positive frequency.
From equations (19), (20) the orthonormal conditions
for electron and positron wave functions follow:∫

d3xψ+(x⃗, ω)ψ(x⃗, ω′) = δ(ω − ω′) ,∫
d3xη+(x⃗, ω)η(x⃗, ω′) = δ(ω − ω′) . (21)
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The conditions of orthogonality of the electronic and
positron functions are also satisfied:∫

ψ+(x⃗, ω′)γ4C
∗η∗(x⃗, ω)d3x = 0 ,∫

η̃(x⃗, ω)Cγ4ψ(x⃗, ω
′)d3x = 0 . (22)

Conditions∫
|c(ω)|2dω = 1 ,

∫
|b(ω)|2dω = 1 , (23)

decomposition coefficients (7), (10) and relations (21)
provide the normalization conditions (13), and rela-
tions (22) lead to the conditions of the orthogonality
of the functions of states with positive and negative
energies:∫

ψ+
+(x)ψ−(x)d

3x = 0 ,

∫
η++(x)η−(x)d

3x = 0 .

(24)
For time-dependent wave functions, the equations

for particles and antiparticles have the form of the
Dirac equations, differing only in the charge sign:

~cγµ
(
∂ψ+(x)

∂xµ
− i

e

~c
Aµ(x⃗)ψ+(x)

)
+

+mc2ψ+(x) = 0 ,

~cγµ
(
∂η+(x)

∂xµ
+ i

e

~c
Aµ(x⃗)η+(x)

)
+

+mc2η+(x) = 0 . (25)

Thus, in stationary fields, the equations for the wave
functions of particles and antiparticles with positive
energies are uncoupled, and, therefore, the states of
particles and antiparticles can be considered indepen-
dently.

4. LAGRANGIAN FORMALISM

We formulate a developed approach to the descrip-
tion of particles and antiparticles in terms of prob-
ability amplitudes, using the Lagrangian formalism,
which allows us to obtain the energy-momentum ten-
sor and conservation laws. The Dirac equations (25)
can be obtained if the density of the Lagrange func-
tion is represented as a sum of Lagrangians particles
Λψ(e) and Λη(−e) antiparticles :

Λψ(e) = −c~
2

(
ψ̄+γµ

∂ψ+

∂xµ
− ∂ψ̄+

∂xµ
γµψ+

)
+

+ieAµ(x⃗)ψ̄+γµψ+ −mc2ψ̄+ψ+ , (26)

Λη(−e) = −c~
2

(
η̄+γµ

∂η+
∂xµ

− ∂η̄+
∂xµ

γµη+

)
−

−ieAµ(x⃗)η̄+γµη+ −mc2η̄+η+ . (27)

Independent dynamic variables are functions ψ+, ψ̄+

and η+, η̄+. Since, as was shown, in a stationary
field, particles and antiparticles are described inde-
pendently, it is sufficient to consider the case of par-
ticles, then similar relations for antiparticles will be

obtained if we replace e → −e and ψ+ → η+. From
the Euler-Lagrange equations, taking into account
the form of the Lagrangians (26), (27), equations (25)
follow, which were obtained directly from the Dirac
equation above. From the condition of invariance of
the Lagrangian (26) for a particle with respect to
phase transformations:

ψ+(x) → ψ′
+(x) = ψ+(x)e

iα ,

ψ̄+(x) → ψ̄′
+(x) = ψ̄+(x)e

−iα , (28)

where α is the real parameter, the continuity equa-
tion for the probability density of the particle follows

∂jψµ
∂xµ

= 0 , (29)

where the 4-vector probability density flow has the
form

jψµ = icψ̄+γµψ+ . (30)

From (29) follows the law of conservation of the total
probability for a particle

∫
d3xjψ0(x) = const. These

relations are similar to those in the nonrelativistic
quantum theory [16]. The densities of the Lagrange
functions (26), (27) depend on the wave functions
of the particle and the antiparticle and on the elec-
tromagnetic field, which is considered as an external
field, but they do not explicitly depend on x. Be-
cause of this, the form of the Lagrangians should not
change when the entire system, including the exter-
nal field, is translated into an arbitrary 4-vector αµ.
From these considerations, we find the equation for
the energy-momentum tensor:

∂Tψµν
∂xν

= − ∂Λψ
∂Aν(x)

∂Aν(x)

∂xµ
, (31)

where the energy-momentum tensor related to a par-
ticle is defined by the well-known relation

Tψµν =
∂Λψ

∂ ∂ψ+

∂xν

∂ψ+

∂xµ
+
∂ψ̄+

∂xµ

∂Λψ

∂ ∂ψ̄+

∂xν

− Λψδµν . (32)

