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The possibilities and conditions of effective interaction, in particular acceleration, of charged particles by the
field of an intense plane electromagnetic wave in the presence of an external constant magnetic field are considered.
It is shown that the well-known conditions of cyclotron resonances require generalization. New conditions for the
resonant interaction of charged particles are formulated, which contain not only the strength of the external magnetic
field (as the well-known conditions of cyclotron resonances) but also the field strength of the wave. Cases of both
small wave field strengths, so large, are considered. It is shown that new resonance conditions open up new possi-

bilities for effective particle acceleration.
PACS: 01.65.+g, 41.75.Jv, 76.40.+b

INTRODUCTION

Acceleration of charged particles in a vacuum seems
to be a tempting prospect. There are a large number of
works (both theoretical and experimental) devoted to
this problem (see, for example, [1 - 8]). They also indi-
cate the advantages of such acceleration and the prob-
lems that one has to face when solving such tasks.

In the presence of a constant magnetic field, the sit-
uation changes qualitatively. Cyclotron resonances
appear (@ =KV + w,, / 7). When using them, an effec-
tive interaction of waves and particles is possible. Par-
ticularly attractive is the auto-resonance acceleration
scheme. However, to realization this scheme when us-
ing laser radiation fields, abnormally large external
magnetic fields are required. It should be noted that only
external magnetic field intensity (e, ) is included in

cyclotron resonance conditions. There is no wave field
strength under these conditions. This is due to the fact
that the theory of cyclotron resonances developed when
almost always the wave strength parameter
(& =eE / mcw ) was small. Therefore, it was not neces-
sary to take it into account.

The wave intensity appeared only in the study of
nonlinear cyclotron resonances. With the development
of laser technology, the situation could change. As indi-
cated above, the use of cyclotron resonances seemed
simply impossible. In addition to lasers, sources of
intense electromagnetic radiation appeared, such as, for
example, CRM. However, only the usual conditions of
cyclotron resonances were still used (see above).

It is clear that when the wave power parameter be-
comes significant, the usual conditions for cyclotron
resonance must be modified. In this conditions, both the
strength of the external magnetic field and the strength
of the fields with which the particles interact must be
present. This is especially true for the case of laser
fields, when the cyclotron frequency is much lower than
the frequency of laser radiation (@, /@ <<1). This

work is devoted to the analysis of the use of both the
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usual conditions of cyclotron resonance and new modi-
fied conditions.

1. STATEMENT OF THE PROBLEM
AND BASIC EQUATIONS

Consider a charged particle that moves in an exter-
nal constant magnetic field H, directed along the axis z

and in the field of a plane electromagnetic wave, which
in the general case has the following components:

&€ =Re(Eexp(iot —ikr)),
1
H= Re(ﬁ[kE]exp(ia}t—ikr)j, @
[
where E=Eya, @ ={a,.ia,,a,} is wave polarization

vector.
Without limiting of generality, we can assume that
the wave vector k has only two nonzero components k,

and k, . In dimensionless variables p>p/mc, 7 — wt,

r — —r, particle equations of motion can be reduced to:
c

[ph]+— K Re[(pé‘)e”’] . (2)

I(/I
)7
V—£=Bl/) dl// 1_Ql
dz y dr %
where h=H/H;,, o,=eH/mco, E=¢ga

& =(eE,/mcw), w =z—Kkr, Kk is unit vector in the
direction of wave propagation, y = (1+p?)"? is particle
energy, p is its momentum.

Multiplying the first of equations (2) by p, we ob-
tain the following equation describing the change of
particle energy:

Fi Re(vée" ). 3)

Using equations (3), from the system of equation (2)
we find the integral of motion:

p+Re(i£e"”)—a)H [rh]-ky=const.  (4)
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2. PARTICLE DYNAMICS
IN HIGH INTENSITY FIELDS (& >>1)

We firstly consider the case of wave propagation
along an external magnetic field H,. Then the vector
equation (2) and equation (3) can be conveniently re-
written in the following form:

b, =ye, cosy +a, (P, /7),

p, =-ye,siny —a, (p,/7), ©)
o1 ;
7 =;( D&, COSY — Pz, siny ),

where &, =a,&,, ¢, =a,&,.

Note that the value yw =C is an integral. Then the
equations for the transverse components of the particle
pulse can be issued separately in closed form:

p. =¢,cosy +Qp,,
, . ' (6)
p, =—¢,siny —Qp,.