It is customary to introduce a 4-vector momentum

Pψµ =
i

c

∫
Tψµ4dx , (33)

at that Pψµ ≡
(
P⃗ψ,

i
cWψ

)
. Total momentum P⃗ψ and

total energy Wψ are determined by the formulas

Pψi =
i

c

∫
Tψi4d

3x , Wψ =

∫
Tψ44d

3x . (34)

Taking into account the form of the Lagrangian (26),
and also the fact that for functions satisfying the
Dirac equation, the Lagrangian (26) vanishes, we find
the energy-momentum tensor expressed through the
wave functions of a particle with positive energy:

Tψµν = −c~
2
ψ̄+γν

∂ψ+

∂xµ
+
c~
2

∂ψ̄+

∂xµ
γνψ+ . (35)
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Taking into account the law of conservation of prob-
ability (29), the energy-momentum 4-vector can be
represented as

Pψµ = −i~
∫
ψ+
+

∂ψ+

∂xµ
d3x , (36)

so the total momentum Pψ and particle energyWψ =
−icPψ4 are given by the ratios

P⃗ψ = −i~
∫
ψ+
+∇ψ+d3x ,

Wψ = i~
∫
ψ+
+

∂ψ+

∂t
d3x . (37)

These formulas are similar to the formulas for calcu-
lating the mean momentum and mean energy in non-
relativistic quantum mechanics. A specific feature of
the field relations obtained here is that the fields in
them have the meaning of complex probability am-
plitudes for particles and antiparticles, and the time
dependence of the fields is determined by Fourier by
expansions (7), (10) only by positive frequencies.

5. FREE PARTICLES AND
ANTI-PARTICLES

Let us apply the proposed interpretation of the Dirac
theory to the description of free particles and antipar-
ticles. In the absence of an external field, the equa-
tions for a particle and an antiparticle are the same:[

~cγ⃗∇− Eγ4 +mc2
]
ψ+(x⃗, E) = 0 ,[

~cγ⃗∇− Eγ4 +mc2
]
η+(x⃗, E) = 0 , (38)

where the designation for positive energy E ≡ ~ω is
entered. We look for solutions of these equations in
the form of plane waves

ψ+(x⃗, E) =
1√
V
ψ(k⃗)eik⃗x⃗ ,

η+(x⃗, E) =
1√
V
η(k⃗)eik⃗x⃗ . (39)

In this instance[
i~ck⃗γ⃗ − Eγ4 +mc2

]
ψ(k⃗) = 0 ,[

i~ck⃗γ⃗ − Eγ4 +mc2
]
η(k⃗) = 0 . (40)

Bispinores can be written as columns of spinors

ψ(k⃗) =

[
φ(k⃗)

χ(k⃗)

]
, η(k⃗) =

[
ζ(k⃗)

υ(k⃗)

]
. (41)

In the Dirac-Pauli representation

γ⃗ ≡
[

0 −iσ⃗
iσ⃗ 0

]
, γ4 ≡

[
1 0
0 −1

]
(42)

the equation for a particle takes the form[
−E +mc2 ~cσ⃗k⃗
−~cσ⃗k⃗ E +mc2

][
φ(k⃗)

χ(k⃗)

]
= 0 . (43)

Hence the expression for the positive energy of the
particle:

E =
√
(~ck)2 + (mc2)2 . (44)

Since functions (7), (10) are considered for which the
Fourier decomposition is carried out only at positive
frequencies, a root with a negative sign for energy
should not be taken into account. Similar relations
hold for antiparticles. Thus, solutions of equations
(40) can be written as

ψ(k⃗) =

[
φ(k⃗)

~ck⃗σ⃗
E+mc2φ(k⃗)

]
, η(k⃗) =

[
ζ(k⃗)

~ck⃗σ⃗
E+mc2 ζ(k⃗)

]
.

(45)
To fulfill the normalization conditions for bispinors
ψ(k⃗)+ψ(k⃗) = 1 and η+(k⃗)η(k⃗) = 1, the following
normalization of spinors is necessary:

φ+(k⃗)φ(k⃗) = ζ+(k⃗)ζ(k⃗) =
1

2

(
1 +

mc2

E

)
. (46)

Thus, the general solution of the Dirac equation for a
free particle with momentum ~k⃗ can be represented
in one of two forms:

ψ(x⃗, t) =
1√
V

[
ψ+(k⃗)e

i(k⃗x⃗−ωt) + C∗ ˜̄η+(k⃗)e
−i(k⃗x⃗−ωt)

]
,

η(x⃗, t) =
1√
V

[
η+(k⃗)e

i(k⃗x⃗−ωt) + C∗ ˜̄ψ+(k⃗)e
−i(k⃗x⃗−ωt)