S_Z’ Q=(ay /7‘/})'

The solutions of the system of equations (6) under
the condition Q = const can be presented in the analyti-
cal form:

Here p'=

. &
p, = AsinQy +BcosQy +——
1-0°)

&

(1-97)
where

A= Py SINQy, + Py COSQu +

siny,

—

(1)

cosy,

p, =CsinQy +DcosQy +

. . & &
+sinQuy, sin 1//092—1_1+cost//0 cos;z/ogz—z_1
B = Py COSQury — Py SINQy +
_&
Q-1

C=-B, D=A, g=¢+Q¢, ¢,=¢,+Q¢,.

Using (5), it is easy to find analytical expressions for
the longitudinal momentum:

1 2 2 2 2
:%I:px-’_py_(pxo-i-pyo):l-’_pw‘ (8)

Similarly, we define the expression for the particle
energy y, for example, for a wave with linear polariza-

tion:

+C0sQy, sin V/O%—sinQy/o cosy,

P,

y=$[pf+p§—(p§o+p§0)]+m- ©

It can be seen from the expressions obtained for the
components of the particle momentum that both the mag-
nitude of the momentum and the particle energy are peri-
odic functions of the phase. Therefore, the effective trans-
fer of energy from laser radiation to charged particles will
occur only in a limited space (or for a limited time). The
value of this space (or time interval) can be found by
determining, for example, the dependence of the phase on
time. It is easy to do. So, for linear polarization, it is easy
to find the following expression for the phase

v~ (6Cy2/s0?) " V. (10)
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From this formula it is seen that the dimensionless
time of effective particle acceleration is proportional to
the integral (y—p,)=Cy . It will be the greater, the

greater this integral.

The above expressions for the components of mo-
mentum and for energy were obtained under the condi-
tions when Q #1, i.e. when there are no autoresonance
conditions. If the autoresonance conditions are satisfied
Q =1, then using the system of equations (6) we obtain
the following expressions for the momenta in the case
of a wave with circular polarization:

Py =& W —y,)cosy

S 11
P, =—& (¥ —y,)siny (11)

3. DYNAMICS OF PARTICLES

IN CYCLOTRON RESONANCES

Above, expressions have been obtained for cases
when it is possible to obtain solutions in an explicit
analytical form. In these expressions, cyclotron reso-
nances are not revealed explicitly. Below we obtain a
general system of equations in which cyclotron reso-
nances can be explicitly single out.

For this, it is convenient to introduce new variables
p,,p,.0,& and 7, which will explicitly display the

dynamics of particles in a constant magnetic field:

P, =P, COSO,p,=p, Sind,p,=p, p, =P +P,

X=¢&—-—+sind, y:n+&cos¢9. (12)

p
, Wy
We substitute these variables in the vector equation
(2). Expanding the right-hand side of the obtained equa-
tions in a series of Bessel functions, we have:

+00

; (1-kyv,) S [aXﬂJnmyJ;jcos(am
%zgo A ,(13)
: +a,kV ZﬂJncos(en)

X2
N=—0

where u=k.p, /o,, 8, =t+nf-k,z-k ¢, J, =1, (),

Jp =dJ, (w)/dp.
Similarly, we

P 7.6, 8.1, 6,:
dp. _ &0, ). (1— Ny ]Jn cosé, +
dr %

+&.K,v, Z [aX%Jn +ayJé)Cosﬁn

obtain expressions for

: (14)

d > n ,
d—i/: gonz:c(ava;Jn +ay J) +ozZvZJnJcosen , (15)
1-kv, ) &
d_QZ_M Z [axjn' +ay£3nj5in(gn)_
dr P, 2
o (16)

) i (@v,3; —avaJn)sin(Hn)—w—”
pJ_ n=—w Y

de__& 3 [ay (1-kv, ) +a kv, %ja sing, (17)

dr O 1
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d E &
ﬁ =3, (e, (1=K, )3, +K, @y 3, ~a,v,3)))cos6, (18)
H n=-w
dx _p,cos(@) dy p,sin@) dz _p,
dr 1% "dr y dr oy
Further on the right hand we leave only the reso-
nance terms, i.e. terms for which the parameters satisfy
the condition of one of the cyclotron resonances:

@ =KV +new, . Considering these conditions to be ful-

filled, it is possible to obtain equations describing the
motion of a particle under conditions of isolated reso-
nance.

(19)

D, :i(l—kzvZ )W, -&c0s6,; P, :E—"kZWn cosd,;

0, =A =1-kv,-nZt; 5 =20w .cosq;
/e v
where: W, =, pl%\]n +ta, piJn' +a,p,d,.

Carrying out the expansion A, (y) near the reso-

nance value y, from the last equations of system (20)

we obtain a closed system for describing the dynamics
of particles in the isolated resonance:

2
Ny, =2
Yo 7o
Using these equations, it is easy to find the magni-
tude of particle energy gain in isolated cyclotron reso-

nance:
Sy =4, JeW, 1 (1-Kk2).

4. NEW CYCLOTRON RESONANCES

The system of equations (13) - (19) was studied in
sufficient detail in [5, 6, 8]. This system is convenient
for analysis when the parameter ¢ is small. In this case,
the averaging method was used to analyze this system.
However, system (13) - (19) is strictly valid for any
parameter value. Also, small parameters can be, in par-
ticular, Bessel functions for large parameter values &,.
We will be interested in the dynamics of particles in
laser fields. It means that in real conditions the dimen-
sionless cyclotron frequency will also be a small param-
eter (w, <<1). In addition, in most cases, we will be

interested in the dynamics of relativistic particles
(y >>1). In general case, the resonance conditions are

conditions:

0, = W, cosd, . (21)

6, =1-kv, -k E+nd=0 (22)
Note that condition (22) takes into account the dy-
namics of the leading center, which substantially de-
pends on the electric field strength of the laser radiation.
In the special case (£ =0), conditions (22) contain the
well-known conditions of cyclotron resonance. We
consider some particular new resonance conditions:
1. The simplest case is when the parameters of the
fields and particles satisfy the following relations
n=0 k,=0,k =1 o, <<l ¢, =¢,=0.(23)
Then condition (22) can be represented as:
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£ T . T
5 cos| P T sin g, =—\/:. (24)
V a)H pL a)H 4 2
It can be seen that the resonance condition substan-
tially depends on the wave strength parameter (g).
2. If parameters of fields and particles satisfy relation:
n=0;k, >1k <<1; @, <<1; g,=¢,=0,
then the expression for cyclotron resonance takes the form:

ke, .
Vv, +——=sing; =1. (25)
Ly
Using resonance conditions (22), as well as equa-
tions from system (13) - (19), we can obtain the follow-
ing equation for describing the phase dynamics in the

vicinity of resonance:
2

6, +8y|2(—xvlcos 6,=0. (26)
Equation (26) is the equation of a mathematical pen-
dulum. Analysis of such equations and consequence of a
similar analysis can be found in [5, 6, 9].
3. The most interesting case is when the parameters
of the wave and particles satisfy the conditions:

n=u>>1; k -1k ~(1/;/2)<<1 ;o <<1;

e, =¢,=0. 27)

The importance of this case is due to the fact that it
allows us to analyze the resonance at large values of
number (n>>1). Besides, this case corresponds to the
situation when the number of the Bessel function is
equal to the argument of the Bessel function. In this

case, as is known, the Bessel function decreases most
slowly with the growth of its number and argument

(J,(n) ~1/3n). The resonance condition for this case
has the form:
nwf —2&,k;p,J,sin6,
on
A(y,)=0.
Here y, is value of energy at which the exact reso-
nance condition is satisfied (A(y,)=0). To describe
the dynamics of the phase, we can derive the equation:

0, =k E-nd= =A, (28)

0, +Q%cos 6, sind, — Q> cosh, =0, (29)
V2 g2)? noyv, &,J
where; Q7 =—"; QZ=—F V1
Yy v

Equation (29) is also the equation of a nonlinear

pendulum and has the integral:
2 2

7"+975in2 0, —Q’sin@, =C =const. (30)

Analysis of this integral shows that the maximum
phase velocity can be estimated by 6, ~€. Using

this estimate, it is easy to determine the value of addi-
tion to the particle energy that they obtain when inter-
acting with the wave under resonance conditions;

- oA
0, :A(Vo)‘*'(_] oy,
o

(67).... =(¢9max)/(6A/8y) ~g,d o, 7’ . (31)
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Comparing this additive with those obtained under
conditions of known cyclotron resonances, we can see
that it can be more significant.