]
,

(47)

where ω = E/~ =
√

(~ck)2 + (mc2)2/~ – positive fre-
quency. However, as noted, these functions have no
sense of probability amplitudes and cannot be used to
calculate probability characteristics. As in the non-
relativistic theory, wave functions (39), which have a
sense of probability amplitudes, describe a delocal-
ized particle and an antiparticle with a certain mo-
mentum and positive energy. In the general case, the
wave functions of particles and antiparticles, decom-
posed into plane waves, have the form

ψ+(x⃗, t) =
1√
V

∑
k,r

cr(k⃗)ψ(k⃗, r)e
i(k⃗x⃗−ωt) ,

η+(x⃗, t) =
1√
V

∑
k,r

br(k⃗)η(k⃗, r)e
i(k⃗x⃗−ωt) . (48)

Here the index r = ±1 numbers the spinors with the
projection of the spin on the axis z different in the
rest system. For bispinors in (48) the conditions of
orthonormality are satisfied

ψ+(k⃗, r)ψ(k⃗, r′) = δrr′ , η+(k⃗, r)η(k⃗, r′) = δrr′ .
(49)

For the expansion coefficients in (48), the normaliza-
tion conditions are also satisfied∑

k,r

∣∣∣cr(k⃗)∣∣∣2 =
∑
k,r

∣∣∣br(k⃗)∣∣∣2 = 1 . (50)
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The conditions for the completeness of the wave func-
tions of a particle and an antiparticle with positive
energies can be written in one of the equivalent forms:∑
r=±1

[
ψ+(k⃗, r)ψ̄+(k⃗, r) + C∗ ˜̄η+(−k⃗, r)η̃+(−k⃗, r)C

]
= 1 ,

∑
r=±1

[
η+(k⃗, r)η̄+(k⃗, r) + C∗ ˜̄ψ+(−k⃗, r)ψ̃+(−k⃗, r)C

]
= 1 .

(51)

According to (37), the energy and momentum of an
electron and positron are determined by the formulas

W =
∑
k,r

E(k⃗)
[
cr

∗(k⃗)cr(k⃗) + br
∗(k⃗)br(k⃗)

]
, (52)

P⃗ =
∑
k,r

~k⃗
[
cr

∗(k⃗)cr(k⃗) + br
∗(k⃗)br(k⃗)

]
, (53)

where E(k⃗) =
√

(~ck)2 + (mc2)2. Naturally, in the
proposed interpretation, the contribution of states
with negative energy to the total energy is absent.
Formulas (48) - (53) should be used in the transition
to the quantum-field description of electrons and
positrons. The Dirac equations describing electrons
and positrons in stationary fields have the same form
as in the standard approach [2]. The difference is
that there is no need to take into account the states
with negative energy E < −mc2, which do not exist.
Therefore, naturally, there is no probability of tun-
neling into such states, and there are no ”paradoxes”
due to consideration of such states (various versions
of the ”Klein paradox” [2, 6]).

6. ELECTRONS AND POSITRONS
STATES IN NONSTATIONARY
ELECTROMAGNETIC FIELD

It was shown above that the states of electrons and
positrons with positive energies in a stationary elec-
tromagnetic field are independent, and they are de-
scribed by the same unrelated equations differing only
by the sign of the charge. We consider equations
in the presence of a nonstationary field. We write
the vector potential in the form of a sum of con-
stant and variable components in time: Aµ(x) =
Aµ(x⃗) +Aµ(x). In this case, equation (14) takes the
form

Q(x) + C∗ ˜̄Π(x) = ieAµ(x)γµ (ψ+(x) + C∗ ˜̄η+(x)) ,
(54)

whereQ(x) and Π(x) defined by formulas (15). Equa-
tion (54) can also be divided into an equation for
particles, when ψ+(x) = 0, and an equation for an-
tiparticles, when :

~cγµ
∂ψ+

∂xµ
− ieAµ(x⃗)γµψ+ +mc2ψ+ =

= −ieAµ(x)γµψ+ , (55)

~cγµ
∂η+
∂xµ

+ ieAµ(x⃗)γµη+ +mc2η+ =

= −ieAµ(x)γµη+ . (56)

In a nonstationary external field, energy is, of course,
not conserved.