5. NUMERICAL ANALYSIS

For a wave propagating along the direction of the
external magnetic field, analytical solutions of equations
(5.6) are found for momentum and coordinates of parti-
cle in an implicit form as a function of phase .

Besides, the integral yy =C is break down when

the wave propagates at an angle to the external magnetic
field (k, =k, =0). Therefore, a numerical analysis of

equations (2) was carried out to investigate the dynam-
ics of charged particles in the field of the plane electro-
magnetic wave and in the external constant magnetic
field H, directed along the axis z. The cases of linear

and circular polarization of the wave field are consid-
ered. Since we are mainly interested in particle accelera-
tion, we consider this process at sufficiently large initial
values of the longitudinal momentum of the particles
and small values of the transverse momentum (for small
values of the transverse momentum, the parameter
u<<l).

The analysis was carried out at the initial values of
the longitudinal momentum p,, =10; the transverse

momenta were chosen equal to p,, =p, =0.1. The

initial values of the transverse coordinates are selected
in accordance with the values of the transverse momenta
and the external constant magnetic field, the initial co-
ordinate z, =z(t=0)=0. The accuracy of the calcula-

tions was controlled using the integral (4). In all the
numerical studies, the value of the integral was pre-
served with a sufficient degree of accuracy: the value of
deviation from the integral did not exceed the values
107 —10°° for the coordinates and momenta of charged

particles of the order 10°.
As follows from the above formulas, the value of the
longitudinal momentum p, >> p, therefore the value

p, practically coincides with the energy value .

If the initial values of the momenta of the charged
particles are such that the condition is satisfied
C=y—p,, where C=yy =const is the integral of

particle motion, a scheme of autoresonant interaction of
particles with laser fields at @, =y can be realized.

Figs. 1, 2 shows graphs of the dependence of the longi-
tudinal and transverse pulses, as well as the longitudinal
and transverse coordinates of the particles on time under
conditions of autoresonance for a wave with circular
polarization &, =&, =¢&,, ¢, =0 for the field ampli-
tude &, =0.75 and @, = y,y, =0.5087 .

In the case of linear polarization ¢, =¢, =0, ¢, =¢,, the

graphs of the dependence of the longitudinal and trans-
verse pulses, as well as the longitudinal and transverse
coordinates of the particles on time under conditions of
autoresonance are shown in Figs. 3, 4.
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As can be seen from these graphs, the maximum
values of the longitudinal and transverse momenta with
circular polarization are approximately two times higher
than their values with linear polarization. The depend-
ence of the longitudinal coordinate on time, as expected
(B,~c), has not practically changed. The oscillation
period of the transverse coordinates and momenta is
approximately two times large than in the case of linear
polarization.

In the case of oblique propagation (k, = 0.075) of the

linearly polarized wave ¢, =¢, =0, ¢, =¢,, the dependenc-
es of the longitudinal and transverse coordinates and

momenta of the particle for cyclotron frequency
o, =7,.w, and parameter values are shown in Figs. 5, 6.
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From the graphs in Figs. 5, 6 it is seen that the inter-
action of a charged particle with a field is resonant char-
acter. The time intervals at which the parameter x oscil-
lates around a certain average value are clearly distin-
guished. In accordance with the change in the parameter
4, the average energy of the oscillations of the energy of
the charged particle also changes. At the same time,
contribution to the energy increment gives not only one
harmonic with a fixed number n, but also adjacent har-
monics n—1, n+1:

n+l

Ay() =&, D 3, (o r* .

k=n-1

(32)

15.10° 2.10°
n=13

s10° T 0 6100 7a0° 810° 010° T
Fig. 7. Dependences of particle energy ontime T =z /27
for different regions change of parameter . Blue color
indicates the curve of the particle energy versus time
obtained by numerically solving the system of equations
(2). Red color indicates the curve of the dependence
of the particle energy on time found by the formula (32)

As can be seen from the graphs in Fig. 7, we can
speak of a sufficiently good qualitative agreement be-
tween the results of the numerical calculation of the
system of equations (2) and the results of evaluation by
formula (32).

3a10° 4.10°

CONCLUSIONS

Let’s state the most important results of this work.