7. CONCLUSIONS

Usually, when difficulties in the Dirac theory are dis-
cussed, it is noted that this theory is ”one-particle”,
i.e. describes one relativistic electron or positron,
free or in an external electromagnetic field. There-
fore, it is believed that the difficulties encountered
by the theory must be overcome in the transition to
a quantum-field description based on the secondary
quantization apparatus, which is undoubtedly cor-
rect. However, as discussed above, many difficulties
disappear within the framework of the one-particle
theory, if we consistently adhere to the probabilis-
tic interpretation of functions describing the state
of a particle. Obviously, not every complex func-
tion of coordinates and time can be considered as a
probability amplitude. This, in particular, applies to
the multicomponent complex field described by the
Dirac equation. The general solution of the Dirac
equation contains both a positive-frequency part, de-
scribing states with positive energies, and a negative-
frequency part, which correspond to states with en-
ergies of opposite sign. Only states with positive
energies have a physical meaning, and the negative-
frequency part cannot be directly interpreted as a
function describing real states. Thus, the general so-
lution of the Dirac equation cannot be interpreted as
a wave function of the physical state. However, it is
impossible to simply discard the states with negative
energy, since the functions of states with positive en-
ergies do not form a complete set. To overcome this
contradiction, one should take into account that, as
shown by many years of research, the Dirac theory de-
scribes two types of particles with identical masses,
but opposite signs of charge. Therefore, it is natural,
along with the Dirac equation containing a charge of
one sign, to simultaneously consider also the Dirac
equation with a charge of opposite sign. With these
equations, the positive-frequency solutions turn out
to be independent, and their unobservable negative-
frequency solutions, when using the charge conjuga-
tion matrix, are expressed in terms of these positive-
frequency solutions. Thus, in the Dirac theory, as
a complete set of physical states that have a sense
of probability amplitudes, one should take positive-
frequency solutions of the Dirac equations with the
same mass and with opposite charge signs.

In connection with the review, a question may
arise as to why, with a fully charge-symmetric de-
scription, only positive-frequency solutions respond
to physical states. Where and at what stage does
asymmetry arise with respect to functions with a dif-
ferent energy sign? This, as can be seen, is connected
with the assumption that states that correspond to
a minimum of energy are realized in nature. Other-
wise, it would be advisable to select functions that
describe states with negative energies as observables.
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ÇÀÐßÄÎÂÎ-ÑÈÌÌÅÒÐÈ×ÍÎÅ ÎÏÈÑÀÍÈÅ ÝËÅÊÒÐÎÍÎÂ È ÏÎÇÈÒÐÎÍÎÂ
Â ÒÅÎÐÈÈ ÄÈÐÀÊÀ ÁÅÇ ÎÒÐÈÖÀÒÅËÜÍÛÕ ÝÍÅÐÃÈÉ

Þ.Ì.Ïîëóýêòîâ

Ïðåäëîæåíà ñèììåòðè÷íàÿ îòíîñèòåëüíî ÷àñòèö è àíòè÷àñòèö ôîðìóëèðîâêà òåîðèè Äèðàêà, â êî-

òîðîé îòñóòñòâóþò ñîñòîÿíèÿ ñ îòðèöàòåëüíîé ýíåðãèåé. Ïîëÿì ÷àñòèö è àíòè÷àñòèö ñîïîñòàâëåíû

âîëíîâûå ôóíêöèè, äëÿ êîòîðûõ ñïðàâåäëèâà áîðíîâñêàÿ èíòåðïðåòàöèÿ êàê àìïëèòóä âåðîÿòíîñòè.

Òåì ñàìûì â òåîðèè óñòðàíÿþòñÿ ðàçëè÷íûå ”ïàðàäîêñû”, ñóùåñòâîâàíèå êîòîðûõ îáóñëîâëåíî íåêîð-

ðåêòíûì ó÷¼òîì ñîñòîÿíèé ñ îòðèöàòåëüíîé ýíåðãèåé.

ÇÀÐßÄÎÂÎ-ÑÈÌÅÒÐÈ×ÍÈÉ ÎÏÈÑ ÅËÅÊÒÐÎÍIÂ ÒÀ ÏÎÇÈÒÐÎÍIÂ
Ó ÒÅÎÐI� ÄIÐÀÊÀ ÁÅÇ ÂIÄ'�ÌÍÈÕ ÅÍÅÐÃIÉ

Þ.Ì.Ïîëóåêòîâ

Çàïðîïîíîâàíî ñèìåòðè÷íå ùîäî ÷àñòèíîê i àíòè÷àñòèíîê ôîðìóëþâàííÿ òåîði¨ Äiðàêà, â ÿêié âiä-

ñóòíi ñòàíè ç âiä'¹ìíîþ åíåðãi¹þ. Ïîëÿì ÷àñòèíîê i àíòè÷àñòèíîê çiñòàâëåíi õâèëüîâi ôóíêöi¨, äëÿ

ÿêèõ ñïðàâåäëèâà áîðíiâñüêà iíòåðïðåòàöiÿ ÿê àìïëiòóä iìîâiðíîñòi. Òèì ñàìèì ó òåîði¨ óñóâàþòüñÿ

ðiçíîìàíiòíi ”ïàðàäîêñè”, iñíóâàííÿ ÿêèõ îáóìîâëåíî íåêîðåêòíèì óðàõóâàííÿì ñòàíiâ ç âiä'¹ìíîþ

åíåðãi¹þ.
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