1. It is shown that the well-known conditions of cy-
clotron resonance should be generalized. The generaliza-
tion is that these conditions include both the strength of
the external magnetic fields and the field strength of the
electromagnetic waves with which the particles interact.
The use of these new resonant conditions makes possi-
ble to implement a scheme of resonant interaction of
particles even with laser radiation fields in vacuum.

2. If the initial parameters of charged particles are such
that the condition C =y — p, = @, where C = yy = const is

satisfied, where C is the integral of particle motion, then
a scheme of autoresonant interaction of particles with
laser fields in vacuum can be implemented.

3. Conducted numerical studies confirm qualitative-
ly and quantitatively the key results of analytical studies
within the framework of this model.
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YCKOPEHHUE YACTHUILl THTEHCUBHBIMHU 3JIEKTPOMATHUTHBIMU IIOJISIMA B BAKYYME
IMPU HAJIMYUU BHEHIHET'O MATHUTHOT'O ITIOJISI
B.A. byu, B.B. Kyzomun, A.Il. Toncmonyscckuii

PaccMOTpeHbl BO3MOXKHOCTH U YCI0BHS 3G ()EKTUBHOTO B3aUMO/ICHCTBYSA, B YACTHOCTH YCKOPEHUS, 3apsHKEHHBIX YaCTHIL 11O~
JIeM HHTEHCHBHOM IIOCKOIT 3JIEKTPOMAarHUTHOM BOJIHBI IIPU HAJIMYMK BHEIIHETO IOCTOSIHHOIO MarHUTHOTO 1ojst. IlokasaHo, 4to
U3BECTHBIE YCIIOBHS IIUKIOTPOHHBIX PE30HAHCOB TpeOyroT 00o0meHus. ChopMyIMpOBaHEl HOBEIE YCIIOBHS PE30HAHCHOTO B3aH-
MOZEHCTBHS 3apsHKEHHBIX YaCTHILI, KOTOPBIE COIEPIKAT HE TOJIBKO HANPSHKEHHOCTh BHEITHEIO MAarHUTHOT'O IOJIsI (KaK M3BECTHBIE
YCIIOBUSI IIMKJIOTPOHHBIX PE30HAHCOB) HO M HAIPSIKEHHOCTD T10JIS BOJHBL. PacCMOTpPEHBI Clydanm Kak MalbIX HalpsHKeHHOCTEH
HOJIS BOJIH, Tak Oonbiux. [Toka3aHo, YTO HOBbIE PE30HAHCHBIE YCIOBHS OTKPHIBAIOT HOBBIE BO3MOXHOCTH 3G ()EKTUBHOTO yCKO-
PEHHMS YaCTHII.

NPUCKOPEHHS YACTUHOK IHTEHCUBHUMMU EJIEKTPOMATHITHUMMU ITOJIAMH Y BAKYYMI
PN HASIBHOCTI 30BHIIIHBOI'O MATHITHOI'O ITOJISA

B.O. byu, B.B. Ky3emin, O.11. Toncmonysccokuii
PO3riIsHyTO MOXKIMBOCTI Ta yMOBH €()eKTHBHOI B3a€MO/Ii1, 30KpeMa IIPUCKOPEHHS, 3aPsPKCHIX YaCTHHOK I10JIEM iHTEHCHBHOT
IUIOCKOI eJIEeKTPOMArHITHOI XBWJII HPH HAsBHOCTI 30BHIIIHBOTO HOCTiIHHOro MarHiTHOro mois. ITokasaHo, 1o BifoMi yMOBH
[UKJIOTPOHHUX PE30HAHCIB BUMAararoth y3arajabHeHHS. C(OpMyIbOBaHO HOBI YMOBH DPE30HAHCHOTO B3a€MOJIl 3apsPKCHUX
YAaCTUHOK, SIKI MICTSATh HE TIIbKU HANpPY>KEHICTh 30BHILIHBOIO MArHITHOTO MOJIsI (K BiZOMi yMOBH LUKIIOTPOHHHX PE30HAHCIB)
aJe i Hanpy KeHIiCTh MOJIst XBUII. PO3IIISHYTO BUNIAAKHU SIK MaJIUX HAIPY)KEHOCTEH MOJs XBHIIb, TaK BEIMKUX. IT0Ka3aHo, 110 HOBI
PE30HAaHCHI YMOBH BiJKPHBAIOTh HOBI MOXJIMBOCTI €()EKTUBHOIO IPHCKOPEHHS YaCTHHOK.
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